1
|
Aghajanloo B, Hadady H, Ejeian F, Inglis DW, Hughes MP, Tehrani AF, Nasr-Esfahani MH. Biomechanics of circulating cellular and subcellular bioparticles: beyond separation. Cell Commun Signal 2024; 22:331. [PMID: 38886776 PMCID: PMC11181607 DOI: 10.1186/s12964-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients' medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 μm for platelets to 25 μm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles.
Collapse
Affiliation(s)
- Behrouz Aghajanloo
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Science, Research and Technology (DISAT), Politecnico di Torino, Turin, Italy
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hanieh Hadady
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
2
|
Lensless light intensity model for quasi-spherical cell size measurement. Biomed Microdevices 2022; 24:21. [PMID: 35674856 DOI: 10.1007/s10544-021-00607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/02/2022]
Abstract
Quasi-spherical cell size measurement plays an important role in medical test. Traditional methods such as a microscope and a flow cytometer are either it depends on professionals and cannot be automated, or it is expensive and bulky, which are not suitable for point-of-care test. Lab-on-a-chip technology using the lensless imaging system gives a good solution for obtaining the quasi-spherical cell size. The diffraction effects and the low resolution are the two main problems faced by the lensless imaging system. In this paper, a lensless light intensity model for the quasi-spherical cell size measurement is given. First, the diffraction characteristics of a quasi-spherical cell edge are given. Then, a diffraction model at an arc edge is constructed based on the Fresnel diffraction at a straight edge. Using the diffraction model at an arc edge, we explained the mechanism of the formation of the quasi-spherical cell diffraction fringes. Finally, the light intensity of the first bright ring of the quasi-spherical cell diffraction pattern is used to achieve quasi-spherical cell size measurement. The required equipment and the measurement methods are extremely simple, very suitable for point-of-care test. The experimental results show that the proposed model can realize the statistical measurement of the quasi-spherical cells and the classification of the quasi-spherical cells with a difference of 1 [Formula: see text].
Collapse
|
3
|
Sharma U, Medina-Saenz K, Miller PC, Troness B, Spartz A, Sandoval-Leon A, Parke DN, Seagroves TN, Lippman ME, El-Ashry D. Heterotypic clustering of circulating tumor cells and circulating cancer-associated fibroblasts facilitates breast cancer metastasis. Breast Cancer Res Treat 2021; 189:63-80. [PMID: 34216317 DOI: 10.1007/s10549-021-06299-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are recruited to the tumor microenvironment (TME) and are critical drivers of breast cancer (BC) malignancy. Circulating tumor cells (CTCs) travel through hematogenous routes to establish metastases. CTCs circulate both individually and, more rarely, in clusters with other cell types. Clusters of CTCs have higher metastatic potential than single CTCs. Previously, we identified circulating CAFs (cCAFs) in patients with BC and found that while healthy donors had no CTCs or cCAFs, both were present in most Stage IV patients. cCAFs circulate individually, as cCAF-cCAF homotypic clusters, and in heterotypic clusters with CTCs. METHODS In this study, we evaluate CTCs, cCAFs, and heterotypic cCAF-CTC clusters in patients with stage I-IV BC. We evaluate the association of heterotypic clusters with BC disease progression and metastasis in a spontaneous mouse model. Using previously established primary BC and CAF cell lines, we examine the metastatic propensity of heterotypic cCAF-CTC clusters in orthotopic and tail vein xenograft mouse models of BC. Using an in vitro clustering assay, we determine factors that may be involved in clustering between CAF and BC cells. RESULTS We report that the dissemination of CTCs, cCAFs, and clusters is an early event in BC progression, and we find these clusters in all clinical stages of BC. Furthermore, cCAFs-CTC heterotypic clusters have a higher metastatic potential than homotypic CTC clusters in vivo. We also demonstrate that the adhesion and stemness marker CD44, found on a subset of CTCs and CAF cells, is involved in heterotypic clustering of these cells. CONCLUSION We identify a novel subset of circulating tumor cell clusters that are enriched with stromal CAF cells in BC patient blood and preclinical mouse models of BC metastasis. Our data suggest that clustering of CTCs with cCAFs augments their metastatic potential and that CD44 might be an important mediator of heterotypic clustering of cCAFs and BC cells.
Collapse
Affiliation(s)
- Utsav Sharma
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Kelsie Medina-Saenz
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Philip C Miller
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Benjamin Troness
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 2231 6th St. SE Minneapolis, Minneapolis, MN, 55455, USA
| | - Angela Spartz
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 2231 6th St. SE Minneapolis, Minneapolis, MN, 55455, USA
| | - Ana Sandoval-Leon
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Deanna N Parke
- Department of Pathology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tiffany N Seagroves
- Department of Pathology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marc E Lippman
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 2231 6th St. SE Minneapolis, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Internò V, Tucci M, Pezzicoli G, Silvestris F, Porta C, Mannavola F. Liquid Biopsy as a Tool Exploring in Real-Time Both Genomic Perturbation and Resistance to EGFR Antagonists in Colorectal Cancer. Front Oncol 2020; 10:581130. [PMID: 33102237 PMCID: PMC7546030 DOI: 10.3389/fonc.2020.581130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
The treatment of metastatic colorectal cancer (mCRC) has improved since the introduction of the epithelial growth factor receptor (EGFR) inhibitors as cetuximab and panitumumab. However, only patients with peculiar genomic profiles benefit from these targeting therapies. In fact, the molecular integrity of RAS genes is a predominant factor conditioning both primary and acquired resistance in non-responders although additional molecular derangements induced by selective anti-EGFR pressure may concur to the failure of those disease treatment, liquid biopsy (LB) appears as a surrogate of tissue biopsy, provides the genomic information to reveal tumor resistance to anti-EGFR agents, the detection of minimal residual disease before adjuvant therapies, and the discovery of tumor molecular status suitable for rechallenging treatments with EGFR antagonists. LB investigates circulating tumor cells (CTCs), cell-free tumor DNA (ctDNA), and tumor-derived exosomes. In mCRC, ctDNA analysis has been demonstrated as a useful method in the mutational tracking of defined genes as well as on tumor burden and detection of molecular alterations driving the resistance to anti-EGFR targeting treatments. However, despite their efficiency in molecular diagnosis and prognostic evaluation of mCRC, the affordability of these procedures is prevalently restricted to research centers, and the lack of consensus validation prevents their translation to clinical practice. Here, we revisit the major mechanisms responsible for resistance to EGFR blockade and review the different methods of LB potentially useful for treatment options in mCRC.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy.,National Cancer Research Centre, Istituto Tumori Bari "Giovanni Paolo II", Bari, Italy
| | - Gaetano Pezzicoli
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Keomanee-Dizon K, Shishido SN, Kuhn P. Circulating Tumor Cells: High-Throughput Imaging of CTCs and Bioinformatic Analysis. Recent Results Cancer Res 2020; 215:89-104. [PMID: 31605225 PMCID: PMC7679175 DOI: 10.1007/978-3-030-26439-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circulating tumor cells (CTCs) represent novel biomarkers, since they are obtainable through a simple and noninvasive blood draw or liquid biopsy. Here, we review the high-definition single-cell analysis (HD-SCA) workflow, which brings together modern methods of immunofluorescence with more sophisticated image processing to rapidly and accurately detect rare tumor cells among the milieu of platelets, erythrocytes, and leukocytes in the peripheral blood. In particular, we discuss progress in methods to measure CTC morphology and subcellular protein expression, and we highlight some initial applications that lead to fundamental new insights about the hematogenous phase of cancer, as well as its performance in early-stage diagnosis and treatment monitoring. We end with an outlook on how to further probe CTCs and the unique advantages of the HD-SCA workflow for improving the precision of cancer care.
Collapse
Affiliation(s)
- Kevin Keomanee-Dizon
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W. Childs Way, Los Angeles, 90089-3502, CA, United States
- Viterbi School of Engineering, University of Southern California, 1002 W. Childs Way, Los Angeles, CA, 90089, United States
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W. Childs Way, Los Angeles, 90089-3502, CA, United States
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W. Childs Way, Los Angeles, 90089-3502, CA, United States.
- Viterbi School of Engineering, University of Southern California, 1002 W. Childs Way, Los Angeles, CA, 90089, United States.
| |
Collapse
|
6
|
Jansson S, Bendahl PO, Larsson AM, Aaltonen KE, Rydén L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 2016; 16:433. [PMID: 27390845 PMCID: PMC4938919 DOI: 10.1186/s12885-016-2406-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background Presence of circulating tumor cells (CTCs) is a validated prognostic marker in metastatic breast cancer. Additional prognostic information may be obtained by morphologic characterization of CTCs. We explored whether apoptotic CTCs, CTC clusters and leukocytes attached to CTCs are associated with breast cancer subtype and prognosis at base-line (BL) and in follow-up (FU) blood samples in patients with metastatic breast cancer scheduled for first-line systemic treatment. Methods Patients with a first metastatic breast cancer event were enrolled in a prospective observational study prior to therapy initiation and the CellSearch system (Janssen Diagnostics) was used for CTC enumeration and characterization. We enrolled patients (N = 52) with ≥5 CTC/7.5 ml blood at BL (median 45, range 5–668) and followed them with blood sampling for 6 months during therapy. CTCs were evaluated for apoptotic changes, CTC clusters (≥3 nuclei), and leukocytes associated with CTC (WBC-CTC, ≥1 CTC + ≥1 leukocytes) at all time-points by visual examination of the galleries generated by the CellTracks Analyzer. Results At BL, patients with triple-negative and HER2-positive breast cancer had blood CTC clusters present more frequently than patients with hormone receptor-positive cancer (P = 0.010). No morphologic characteristics were associated with prognosis at BL, whereas patients with apoptotic CTCs or clusters in FU samples had worse prognosis compared to patients without these characteristics with respect to progression-free (PFS) and overall survival (OS) (log-rank test: P = 0.0012 or lower). Patients with apoptotic or clustered CTCs at any time-point had impaired prognosis in multivariable analyses adjusting for number of CTCs and other prognostic factors (apoptosis: HROS = 25, P < 0.001; cluster: HROS = 7.0, P = 0.006). The presence of WBC-CTCs was significantly associated with an inferior prognosis in terms of OS at 6 months in multivariable analysis. Conclusions Patients with a continuous presence of apoptotic or clustered CTCs in FU samples after systemic therapy initiation had worse prognosis than patients without these CTC characteristics. In patients with ≥5 CTC/7.5 ml blood at BL, morphologic characterization of persistent CTCs could be an important prognostic marker during treatment, in addition to CTC enumeration alone. Clinical Trials (NCT01322893), registration date 21 March 2011 Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2406-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Jansson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Anna-Maria Larsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden.,Translational Cancer Research, Medicon Village, Lund University, SE-223 81, Lund, Sweden
| | - Kristina E Aaltonen
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Lisa Rydén
- Department of Surgery, Skåne University Hospital, SE-214 28, Malmö, Sweden. .,Department of Clinical Sciences Lund, Division of Surgery, Lund University, Medicon Village, SE-223 81, Lund, Sweden.
| |
Collapse
|
7
|
Baker-Groberg SM, Phillips KG, Healy LD, Itakura A, Porter JE, Newton PK, Nan X, McCarty OJT. Critical behavior of subcellular density organization during neutrophil activation and migration. Cell Mol Bioeng 2015; 8:543-552. [PMID: 26640599 DOI: 10.1007/s12195-015-0400-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration.
Collapse
Affiliation(s)
- Sandra M Baker-Groberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Kevin G Phillips
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Laura D Healy
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Asako Itakura
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Juliana E Porter
- Viterbi School of Engineering, Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| | - Paul K Newton
- Viterbi School of Engineering, Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 ; Department of Mathematics, University of Southern California, Los Angeles, CA 90089 ; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 ; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239 ; Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
8
|
Totonchy JE, Clepper L, Phillips KG, McCarty OJT, Moses AV. CXCR7 expression disrupts endothelial cell homeostasis and causes ligand-dependent invasion. Cell Adh Migr 2015; 8:165-76. [PMID: 24710021 DOI: 10.4161/cam.28495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The homeostatic function of endothelial cells (EC) is critical for a number of physiological processes including vascular integrity, immunity, and wound healing. Indeed, vascular abnormalities resulting from EC dysfunction contribute to the development and spread of malignancies. The alternative SDF-1/CXCL12 receptor CXCR7 is frequently and specifically highly expressed in tumor-associated vessels. In this study, we investigate whether CXCR7 contributes to vascular dysfunction by specifically examining the effect of CXCR7 expression on EC barrier function and motility. We demonstrate that CXCR7 expression in EC results in redistribution of CD31/PECAM-1 and loss of contact inhibition. Moreover, CXCR7+ EC are deficient in barrier formation. We show that CXCR7-mediated motility has no influence on angiogenesis but contributes to another motile process, the invasion of CXCR7+ EC into ligand-rich niches. These results identify CXCR7 as a novel manipulator of EC barrier function via alteration of PECAM-1 homophilic junctions. As such, aberrant expression of CXCR7 in the vasculature has the potential to disrupt vascular homeostasis and could contribute to vascular dysfunction in cancer systems.
Collapse
Affiliation(s)
- Jennifer E Totonchy
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Portland, OR USA
| | - Lisa Clepper
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Portland, OR USA
| | - Kevin G Phillips
- Department of Biomedical Engineering; Oregon Health and Science University; Portland, OR USA
| | - Owen J T McCarty
- Department of Biomedical Engineering; Oregon Health and Science University; Portland, OR USA
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Portland, OR USA
| |
Collapse
|
9
|
Werner SL, Graf RP, Landers M, Valenta DT, Schroeder M, Greene SB, Bales N, Dittamore R, Marrinucci D. Analytical Validation and Capabilities of the Epic CTC Platform: Enrichment-Free Circulating Tumour Cell Detection and Characterization. J Circ Biomark 2015; 4:3. [PMID: 28936239 PMCID: PMC5572988 DOI: 10.5772/60725] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
The Epic Platform was developed for the unbiased detection and molecular characterization of circulating tumour cells (CTCs). Here, we report assay performance data, including accuracy, linearity, specificity and intra/inter-assay precision of CTC enumeration in healthy donor (HD) blood samples spiked with varying concentrations of cancer cell line controls (CLCs). Additionally, we demonstrate clinical feasibility for CTC detection in a small cohort of metastatic castrate-resistant prostate cancer (mCRPC) patients. The Epic Platform demonstrated accuracy, linearity and sensitivity for the enumeration of all CLC concentrations tested. Furthermore, we established the precision between multiple operators and slide staining batches and assay specificity showing zero CTCs detected in 18 healthy donor samples. In a clinical feasibility study, at least one traditional CTC/mL (CK+, CD45-, and intact nuclei) was detected in 89 % of 44 mCRPC samples, whereas 100 % of samples had CTCs enumerated if additional CTC subpopulations (CK-/CD45- and CK+ apoptotic CTCs) were included in the analysis. In addition to presenting Epic Platform's performance with respect to CTC enumeration, we provide examples of its integrated downstream capabilities, including protein biomarker expression and downstream genomic analyses at single cell resolution.
Collapse
|
10
|
Phillips KG, Lee AM, Tormoen GW, Rigg RA, Kolatkar A, Luttgen M, Bethel K, Bazhenova L, Kuhn P, Newton P, McCarty OJT. The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation. Am J Physiol Cell Physiol 2014; 308:C229-36. [PMID: 25411332 DOI: 10.1152/ajpcell.00315.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombotic events can herald the diagnosis of cancer, preceding any cancer-related clinical symptoms. Patients with cancer are at a 4- to 7-fold increased risk of suffering from venous thromboembolism (VTE), with ∼7,000 patients with lung cancer presenting from VTEs. However, the physical biology underlying cancer-associated VTE remains poorly understood. Several lines of evidence suggest that the shedding of tissue factor (TF)-positive circulating tumor cells (CTCs) and microparticles from primary tumors may serve as a trigger for cancer-associated thrombosis. To investigate the potential direct and indirect roles of CTCs in VTE, we characterized thrombin generation by CTCs in an interactive numerical model coupling blood flow with advection-diffusion kinetics. Geometric measurements of CTCs isolated from the peripheral blood of a lung cancer patient prior to undergoing lobectomy formed the basis of the simulations. Singlet, doublet, and aggregate circulating tumor microemboli (CTM) were investigated in the model. Our numerical model demonstrated that CTM could potentiate occlusive events that drastically reduce blood flow and serve as a platform for the promotion of thrombin generation in flowing blood. These results provide a characterization of CTM dynamics in the vasculature and demonstrate an integrative framework combining clinical, biophysical, and mathematical approaches to enhance our understanding of CTCs and their potential direct and indirect roles in VTE formation.
Collapse
Affiliation(s)
- Kevin G Phillips
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Angela M Lee
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Garth W Tormoen
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Rachel A Rigg
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Anand Kolatkar
- Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Madelyn Luttgen
- Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Kelly Bethel
- Scripps Clinic Medical Group, Scripps Clinic, La Jolla, California
| | - Lyudmila Bazhenova
- University of California San Diego Moores Cancer Center, San Diego, California; and
| | - Peter Kuhn
- Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Paul Newton
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Mishra DK, Scott KL, Wardwell-Ozgo JM, Thrall MJ, Kim MP. Circulating tumor cells from 4D model have less integrin beta 4 expression. J Surg Res 2014; 193:745-53. [PMID: 25234746 DOI: 10.1016/j.jss.2014.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Currently, there is no in vitro or ex vivo model that can isolate circulating tumor cells (CTCs). Recently, we developed a four-dimensional (4D) lung cancer model that allows for the isolation of CTCs. We postulated that these cells have different properties than parental (2D) cells. MATERIALS AND METHODS We obtained CTCs by growing A549, H1299, 393P, and 344SQ cell lines on the 4D lung model. The CTCs were functionally characterized in vitro and gene expression of the cell adhesion molecules was compared with respective 2D cells. Integrin beta 4 (ITGB4) was further investigated by stably transfecting the A549 and H1299 cells. RESULTS We found that all cell lines produced CTCs, and that CTCs from the 4D model were less adherent to the plastic and have a slower growth rate than respective 2D cells (P < 0.01). Most of the cell adhesion molecules were downregulated (P < 0.05) in CTCs, and ITGB4 was the common molecule, significantly more underexpressed in CTCs from all cell lines than their respective 2D cells. The modulation of ITGB4 led to a differential function of 2D cells. CONCLUSIONS CTCs from the 4D model have different transcriptional, translational, and in vitro characteristics than the same cells grown on a petri dish, and these CTCs from the 4D model have the properties of CTCs that are responsible for metastasis.
Collapse
Affiliation(s)
- Dhruva K Mishra
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Michael J Thrall
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Min P Kim
- Department of Surgery, Houston Methodist Research Institute, Houston, Texas; Department of Surgery, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
12
|
Lan H, Khismatullin DB. Numerical simulation of the pairwise interaction of deformable cells during migration in a microchannel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012705. [PMID: 25122333 DOI: 10.1103/physreve.90.012705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 06/03/2023]
Abstract
Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral and translational directions. Their migratory property is important in immune response, hemostasis, cancer progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a microchannel. The numerical simulation data show that when two cells with the same size and small separation distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During this process, they undergo swapping or passing, depending on the initial separation distance between each other. The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger deformation are more likely to swap. When a series of closely spaced cells with the same size are considered, they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline and entering the other side of the channel. For a series of cells with different deformability, more deformable cells, upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.
Collapse
Affiliation(s)
- Hongzhi Lan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Damir B Khismatullin
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
13
|
Baker-Groberg SM, Cianchetti FA, Phillips KG, McCarty OJT. Development of a method to quantify platelet adhesion and aggregation under static conditions. Cell Mol Bioeng 2014; 7:285-290. [PMID: 24883127 DOI: 10.1007/s12195-014-0328-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Platelets are important players in hemostasis and thrombosis. Thus, accurate assessment of platelet function is crucial for identifying platelet function disorders and measuring the efficacy of antiplatelet therapies. We have developed a novel platelet aggregation technique that utilizes the physical parameter of platelet concentration in conjunction with volume and mass measurements to evaluate platelet adhesion and aggregation. Platelet aggregates were formed by incubating purified platelets on fibrinogen- or fibrillar collagen-coated surfaces at platelet concentrations ranging from 20,000 to 500,000 platelets/ L. Platelets formed aggregates under static conditions in a platelet concentration-dependent manner, with significantly greater mean volume and mass at higher platelet concentrations ( 400,000 platelets/ L). We show that a platelet glycoprotein IIb/IIIa inhibitor abrogated platelet-platelet aggregation, which significantly reduced the volume and mass of the platelets on the collagen surface. This static platelet aggregation technique is amenable to standardization and represents a useful tool to investigate the mechanism of platelet activation and aggregation under static conditions.
Collapse
Affiliation(s)
- Sandra M Baker-Groberg
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Flor A Cianchetti
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Kevin G Phillips
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| |
Collapse
|
14
|
Damania D, Subramanian H, Backman V, Anderson EC, Wong MH, McCarty OJT, Phillips KG. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16016. [PMID: 24441943 PMCID: PMC4019418 DOI: 10.1117/1.jbo.19.1.016016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/13/2013] [Indexed: 05/05/2023]
Abstract
Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.
Collapse
Affiliation(s)
- Dhwanil Damania
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208
| | - Hariharan Subramanian
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208
| | - Vadim Backman
- Northwestern University, Biomedical Engineering Department, Evanston, Illinois 60208
| | - Eric C. Anderson
- Oregon Health & Science University, Knight Cancer Institute, Portland, Oregon 97239
| | - Melissa H. Wong
- Oregon Health & Science University, Knight Cancer Institute, Portland, Oregon 97239
- Oregon Health & Science University, School of Medicine, Department of Cell & Developmental Biology, Portland, Oregon 97239
- Oregon Health & Science University, School of Medicine, Department of Dermatology, Portland, Oregon 97239
| | - Owen J. T. McCarty
- Oregon Health & Science University, Knight Cancer Institute, Portland, Oregon 97239
- Oregon Health & Science University, School of Medicine, Department of Cell & Developmental Biology, Portland, Oregon 97239
- Oregon Health & Science University, School of Medicine, Department of Biomedical Engineering, Portland, Oregon 97239
| | - Kevin G. Phillips
- Oregon Health & Science University, School of Medicine, Department of Dermatology, Portland, Oregon 97239
- Oregon Health & Science University, School of Medicine, Department of Biomedical Engineering, Portland, Oregon 97239
- Address all correspondence to: Kevin Phillips, E-mail:
| |
Collapse
|
15
|
Moore NM, Nagahara LA. Physical biology in cancer. 1. Cellular physics of cancer metastasis. Am J Physiol Cell Physiol 2013; 306:C78-9. [PMID: 24153431 DOI: 10.1152/ajpcell.00292.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major challenges in cancer research today is developing new therapeutic strategies to control metastatic disease, the spread of cancer cells from a primary tumor to seed in a distant site. Advances in diagnosis and treatment options have increased the survival rate for most patients with local tumors; however, less progress has been made in treatment of disseminated disease. According to the SEER Cancer Statistics Review, 1975-2010, in the case of breast and prostate cancers, only one in four patients diagnosed with distant metastatic disease will survive more than five years. Current research efforts largely focus on identifying biological targets, such as specific genes and signaling pathways that drive two key steps of metastasis, invasion from the primary tumor and growth in the secondary site. On the other hand, there are phenotypic traits and dynamics in the metastatic process that are not encoded by single genes or signaling pathways but, rather, a larger system of events and biophysical characteristics. Connecting genomic and pathway investigations with quantitative physical phenotypic characteristics of cells, the physical microenvironment, and the physical spatiotemporal interactions of the metastatic process provides a stronger complementary understanding of the disease.
Collapse
Affiliation(s)
- Nicole M Moore
- Office of Physical Sciences-Oncology, Center for Strategic Scientific Initiatives, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
16
|
Phillips KG, Kuhn P, McCarty OJT. Physical biology in cancer. 2. The physical biology of circulating tumor cells. Am J Physiol Cell Physiol 2013; 306:C80-8. [PMID: 24133063 DOI: 10.1152/ajpcell.00294.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification, isolation, and characterization of circulating tumor cells (CTCs) promises to enhance our understanding of the evolution of cancer in humans. CTCs provide a window into the hematogenous, or "fluid phase," of cancer, underlying the metastatic transition in which a locally contained tumor spreads to other locations in the body through the bloodstream. With the development of sensitive and specific CTC identification and isolation methodologies, the role of CTCs in clinical diagnostics, disease surveillance, and the physical basis of metastasis continues to be established. This review focuses on the quantification of the basic biophysical properties of CTCs and the use of these metrics to understand the hematogenous dissemination of these enigmatic cells.
Collapse
Affiliation(s)
- Kevin G Phillips
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | | |
Collapse
|
17
|
Baker-Groberg SM, Itakura A, Gruber A, McCarty OJT. Role of coagulation in the recruitment of colon adenocarcinoma cells to thrombus under shear. Am J Physiol Cell Physiol 2013; 305:C951-9. [PMID: 23903698 DOI: 10.1152/ajpcell.00185.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colorectal cancer metastases can appear on the peritoneum and in lymph nodes, liver, and lungs, suggesting both hematogenous and lymphatic spreading of the primary tumor. While antithrombotic agents have been shown to reduce both long-term incidence and metastasis, the role of coagulation in facilitating metastasis is ill defined. We investigated the kinetics and molecular mechanisms of metastatic colon adenocarcinoma cell recruitment to thrombi under shear flow, ex vivo. Platelet aggregates were formed by perfusing citrated anticoagulated whole blood over immobilized fibrinogen or fibrillar collagen. Thrombi were formed by perfusing recalcified whole blood over fibrinogen or fibrillar collagen in the presence of coagulation. Cultured colon adenocarcinoma cells (SW620) were perfused either during or following platelet aggregate or thrombus formation. The degree of transient tumor cell interactions (recruitment, rolling, and release) and the number of firmly adhered tumor cells were quantified using fluorescence microscopy. Platelet aggregates and thrombi formed on either fibrinogen- or fibrillar-collagen supported SW620 cell interactions and adhesion under shear. Thrombi or fibrin supported a greater degree of SW620 cell interactions and adhesion compared with platelet aggregates or fibrinogen, respectively, demonstrating that coagulation promoted SW620 cell recruitment under shear. Interestingly, in the absence of anticoagulation, we observed SW620 preferentially binding to thrombus-bound polymorphonuclear leukocytes (PMNs). The addition of purified PMNs to thrombi resulted in a doubling of the number of interacting and bound SW620 cells. Since thrombi often accumulate and activate leukocytes, our findings suggest that leukocytes may play a role in localizing metastases to sites of thrombogenesis.
Collapse
Affiliation(s)
- Sandra M Baker-Groberg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon; and
| | | | | | | |
Collapse
|
18
|
Mahjoubfar A, Chen C, Niazi KR, Rabizadeh S, Jalali B. Label-free high-throughput cell screening in flow. BIOMEDICAL OPTICS EXPRESS 2013; 4:1618-25. [PMID: 24049682 PMCID: PMC3771832 DOI: 10.1364/boe.4.001618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 05/05/2023]
Abstract
Flow cytometry is a powerful tool for cell counting and biomarker detection in biotechnology and medicine especially with regards to blood analysis. Standard flow cytometers perform cell type classification both by estimating size and granularity of cells using forward- and side-scattered light signals and through the collection of emission spectra of fluorescently-labeled cells. However, cell surface labeling as a means of marking cells is often undesirable as many reagents negatively impact cellular viability or provide activating/inhibitory signals, which can alter the behavior of the desired cellular subtypes for downstream applications or analysis. To eliminate the need for labeling, we introduce a label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously either as a stand-alone instrument or as an add-on to conventional flow cytometers. Cell protein concentration adds a parameter to cell classification, which improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. This system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second.
Collapse
Affiliation(s)
- Ata Mahjoubfar
- Department of Electrical Engineering, University of California, Los Angeles, California 90095 USA
- California NanoSystems Institute, Los Angeles, California 90095 USA
| | - Claire Chen
- Department of Electrical Engineering, University of California, Los Angeles, California 90095 USA
- California NanoSystems Institute, Los Angeles, California 90095 USA
| | - Kayvan R. Niazi
- California NanoSystems Institute, Los Angeles, California 90095 USA
- Department of Bioengineering, University of California, Los Angeles, California 90095 USA
- NantWorks, LLC, Culver City, California 90232 USA
| | - Shahrooz Rabizadeh
- California NanoSystems Institute, Los Angeles, California 90095 USA
- Department of Bioengineering, University of California, Los Angeles, California 90095 USA
- NantWorks, LLC, Culver City, California 90232 USA
| | - Bahram Jalali
- Department of Electrical Engineering, University of California, Los Angeles, California 90095 USA
- California NanoSystems Institute, Los Angeles, California 90095 USA
- Department of Bioengineering, University of California, Los Angeles, California 90095 USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095 USA
| |
Collapse
|
19
|
Baker-Groberg SM, Phillips KG, McCarty OJT. Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:16014. [PMID: 23348747 PMCID: PMC3555125 DOI: 10.1117/1.jbo.18.1.016014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
Flow chamber assays, in which blood is perfused over surfaces of immobilized extracellular matrix proteins, are used to investigate the formation of platelet thrombi and aggregates under shear flow conditions. Elucidating the dynamic response of thrombi/aggregate formation to different coagulation pathway perturbations in vitro has been used to develop an understanding of normal and pathological cardiovascular states. Current microscopy techniques, such as differential interference contrast (DIC) or fluorescent confocal imaging, respectively, do not provide a simple, quantitative understanding of the basic physical features (volume, mass, and density) of platelet thrombi/aggregate structures. The use of two label-free imaging techniques applied, for the first time, to platelet aggregate and thrombus formation are introduced: noninterferometric quantitative phase microscopy, to determine mass, and Hilbert transform DIC microscopy, to perform volume measurements. Together these techniques enable a quantitative biophysical characterization of platelet aggregates and thrombi formed on three surfaces: fibrillar collagen, fibrillar collagen +0.1 nM tissue factor (TF), and fibrillar collagen +1 nM TF. It is demonstrated that label-free imaging techniques provide quantitative insight into the mechanisms by which thrombi and aggregates are formed in response to exposure to different combinations of procoagulant agonists under shear flow.
Collapse
Affiliation(s)
- Sandra M. Baker-Groberg
- Oregon Health and Science University, School of Medicine, Department of Biomedical Engineering, 3303 SW Bond Avenue, Portland, Oregon 97239
| | - Kevin G. Phillips
- Oregon Health and Science University, School of Medicine, Department of Biomedical Engineering, 3303 SW Bond Avenue, Portland, Oregon 97239
| | - Owen J. T. McCarty
- Oregon Health and Science University, School of Medicine, Department of Biomedical Engineering, 3303 SW Bond Avenue, Portland, Oregon 97239
| |
Collapse
|
20
|
King MR. Rolling in the deep: therapeutic targeting of circulating tumor cells. Front Oncol 2012; 2:184. [PMID: 23226682 PMCID: PMC3509341 DOI: 10.3389/fonc.2012.00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 11/14/2012] [Indexed: 12/05/2022] Open
Affiliation(s)
- Michael R King
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
21
|
Development of a Label-free Imaging Technique for the Quantification of Thrombus Formation. Cell Mol Bioeng 2012; 5:488-492. [PMID: 23585817 DOI: 10.1007/s12195-012-0249-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The characterization of platelet aggregation and thrombus formation typically requires the use of fluorescent labels followed by fluorescent confocal microscopy. However, fluorescent labels have been suspected to affect platelet function. We have developed a label-free imaging technique to characterize the volume and surface area coverage of platelet aggregates and thrombi formed under shear. Platelet aggregates were formed by perfusing anti-coagulated whole blood over fibrillar collagen. Thrombi were formed by perfusing recalcified whole blood over fibrillar collagen in the presence of coagulation. Platelet aggregates and thrombi volume and surface area coverage were quantified using a Hilbert transform differential interference contrast (DIC) microscopy technique (HT-DIC). Our data indicate that platelet aggregates and thrombi formed at a shear rate of 200 s-1 had similar volume and surface area coverage. At a shear rate of 1000 s-1, both the volume and surface area coverage of platelet aggregates significantly increased as compared to low shear conditions. In contrast, the volume of thrombi formed in the presence of coagulation appeared to remain the same at both low and high shear rates. Utilization of this HT-DIC imaging technique can allow for insights into the kinetics and mechanisms by which thrombi are formed under various shear conditions in a label-free manner.
Collapse
|
22
|
Tormoen GW, Haley KM, Levine RL, McCarty OJT. Do circulating tumor cells play a role in coagulation and thrombosis? Front Oncol 2012; 2:115. [PMID: 22973557 PMCID: PMC3437466 DOI: 10.3389/fonc.2012.00115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 01/08/2023] Open
Abstract
Cancer induces a hypercoagulable state, and patients with cancer who suffer a thrombotic event have a worse prognosis than those who do not. Recurrent pathologic thrombi in patients with cancer are clinically managed with anticoagulant medications; however, anticoagulant prophylaxis is not routinely prescribed owing to a complex variety of patient and diagnosis related factors. Early identification of patients at risk for cancer-associated thrombosis would allow for personalization of anticoagulant prophylaxis and likely reduce morbidity and mortality for many cancers. The environment in which a thrombosis develops in a patient with cancer is complex and unique from patients without cancer, which creates therapeutic challenges but may also provide targets for the development of clinical assays in this context. Circulating tumor cells (CTCs) may play a role in the association between cancer and thrombosis. Cancer metastasis, the leading cause of cancer-related deaths, is facilitated by the hematogenous spread of CTCs, and CTCs accompany metastatic disease across all major types of carcinomas. The role of CTCs in the pathogenesis of thrombosis has not been studied due to the previous difficulty in identifying these rare cells, but the interaction between these circulating cells and the coagulation system is an area of study that demands attention. The development of CTC detection platforms presents a new tool by which to characterize the role for CTCs in cancer-related hypercoagulability. In addition, this area of study presents a new avenue for assessing the risk of cancer-associated thrombosis and represents a potential tool for predicting which patients may benefit from anticoagulant prophylaxis. In this review, we will discuss the evidence in support of CTC induced hypercoagulability, and highlight areas where CTC-detection platforms may provide prognostic insight into the risk of developing thrombosis for patients with cancer.
Collapse
Affiliation(s)
- Garth W. Tormoen
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science UniversityPortland, OR, USA
| | - Kristina M. Haley
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science UniversityPortland, OR, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan–Kettering Cancer CenterNew York, NY, USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science UniversityPortland, OR, USA
- Department of Cell & Developmental Biology, School of Medicine, Oregon Health & Science UniversityPortland, OR, USA
| |
Collapse
|