1
|
Spear S, Le Saux O, Mirza HB, Iyer N, Tyson K, Grundland Freile F, Walton JB, Woodman C, Jarvis S, Ennis DP, Aguirre Hernandez C, Xu Y, Spiliopoulou P, Brenton JD, Costa-Pereira AP, Cook DP, Vanderhyden BC, Keun HC, Triantafyllou E, Arnold JN, McNeish IA. PTEN Loss Shapes Macrophage Dynamics in High-Grade Serous Ovarian Carcinoma. Cancer Res 2024; 84:3772-3787. [PMID: 39186679 PMCID: PMC7616669 DOI: 10.1158/0008-5472.can-23-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) remains a disease with poor prognosis that is unresponsive to current immune checkpoint inhibitors. Although PI3K pathway alterations, such as PTEN loss, are common in HGSC, attempts to target this pathway have been unsuccessful. We hypothesized that aberrant PI3K pathway activation may alter the HGSC immune microenvironment and present a targeting opportunity. Single-cell RNA sequencing identified populations of resident macrophages specific to Pten-null omental tumors in murine models, which were confirmed by flow cytometry. These macrophages were derived from peritoneal fluid macrophages and exhibited a unique gene expression program, marked by high expression of the enzyme heme oxygenase-1 (HMOX1). Targeting resident peritoneal macrophages prevented the appearance of HMOX1hi macrophages and reduced tumor growth. In addition, direct inhibition of HMOX1 extended survival in vivo. RNA sequencing identified IL33 in Pten-null tumor cells as a likely candidate driver, leading to the appearance of HMOX1hi macrophages. Human HGSC tumors also contained HMOX1hi macrophages with a corresponding gene expression program. Moreover, the presence of these macrophages was correlated with activated tumoral PI3K/mTOR signaling and poor overall survival in patients with HGSC. In contrast, tumors with low numbers of HMOX1hi macrophages were marked by increased adaptive immune response gene expression. These data suggest targeting HMOX1hi macrophages as a potential therapeutic strategy for treating poor prognosis HGSC. Significance: Macrophages with elevated HMOX1 expression are enriched in PTEN-deficient high-grade serous ovarian carcinoma, promote tumor growth, and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah Spear
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Olivia Le Saux
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France
| | - Hasan B. Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Nayana Iyer
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Katie Tyson
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Fabio Grundland Freile
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Josephine B. Walton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chloé Woodman
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Sheba Jarvis
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Darren P. Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Carmen Aguirre Hernandez
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Yuewei Xu
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Pavlina Spiliopoulou
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James D. Brenton
- CRUK Cambridge Institute, University of Cambridge, United Kingdom
| | - Ana P. Costa-Pereira
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Hector C. Keun
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Evangelos Triantafyllou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| |
Collapse
|
2
|
Crawford AJ, Forjaz A, Bons J, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Huang W, Russo GC, Lee MH, Wu PH, Shih IM, Wang TL, Atkinson MA, Schilling B, Kiemen AL, Wirtz D. Combined assembloid modeling and 3D whole-organ mapping captures the microanatomy and function of the human fallopian tube. SCIENCE ADVANCES 2024; 10:eadp6285. [PMID: 39331707 PMCID: PMC11430475 DOI: 10.1126/sciadv.adp6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The fallopian tubes play key roles in processes from pregnancy to ovarian cancer where three-dimensional (3D) cellular and extracellular interactions are important to their pathophysiology. Here, we develop a 3D multicompartment assembloid model of the fallopian tube that molecularly, functionally, and architecturally resembles the organ. Global label-free proteomics, innovative assays capturing physiological functions of the fallopian tube (i.e., oocyte transport), and whole-organ single-cell resolution mapping are used to validate these assembloids through a multifaceted platform with direct comparisons to fallopian tube tissue. These techniques converge at a unique combination of assembloid parameters with the highest similarity to the reference fallopian tube. This work establishes (i) an optimized model of the human fallopian tubes for in vitro studies of their pathophysiology and (ii) an iterative platform for customized 3D in vitro models of human organs that are molecularly, functionally, and microanatomically accurate by combining tunable assembloid and tissue mapping methods.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - André Forjaz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Isha Bhorkar
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Triya Roy
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Schell
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vasco Queiroga
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kehan Ren
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald Kramer
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biotechnology, Johns Hopkins Advanced Academic Programs, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Huang
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriella C Russo
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng-Horng Lee
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
- Departments of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | | | - Ashley L Kiemen
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Galpin KJC, Rodriguez GM, Maranda V, Cook DP, Macdonald E, Murshed H, Zhao S, McCloskey CW, Chruscinski A, Levy GA, Ardolino M, Vanderhyden BC. FGL2 promotes tumour growth and attenuates infiltration of activated immune cells in melanoma and ovarian cancer models. Sci Rep 2024; 14:787. [PMID: 38191799 PMCID: PMC10774293 DOI: 10.1038/s41598-024-51217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Collapse
Affiliation(s)
- Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shan Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrzej Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Rodriguez GM, Yakubovich E, Murshed H, Maranda V, Galpin KJ, Cudmore A, Hanna AMR, Macdonald E, Ramesh S, Garson K, Vanderhyden BC. NLRC5 overexpression in ovarian tumors remodels the tumor microenvironment and increases T-cell reactivity toward autologous tumor-associated antigens. Front Immunol 2024; 14:1295208. [PMID: 38235131 PMCID: PMC10791902 DOI: 10.3389/fimmu.2023.1295208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Epithelial ovarian cancer (OC) stands as one of the deadliest gynecologic malignancies, urgently necessitating novel therapeutic strategies. Approximately 60% of ovarian tumors exhibit reduced expression of major histocompatibility complex class I (MHC I), intensifying immune evasion mechanisms and rendering immunotherapies ineffective. NOD-like receptor CARD domain containing 5 (NLRC5) transcriptionally regulates MHC I genes and many antigen presentation machinery components. We therefore explored the therapeutic potential of NLRC5 in OC. Methods We generated OC cells overexpressing NLRC5 to rescue MHC I expression and antigen presentation and then assessed their capability to respond to PD-L1 blockade and an infected cell vaccine. Results Analysis of microarray datasets revealed a correlation between elevated NLRC5 expression and extended survival in OC patients; however, NLRC5 was scarcely detected in the OC tumor microenvironment. OC cells overexpressing NLRC5 exhibited slower tumor growth and resulted in higher recruitment of leukocytes in the TME with lower CD4/CD8 T-cell ratios and increased activation of T cells. Immune cells from peripheral blood, spleen, and ascites from these mice displayed heightened activation and interferon-gamma production when exposed to autologous tumor-associated antigens. Finally, as a proof of concept, NLRC5 overexpression within an infected cell vaccine platform enhanced responses and prolonged survival in comparison with control groups when challenged with parental tumors. Discussion These findings provide a compelling rationale for utilizing NLRC5 overexpression in "cold" tumor models to enhance tumor susceptibility to T-cell recognition and elimination by boosting the presentation of endogenous tumor antigens. This approach holds promise for improving antitumoral immune responses in OC.
Collapse
Affiliation(s)
- Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kristianne J.C. Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alison Cudmore
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew M. R. Hanna
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shashankan Ramesh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth Garson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Cook DP, Galpin KJC, Rodriguez GM, Shakfa N, Wilson-Sanchez J, Echaibi M, Pereira M, Matuszewska K, Haagsma J, Murshed H, Cudmore AO, MacDonald E, Tone A, Shepherd TG, Petrik JJ, Koti M, Vanderhyden BC. Comparative analysis of syngeneic mouse models of high-grade serous ovarian cancer. Commun Biol 2023; 6:1152. [PMID: 37957414 PMCID: PMC10643551 DOI: 10.1038/s42003-023-05529-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancers exhibit high rates of recurrence and poor treatment response. Preclinical models that recapitulate human disease are critical to develop new therapeutic approaches. Syngeneic mouse models allow for the generation of tumours comprising the full repertoire of non-malignant cell types but have expanded in number, varying in the cell type of origin, method for transformation, and ultimately, the properties of the tumours they produce. Here we have performed a comparative analysis of high-grade serous ovarian cancer models based on transcriptomic profiling of 22 cell line models, and intrabursal and intraperitoneal tumours from 12. Among cell lines, we identify distinct signalling activity, such as elevated inflammatory signalling in STOSE and OVE16 models, and MAPK/ERK signalling in ID8 and OVE4 models; metabolic differences, such as reduced glycolysis-associated expression in several engineered ID8 subclones; and relevant functional properties, including differences in EMT activation, PD-L1 and MHC class I expression, and predicted chemosensitivity. Among tumour samples, we observe increased variability and stromal content among intrabursal tumours. Finally, we predict differences in the microenvironment of ID8 models engineered with clinically relevant mutations. We anticipate that this work will serve as a valuable resource, providing new insight to help select models for specific experimental objectives.
Collapse
Affiliation(s)
- David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Noor Shakfa
- Queen's Cancer Research Institute, Kingston, ON, Canada
| | | | - Maryam Echaibi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob Haagsma
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alison O Cudmore
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth MacDonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alicia Tone
- Ovarian Cancer Canada, 145 Front St E #205, Toronto, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute, London, ON, Canada
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Madhuri Koti
- Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Luo Y, Shreeder B, Jenkins JW, Shi H, Lamichhane P, Zhou K, Bahr DA, Kurian S, Jones KA, Daum JI, Dutta N, Necela BM, Cannon MJ, Block MS, Knutson KL. Th17-inducing dendritic cell vaccines stimulate effective CD4 T cell-dependent antitumor immunity in ovarian cancer that overcomes resistance to immune checkpoint blockade. J Immunother Cancer 2023; 11:e007661. [PMID: 37918918 PMCID: PMC10626769 DOI: 10.1136/jitc-2023-007661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing. METHODS ID8 tumor cells were injected intraperitoneally into mice. Mice were treated with Th17-DC or conventional DC (cDC) vaccine alone or with immune checkpoint blockade (ICB). Systemic immunity, tumor associated immunity, tumor size and survival were examined using a variety of experimental strategies. RESULTS Th17-DC vaccines increased Th17 T cells in the tumor microenvironment, reshaped the myeloid microenvironment, and improved mouse survival compared with cDC vaccines. ICB had limited efficacy in OC, but Th17-inducing DC vaccination sensitized it to anti-PD-1 ICB, resulting in durable progression-free survival by overcoming IL-10-mediated resistance. Th17-DC vaccine efficacy, alone or with ICB, was mediated by CD4 T cells, but not CD8 T cells. CONCLUSIONS These findings emphasize using biologically relevant immune modifiers, like Th17-DC vaccines, in OC treatment to reshape the tumor microenvironment and enhance clinical responses to ICB therapy.
Collapse
Affiliation(s)
- Yan Luo
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - James W Jenkins
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Huashan Shi
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | | | - Kexun Zhou
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Deborah A Bahr
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Sophia Kurian
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Katherine A Jones
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Joshua I Daum
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Navnita Dutta
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Brian M Necela
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| | - Martin J Cannon
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Matthew S Block
- Divison of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic in Florida, Jacksonville, Florida, USA
| |
Collapse
|
7
|
Crawford AJ, Forjaz A, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Bons J, Huang W, Russo GC, Lee MH, Schilling B, Wu PH, Shih IM, Wang TL, Kiemen A, Wirtz D. Precision-engineered biomimetics: the human fallopian tube. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543923. [PMID: 37333379 PMCID: PMC10274705 DOI: 10.1101/2023.06.06.543923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The fallopian tube has an essential role in several physiological and pathological processes from pregnancy to ovarian cancer. However, there are no biologically relevant models to study its pathophysiology. The state-of-the-art organoid model has been compared to two-dimensional tissue sections and molecularly assessed providing only cursory analyses of the model's accuracy. We developed a novel multi-compartment organoid model of the human fallopian tube that was meticulously tuned to reflect the compartmentalization and heterogeneity of the tissue's composition. We validated this organoid's molecular expression patterns, cilia-driven transport function, and structural accuracy through a highly iterative platform wherein organoids are compared to a three-dimensional, single-cell resolution reference map of a healthy, transplantation-quality human fallopian tube. This organoid model was precision-engineered to match the human microanatomy. One sentence summary Tunable organoid modeling and CODA architectural quantification in tandem help design a tissue-validated organoid model.
Collapse
|
8
|
Surendran A, Jamalkhah M, Poutou J, Birtch R, Lawson C, Dave J, Crupi MJF, Mayer J, Taylor V, Petryk J, de Souza CT, Moodie N, Billingsley JL, Austin B, Cormack N, Blamey N, Rezaei R, McCloskey CW, Fekete EEF, Birdi HK, Neault S, Jamieson TR, Wylie B, Tucker S, Azad T, Vanderhyden B, Tai LH, Bell JC, Ilkow CS. Fatty acid transport protein inhibition sensitizes breast and ovarian cancers to oncolytic virus therapy via lipid modulation of the tumor microenvironment. Front Immunol 2023; 14:1099459. [PMID: 36969187 PMCID: PMC10036842 DOI: 10.3389/fimmu.2023.1099459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAdipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook.MethodsWe investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms.ResultsWe show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance.DiscussionOur findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.
Collapse
Affiliation(s)
- Abera Surendran
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Monire Jamalkhah
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Rayanna Birtch
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Christine Lawson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu J. F. Crupi
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Justin Mayer
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Victoria Taylor
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Neil Moodie
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Bradley Austin
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Nicole Cormack
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Natalie Blamey
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis W. McCloskey
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emily E. F. Fekete
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Harsimrat K. Birdi
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Serge Neault
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Taylor R. Jamieson
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Brenna Wylie
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Sarah Tucker
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Carolina S. Ilkow,
| |
Collapse
|
9
|
Chang YH, Chu TY, Ding DC. Spontaneous Transformation of a p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line after Long Passage with Features of High-Grade Serous Carcinoma. Int J Mol Sci 2022; 23:ijms232213843. [PMID: 36430324 PMCID: PMC9695839 DOI: 10.3390/ijms232213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers, and 80% are high-grade serous carcinomas (HGSOC). Despite advances in chemotherapy and the development of targeted therapies, the survival rate of HGSOC has only moderately improved. Therefore, a cell model that reflects the pathogenesis and clinical characteristics of this disease is urgently needed. We previously developed a human fallopian tube epithelial cell line (FE25) with p53 and Rb deficiencies. After long-term culture in vitro, cells at high-passage numbers showed spontaneous transformation (FE25L). This study aimed to compare FE25 cells cultured in vitro for low (passage 16-31) and high passages (passage 116-139) to determine whether these cells can serve as an ideal cell model of HGSOC. Compared to the cells at low passage, FE25L cells showed increased cell proliferation, clonogenicity, polyploidy, aneuploidy, cell migration, and invasion. They also showed more resistance to chemotherapy and the ability to grow tumors in xenografts. RNA-seq data also showed upregulation of hypoxia, epithelial-mesenchymal transition (EMT), and the NF-κB pathway in FE25L compared to FE25 cells. qRT-PCR confirmed the upregulation of EMT, cytokines, NF-κB, c-Myc, and the Wnt/β-catenin pathway. Cross-platform comparability found that FE25L cells could be grouped with the other most likely HGSOC lines, such as TYKNU and COV362. In conclusion, FE25L cells showed more aggressive malignant behavior than FE25 cells and hence might serve as a more suitable model for HGSOC research.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
| | - Tang-Yuan Chu
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
- Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien 97005, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97005, Taiwan
- Institute of Medical Sciences, Collagen of Medicine, Tzu Chi University, Hualien 97005, Taiwan
- Correspondence: ; Tel.: +886-3856-1825 (ext. 13383); Fax: +886-3857-7161
| |
Collapse
|
10
|
Wang X, Li H, Zheng P. Automatic Detection and Segmentation of Ovarian Cancer Using a Multitask Model in Pelvic CT Images. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6009107. [PMID: 36267814 PMCID: PMC9578800 DOI: 10.1155/2022/6009107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is one of the most common malignant tumours of female reproductive organs in the world. The pelvic CT scan is a common examination method used for the screening of ovarian cancer, which shows the advantages in safety, efficiency, and providing high-resolution images. Recently, deep learning applications in medical imaging attract more and more attention in the research field of tumour diagnostics. However, due to the limited number of relevant datasets and reliable deep learning models, it remains a challenging problem to detect ovarian tumours on CT images. In this work, we first collected CT images of 223 ovarian cancer patients in the Affiliated Hospital of Qingdao University. A new end-to-end network based on YOLOv5 is proposed, namely, YOLO-OCv2 (ovarian cancer). We improved the previous work YOLO-OC firstly, including balanced mosaic data enhancement and decoupled detection head. Then, based on the detection model, a multitask model is proposed, which can simultaneously complete the detection and segmentation tasks.
Collapse
Affiliation(s)
- Xun Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hanlin Li
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Pan Zheng
- Department of Accounting and Information Systems, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
11
|
Barbolina MV. Targeting Microtubule-Associated Protein Tau in Chemotherapy-Resistant Models of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2022; 14:4535. [PMID: 36139693 PMCID: PMC9496900 DOI: 10.3390/cancers14184535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Relapsed, recurrent, chemotherapy-resistant high-grade serous ovarian carcinoma is the deadliest stage of this disease. Expression of microtubule-associated protein tau (tau) has been linked to resistance to paclitaxel treatment. Here, I used models of platinum-resistant and created models of platinum/paclitaxel-resistant high-grade serous ovarian carcinoma to examine the impact of reducing tau expression on cell survival and tumor burden in cell culture and xenograft and syngeneic models of the disease. Tau was overexpressed in platinum/paclitaxel-resistant models; expression of phosphoSer396 and phosphoThr181 species was also found. A treatment with leucomethylene blue reduced the levels of tau in treated cells, was cytotoxic in cell cultures, and efficiently reduced the tumor burden in xenograft models. Furthermore, a combination of leucomethylene blue and paclitaxel synergized in eliminating cancer cells in cell culture and xenograft models. These findings underscore the feasibility of targeting tau as a treatment option in terminal-stage high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60091, USA
| |
Collapse
|
12
|
Russell S, Lim F, Peters PN, Wardell SE, Whitaker R, Chang CY, Previs RA, McDonnell DP. Development and Characterization of a Luciferase Labeled, Syngeneic Murine Model of Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14174219. [PMID: 36077756 PMCID: PMC9454869 DOI: 10.3390/cancers14174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in surgery and targeted therapies, the prognosis for women with high-grade serous ovarian cancer remains poor. Moreover, unlike other cancers, immunotherapy has minimally impacted outcomes in patients with ovarian cancer. Progress in this regard has been hindered by the lack of relevant syngeneic ovarian cancer models to study tumor immunity and evaluate immunotherapies. To address this problem, we developed a luciferase labeled murine model of high-grade serous ovarian cancer, STOSE.M1 luc. We defined its growth characteristics, immune cell repertoire, and response to anti PD-L1 immunotherapy. As with human ovarian cancer, we demonstrated that this model is poorly sensitive to immune checkpoint modulators. By developing the STOSE.M1 luc model, it will be possible to probe the mechanisms underlying resistance to immunotherapies and evaluate new therapeutic approaches to treat ovarian cancer.
Collapse
Affiliation(s)
- Shonagh Russell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.R.); (D.P.M.); Tel.: +1-919-684-6035 (D.P.M.)
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pamela N. Peters
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A. Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: (S.R.); (D.P.M.); Tel.: +1-919-684-6035 (D.P.M.)
| |
Collapse
|
13
|
Rodriguez GM, Galpin KJ, Cook DP, Yakubovich E, Maranda V, Macdonald EA, Wilson-Sanchez J, Thomas AL, Burdette JE, Vanderhyden BC. The Tumor Immune Profile of Murine Ovarian Cancer Models: An Essential Tool For Ovarian Cancer Immunotherapy Research. CANCER RESEARCH COMMUNICATIONS 2022; 2:417-433. [PMID: 36311166 PMCID: PMC9616009 DOI: 10.1158/2767-9764.crc-22-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer with an imperative need for new treatments. Immunotherapy has had marked success in some cancer types; however, clinical trials studying the efficacy of immune checkpoint inhibitors for the treatment of EOC benefited less than 15% of patients. Given that EOC develops from multiple tissues in the reproductive system and metastasizes widely throughout the peritoneal cavity, responses to immunotherapy are likely hindered by heterogeneous tumor microenvironments (TME) containing a variety of immune profiles. To fully characterize and compare syngeneic model systems that may reflect this diversity, we determined the immunogenicity of six ovarian tumor models in vivo, the T and myeloid profile of orthotopic tumors and the immune composition and cytokine profile of ascites, by single-cell RNA sequencing, flow cytometry and IHC. The selected models reflect the different cellular origins of EOC (ovarian and fallopian tube epithelium) and harbor mutations relevant to human disease, including Tp53 mutation, PTEN suppression, and constitutive KRAS activation. ID8-p53-/- and ID8-C3 tumors were most highly infiltrated by T cells, whereas STOSE and MOE-PTEN/KRAS tumors were primarily infiltrated by tumor associated macrophages and were unique in MHC class I and II expression. MOE-PTEN/KRAS tumors were capable of forming T cell clusters. This panel of well-defined murine EOC models reflects some of the heterogeneity found in human disease and can serve as a valuable resource for studies that aim to test immunotherapies, explore the mechanisms of immune response to therapy, and guide selection of treatments for patient populations.
Collapse
Affiliation(s)
- Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristianne J.C. Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth A. Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Juliette Wilson-Sanchez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anjali L. Thomas
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Yee C, Dickson KA, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022; 10:836984. [PMID: 35223797 PMCID: PMC8866972 DOI: 10.3389/fbioe.2022.836984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.
Collapse
Affiliation(s)
- Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammed N. Muntasir
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Mendoza-Martinez AK, Loessner D, Mata A, Azevedo HS. Modeling the Tumor Microenvironment of Ovarian Cancer: The Application of Self-Assembling Biomaterials. Cancers (Basel) 2021; 13:5745. [PMID: 34830897 PMCID: PMC8616551 DOI: 10.3390/cancers13225745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of gynecologic malignancies. Despite treatment with surgery and chemotherapy, OvCa disseminates and recurs frequently, reducing the survival rate for patients. There is an urgent need to develop more effective treatment options for women diagnosed with OvCa. The tumor microenvironment (TME) is a key driver of disease progression, metastasis and resistance to treatment. For this reason, 3D models have been designed to represent this specific niche and allow more realistic cell behaviors compared to conventional 2D approaches. In particular, self-assembling peptides represent a promising biomaterial platform to study tumor biology. They form nanofiber networks that resemble the architecture of the extracellular matrix and can be designed to display mechanical properties and biochemical motifs representative of the TME. In this review, we highlight the properties and benefits of emerging 3D platforms used to model the ovarian TME. We also outline the challenges associated with using these 3D systems and provide suggestions for future studies and developments. We conclude that our understanding of OvCa and advances in materials science will progress the engineering of novel 3D approaches, which will enable the development of more effective therapies.
Collapse
Affiliation(s)
- Ana Karen Mendoza-Martinez
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Daniela Loessner
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden e.V., 01069 Dresden, Germany
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
16
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
18
|
Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, Gu S, Cejas P, Lim K, Long HW, Elias KM, Horowitz NS, Feltmate CM, Muto MG, Worley MJ, Berkowitz RS, Matulonis UA, Nucci MR, Crum CP, Rueda BR, Brown M, Liu XS, Hill SJ. Enhanced Efficacy of Simultaneous PD-1 and PD-L1 Immune Checkpoint Blockade in High-Grade Serous Ovarian Cancer. Cancer Res 2020; 81:158-173. [PMID: 33158814 DOI: 10.1158/0008-5472.can-20-1674] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Immune therapies have had limited efficacy in high-grade serous ovarian cancer (HGSC), as the cellular targets and mechanism(s) of action of these agents in HGSC are unknown. Here we performed immune functional and single-cell RNA sequencing transcriptional profiling on novel HGSC organoid/immune cell co-cultures treated with a unique bispecific anti-programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibody compared with monospecific anti-PD-1 or anti-PD-L1 controls. Comparing the functions of these agents across all immune cell types in real time identified key immune checkpoint blockade (ICB) targets that have eluded currently available monospecific therapies. The bispecific antibody induced superior cellular state changes in both T and natural killer (NK) cells. It uniquely induced NK cells to transition from inert to more active and cytotoxic phenotypes, implicating NK cells as a key missing component of the current ICB-induced immune response in HGSC. It also induced a subset of CD8 T cells to transition from naïve to more active and cytotoxic progenitor-exhausted phenotypes post-treatment, revealing the small, previously uncharacterized population of CD8 T cells responding to ICB in HGSC. These state changes were driven partially through bispecific antibody-induced downregulation of the bromodomain-containing protein BRD1. Small-molecule inhibition of BRD1 induced similar state changes in vitro and demonstrated efficacy in vivo, validating the co-culture results. Our results demonstrate that state changes in both NK and a subset of T cells may be critical in inducing an effective anti-tumor immune response and suggest that immune therapies able to induce such cellular state changes, such as BRD1 inhibitors, may have increased efficacy in HGSC. SIGNIFICANCE: This study indicates that increased efficacy of immune therapies in ovarian cancer is driven by state changes of NK and small subsets of CD8 T cells into active and cytotoxic states.
Collapse
Affiliation(s)
- Changxin Wan
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina
| | - Matthew P Keany
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts
| | - Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Suzan Lazo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Karsten Boehnke
- Oncology Translational Research, Eli Lilly and Company, New York, New York
| | - Katherine N Lynch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rui Xu
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Department of Internal Medicine, Shaanxi Province Cancer Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shengqing Gu
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin M Elias
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Neil S Horowitz
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Colleen M Feltmate
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Michael G Muto
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Michael J Worley
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Ross S Berkowitz
- Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women' Hospital, Boston, Massachusetts
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Obstetrics Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaole Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah J Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pathology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
James NE, Woodman M, DiSilvestro PA, Ribeiro JR. The Perfect Combination: Enhancing Patient Response to PD-1-Based Therapies in Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E2150. [PMID: 32756436 PMCID: PMC7466102 DOI: 10.3390/cancers12082150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, with an overall 5-year survival of only 47%. As the development of novel targeted therapies is drastically necessary in order to improve patient survival, current EOC clinical trials have heavily focused on immunotherapeutic approaches, centered upon programmed cell death 1 (PD-1) inhibitors. While PD-1 monotherapies have only exhibited modest responses for patients, it has been theorized that in order to enhance EOC patient response to immunotherapy, combinatorial regimens must be investigated. In this review, unique challenges to EOC PD-1 response will be discussed, along with a comprehensive description of both preclinical and clinical studies evaluating PD-1-based combinatorial therapies. Promising aspects of PD-1-based combinatorial approaches are highlighted, while also discussing specific preclinical and clinical areas of research that need to be addressed, in order to optimize EOC patient immunotherapy response.
Collapse
Affiliation(s)
- Nicole E. James
- Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI 02905, USA; (N.E.J.); (M.W.); (P.A.D.)
| | - Morgan Woodman
- Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI 02905, USA; (N.E.J.); (M.W.); (P.A.D.)
| | - Paul A. DiSilvestro
- Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI 02905, USA; (N.E.J.); (M.W.); (P.A.D.)
- Department of Obstetrics and Gynecology, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA
| | - Jennifer R. Ribeiro
- Program in Women’s Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital, Providence, RI 02905, USA; (N.E.J.); (M.W.); (P.A.D.)
- Department of Obstetrics and Gynecology, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA
| |
Collapse
|
20
|
Abedini A, Sayed C, Carter LE, Boerboom D, Vanderhyden BC. Non-canonical WNT5a regulates Epithelial-to-Mesenchymal Transition in the mouse ovarian surface epithelium. Sci Rep 2020; 10:9695. [PMID: 32546756 PMCID: PMC7298016 DOI: 10.1038/s41598-020-66559-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023] Open
Abstract
The ovarian surface epithelium (OSE) is a monolayer that covers the ovarian surface and is involved in ovulation by rupturing and enabling release of a mature oocyte and by repairing the wound after ovulation. Epithelial-to-mesenchymal transition (EMT) is a mechanism that may promote wound healing after ovulation. While this process is poorly understood in the OSE, in other tissues wound repair is known to be under the control of the local microenvironment and different growth factors such as the WNT signaling pathway. Among WNT family members, WNT4 and WNT5a are expressed in the OSE and are critical for the ovulatory process. The objective of this study was to determine the potential roles of WNT4 and WNT5a in regulating the OSE layer. Using primary cultures of mouse OSE cells, we found WNT5a, but not WNT4, promotes EMT through a non-canonical Ca2+-dependent pathway, up-regulating the expression of Vimentin and CD44, enhancing cell migration, and inhibiting the CTNNB1 pathway and proliferation. We conclude that WNT5a is a stimulator of the EMT in OSE cells, and acts by suppressing canonical WNT signaling activity and inducing the non-canonical Ca2+ pathway.
Collapse
Affiliation(s)
- Atefeh Abedini
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Céline Sayed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren E Carter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
21
|
Lõhmussaar K, Kopper O, Korving J, Begthel H, Vreuls CPH, van Es JH, Clevers H. Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids. Nat Commun 2020; 11:2660. [PMID: 32461556 PMCID: PMC7253462 DOI: 10.1038/s41467-020-16432-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade serous ovarian cancer (HG-SOC)—often referred to as a “silent killer”—is the most lethal gynecological malignancy. The fallopian tube (murine oviduct) and ovarian surface epithelium (OSE) are considered the main candidate tissues of origin of this cancer. However, the relative contribution of each tissue to HG-SOC is not yet clear. Here, we establish organoid-based tumor progression models of HG-SOC from murine oviductal and OSE tissues. We use CRISPR-Cas9 genome editing to introduce mutations into genes commonly found mutated in HG-SOC, such as Trp53, Brca1, Nf1 and Pten. Our results support the dual origin hypothesis of HG-SOC, as we demonstrate that both epithelia can give rise to ovarian tumors with high-grade pathology. However, the mutated oviductal organoids expand much faster in vitro and more readily form malignant tumors upon transplantation. Furthermore, in vitro drug testing reveals distinct lineage-dependent sensitivities to the common drugs used to treat HG-SOC in patients. The relative contribution of fallopian tube (FT) or ovarian surface epithelium (OSE) to high-grade serous ovarian cancer (HG-SOC) development is unclear. Here, the authors establish organoid models from murine oviductal and OSE tissues that allow cancer modeling via CRISPR-Cas9 genome editing, and report a dual origin of murine HG-SOC.
Collapse
Affiliation(s)
- Kadi Lõhmussaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11100547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
|
23
|
Tudrej P, Kujawa KA, Cortez AJ, Lisowska KM. Characteristics of in Vivo Model Systems for Ovarian Cancer Studies. Diagnostics (Basel) 2019; 9:E120. [PMID: 31540126 PMCID: PMC6787695 DOI: 10.3390/diagnostics9030120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
An understanding of the molecular pathogenesis and heterogeneity of ovarian cancer holds promise for the development of early detection strategies and novel, efficient therapies. In this review, we discuss the advantages and limitations of animal models available for basic and preclinical studies. The fruit fly model is suitable mainly for basic research on cellular migration, invasiveness, adhesion, and the epithelial-to-mesenchymal transition. Higher-animal models allow to recapitulate the architecture and microenvironment of the tumor. We discuss a syngeneic mice model and the patient derived xenograft model (PDX), both useful for preclinical studies. Conditional knock-in and knock-out methodology allows to manipulate selected genes at a given time and in a certain tissue. Such models have built our knowledge about tumor-initiating genetic events and cell-of-origin of ovarian cancers; it has been shown that high-grade serous ovarian cancer may be initiated in both the ovarian surface and tubal epithelium. It is postulated that clawed frog models could be developed, enabling studies on tumor immunity and anticancer immune response. In laying hen, ovarian cancer develops spontaneously, which provides the opportunity to study the genetic, biochemical, and environmental risk factors, as well as tumor initiation, progression, and histological origin; this model can also be used for drug testing. The chick embryo chorioallantoic membrane is another attractive model and allows the study of drug response.
Collapse
Affiliation(s)
- Patrycja Tudrej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Alexander Jorge Cortez
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
24
|
Proteomic analysis reveals a role for PAX8 in peritoneal colonization of high grade serous ovarian cancer that can be targeted with micelle encapsulated thiostrepton. Oncogene 2019; 38:6003-6016. [PMID: 31296958 PMCID: PMC6687548 DOI: 10.1038/s41388-019-0842-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
Abstract
High grade serous ovarian cancer (HGSOC) is the fifth leading cause of
cancer deaths among women yet effective targeted therapies against this disease
are limited. The heterogeneity of HGSOC, including few shared oncogenic drivers
and origination from both the fallopian tube epithelium (FTE) and ovarian
surface epithelium (OSE), has hampered development of targeted drug therapies.
PAX8 is a lineage-specific transcription factor expressed in the FTE that is
also ubiquitously expressed in HGSOC where it is an important driver of
proliferation, migration, and cell survival. PAX8 is not normally expressed in
the OSE, but it is turned on after malignant transformation. In this study, we
use proteomic and transcriptomic analysis to examine the role of PAX8 leading to
increased migratory capabilities in a human ovarian cancer model, as well as in
tumor models derived from the OSE and FTE. We find that PAX8 is a master
regulator of migration with unique downstream transcriptional targets that are
dependent on the cell’s site of origin. Importantly, we show that
targeting PAX8, either through CRISPR genomic alteration or through drug
treatment with micelle encapsulated thiostrepton, leads to a reduction in tumor
burden. These findings suggest PAX8 is a unifying protein driving metastasis in
ovarian tumors that could be developed as an effective drug target to treat
HGSOC derived from both the OSE and FTE.
Collapse
|
25
|
WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 2019; 38:4047-4060. [PMID: 30705400 PMCID: PMC6755989 DOI: 10.1038/s41388-019-0700-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancers (TNBCs) are characterized by a poor prognosis and lack of targeted treatments, and thus, new therapeutic strategies are urgently needed. Inhibitors against programmed death-1 (PD-1)/PD-1 ligand (PD-L1) have shown significant efficacy in various solid cancers, but their activity against TNBCs remains limited. Here, we report that human TNBCs molecularly stratified for high levels of PD-L1 (PD-L1High) showed significantly enriched expression of immune and cancer stemness pathways compared with those with low PD-L1 expression (PD-L1Low). In addition, the PD-L1High cases were significantly associated with a high stemness score (SSHigh) signature. TNBC cell lines gated for aldehyde dehydrogenase (ALDH) and CD44 stemness markers exhibited increased levels of PD-L1 versus their ALDH-negative and CD44Low counterparts, and PD-L1High cells generated significantly more mammospheres than PD-L1Low cells. Murine mammary SCA-1-positive tumor cells with PD-L1High expression generated tumors in vivo with higher efficacy than PD-L1Low cells. Furthermore, treatment of TNBC cells with selective WNT inhibitors or activators downregulated or upregulated PD-L1 expression, respectively, implying a functional cross-talk between WNT activity and PD-L1 expression. Remarkably, human TNBC samples contained tumor elements co-expressing PD-L1 with ALDH1A1 and/or CD44v6. Additionally, both PD-L1-/SCA1-positive and ALDH1A1-positive tumor elements were found in close contact with CD3-, and PD-1-positive T cells in murine and human tumor samples. Overall, our study suggests that PD-L1-positive tumor elements with a stemness phenotype may participate in the complex dynamics of TNBC-related immune evasion, which might be targeted through WNT signaling inhibition.
Collapse
|
26
|
Wang P, Zhang Z, Ma Y, Lu J, Zhao H, Wang S, Tan J, Li B. Prognostic values of GMPS, PR, CD40, and p21 in ovarian cancer. PeerJ 2019; 7:e6301. [PMID: 30701134 PMCID: PMC6348951 DOI: 10.7717/peerj.6301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan–Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5′-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature.
Collapse
Affiliation(s)
- Ping Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China
| | - Zengli Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Yujie Ma
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China
| | - Jun Lu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China
| | - Hu Zhao
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China
| | - Shuiliang Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China
| | - Jianming Tan
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China.,Fujian Hongyi Health Institute, Fuzhou, Fujian, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
27
|
Wilson AL, Wilson KL, Bilandzic M, Moffitt LR, Makanji M, Gorrell MD, Oehler MK, Rainczuk A, Stephens AN, Plebanski M. Non-Invasive Fluorescent Monitoring of Ovarian Cancer in an Immunocompetent Mouse Model. Cancers (Basel) 2018; 11:E32. [PMID: 30602661 PMCID: PMC6356411 DOI: 10.3390/cancers11010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancers (OCs) are the most lethal gynaecological malignancy, with high levels of relapse and acquired chemo-resistance. Whilst the tumour⁻immune nexus controls both cancer progression and regression, the lack of an appropriate system to accurately model tumour stage and immune status has hampered the validation of clinically relevant immunotherapies and therapeutic vaccines to date. To address this need, we stably integrated the near-infrared phytochrome iRFP720 at the ROSA26 genomic locus of ID8 mouse OC cells. Intrabursal ovarian implantation into C57BL/6 mice, followed by regular, non-invasive fluorescence imaging, permitted the direct visualization of tumour mass and distribution over the course of progression. Four distinct phases of tumour growth and dissemination were detectable over time that closely mimicked clinical OC progression. Progression-related changes in immune cells also paralleled typical immune profiles observed in human OCs. Specifically, we observed changes in both the CD8+ T cell effector (Teff):regulatory (Treg) ratio, as well as the dendritic cell (DC)-to-myeloid derived suppressor cell (MDSC) ratio over time across multiple immune cell compartments and in peritoneal ascites. Importantly, iRFP720 expression had no detectible influence over immune profiles. This new model permits non-invasive, longitudinal tumour monitoring whilst preserving host⁻tumour immune interactions, and allows for the pre-clinical assessment of immune profiles throughout disease progression as well as the direct visualization of therapeutic responses. This simple fluorescence-based approach provides a useful new tool for the validation of novel immuno-therapeutics against OC.
Collapse
Affiliation(s)
- Amy L Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
- Department of Immunology and Pathology, Monash University, Clayton 3168, Australia.
| | - Kirsty L Wilson
- Department of Immunology and Pathology, Monash University, Clayton 3168, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Laura R Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Ming Makanji
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Sydney 2006, Australia.
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia.
- Robinson Institute, University of Adelaide, Adelaide 5000, Australia.
| | - Adam Rainczuk
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
- Bruker Biosciences Pty Ltd., Preston 3072, Australia.
| | - Andrew N Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
28
|
Cao P, Zhao S, Sun Z, Jiang N, Shang Y, Wang Y, Gu J, Li S. BRMS1L suppresses ovarian cancer metastasis via inhibition of the β-catenin-wnt pathway. Exp Cell Res 2018; 371:214-221. [PMID: 30118697 DOI: 10.1016/j.yexcr.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/19/2023]
Abstract
A low level of breast cancer metastasis suppressor 1-like (BRMS1L) has been implicated in tumour metastasis involving breast cancer and other cancers. It remains unclear whether BRMS1L is involved in epithelial ovarian cancer (EOC) metastasis and what the molecular mechanism of BRMS1L is in suppressing EOC metastasis. In this study, we examined the mRNA expression and protein level of BRMS1L by screening EOC patients. Our results show that BRMS1L expression is downregulated in EOC patients compared to that in normal people and negatively correlated to pathological stages of EOC. We further explored examining epithelial to mesenchymal transition (EMT) as the molecular mechanism of BRMS1L in cancer cell metastasis. The overexpression of BRMS1L inhibits EOC cell migration and invasion, and this inhibition is correlated to the inactivation of EMT and Wnt/β-catenin signalling in vitro. Knockdown of BRMS1L by shRNA promotes EOC metastasis, enhances EMT process and activates Wnt/β-catenin signalling. These results suggest that BRMS1L plays a critical role in the suppression of ovarian cancer metastasis, and BRMS1L can be considered as a prognostic biomarker and potential therapeutic target for EOC patients.
Collapse
Affiliation(s)
- Penglong Cao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuai Zhao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhigang Sun
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Nan Jiang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuhong Shang
- Department of Gynecology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingxin Wang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Juebin Gu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shijun Li
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
29
|
Hardy LR, Salvi A, Burdette JE. UnPAXing the Divergent Roles of PAX2 and PAX8 in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080262. [PMID: 30096791 PMCID: PMC6115736 DOI: 10.3390/cancers10080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 01/19/2023] Open
Abstract
High-grade serous ovarian cancer is a deadly disease that can originate from the fallopian tube or the ovarian surface epithelium. The PAX (paired box) genes PAX2 and PAX8 are lineage-specific transcription factors required during development of the fallopian tube but not in the development of the ovary. PAX2 expression is lost early in serous cancer progression, while PAX8 is expressed ubiquitously. These proteins are implicated in migration, invasion, proliferation, cell survival, stem cell maintenance, and tumor growth. Hence, targeting PAX2 and PAX8 represents a promising drug strategy that could inhibit these pro-tumorigenic effects. In this review, we examine the implications of PAX2 and PAX8 expression in the cell of origin of serous cancer and their potential efficacy as drug targets by summarizing their role in the molecular pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Laura R Hardy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Amrita Salvi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
30
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
31
|
Karthikeyan S, Russo A, Dean M, Lantvit DD, Endsley M, Burdette JE. Prolactin signaling drives tumorigenesis in human high grade serous ovarian cancer cells and in a spontaneous fallopian tube derived model. Cancer Lett 2018; 433:221-231. [PMID: 29981811 DOI: 10.1016/j.canlet.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/12/2023]
Abstract
The pathways responsible for tumorigenesis of high grade serous ovarian cancer (HGSOC) from the fallopian tube epithelium (FTE) are still poorly understood. A human prolactin (PRL) like gene, Prl2c2 was amplified >100 fold in a spontaneous model of FTE-derived ovarian cancer (MOEhigh - murine oviductal epithelium high passage). Prl2c2 stable knockdown in MOEhigh cells demonstrated a significant reduction in cell proliferation, 2-dimensional foci, anchorage independent growth, and blocked tumor formation. The overall survival of ovarian cancer patients from transcriptome analysis of 1868 samples was lower when abundant PRL and prolactin receptors (PRL-R) were expressed. A HGSOC cell line (OVCAR3) and a tumorigenic human FTE cell line (FT33-Tag-Myc) were treated with recombinant PRL and a significant increase in cellular proliferation was detected. A CRISPR/Cas9 mediated PRL-R deletion in OVCAR3 and FT33-Tag-Myc cells demonstrated significant reduction in cell proliferation and eliminated tumor growth using the OVCAR3 model. PRL was found to phosphorylate STAT5, m-TOR and ERK in ovarian cancer cells. This study identified Prl2c2 as a driver of tumorigenesis in a spontaneous model and confirmed that prolactin signaling supports tumorigenesis in high grade serous ovarian cancer.
Collapse
Affiliation(s)
- Subbulakshmi Karthikeyan
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Angela Russo
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Matthew Dean
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D Lantvit
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Michael Endsley
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA; Medical College of Wisconsin, Department of Obstetrics & Gynecology, 9200 West Wisconsin Ave, Milwaukee, WI, 53226-3522, USA
| | - Joanna E Burdette
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
32
|
Hodgkinson K, Forrest LA, Vuong N, Garson K, Djordjevic B, Vanderhyden BC. GREB1 is an estrogen receptor-regulated tumour promoter that is frequently expressed in ovarian cancer. Oncogene 2018; 37:5873-5886. [PMID: 29973689 PMCID: PMC6212416 DOI: 10.1038/s41388-018-0377-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Abstract
Estrogenic hormone replacement therapy increases the risk of developing ovarian cancer, and estrogen promotes tumour initiation and growth in mouse models of this disease. GREB1 (Growth regulation by estrogen in breast cancer 1) is an ESR1 (estrogen receptor 1)-upregulated protein which may mediate estrogen action. GREB1 knockdown prevents hormone-driven proliferation of several breast and prostate cancer cell lines and prolongs survival of mice engrafted with ovarian cancer cells, but its mechanism of action remains unclear. In this study, we explored GREB1 function in ovarian cancer. GREB1 overexpression in ovarian cancer cell lines increased cell proliferation and migration and promoted a mesenchymal morphology associated with increased Col1a2, which encodes a collagen I subunit. GREB1 knockdown inhibited proliferation and promoted an epithelial morphology associated with decreased Col1a2. In human tissues, GREB1 was expressed in all ESR1-expressing tissues throughout the normal female reproductive tract, in addition to several tissues that did not show ESR1 expression. In a TMA of ovarian cancer cases, GREB1 was expressed in 75–85% of serous, endometrioid, mucinous, and clear cell carcinomas. Serous, endometrioid, and mucinous ovarian cancers were almost always positive for either ESR1 or GREB1, suggesting a possible reliance on signalling through ESR1 and/or GREB1. Targeting GREB1 may inhibit tumour-promoting pathways both downstream and independent of ESR1 and is therefore a possible treatment strategy worthy of further investigation.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Laura A Forrest
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Nhung Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kenneth Garson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bojana Djordjevic
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada. .,Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
33
|
Huttunen MJ, Hassan A, McCloskey CW, Fasih S, Upham J, Vanderhyden BC, Boyd RW, Murugkar S. Automated classification of multiphoton microscopy images of ovarian tissue using deep learning. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29900705 DOI: 10.1117/1.jbo.23.6.066002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 05/21/2023]
Abstract
Histopathological image analysis of stained tissue slides is routinely used in tumor detection and classification. However, diagnosis requires a highly trained pathologist and can thus be time-consuming, labor-intensive, and potentially risk bias. Here, we demonstrate a potential complementary approach for diagnosis. We show that multiphoton microscopy images from unstained, reproductive tissues can be robustly classified using deep learning techniques. We fine-train four pretrained convolutional neural networks using over 200 murine tissue images based on combined second-harmonic generation and two-photon excitation fluorescence contrast, to classify the tissues either as healthy or associated with high-grade serous carcinoma with over 95% sensitivity and 97% specificity. Our approach shows promise for applications involving automated disease diagnosis. It could also be readily applied to other tissues, diseases, and related classification problems.
Collapse
Affiliation(s)
- Mikko J Huttunen
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
- Tampere University of Technology, Laboratory of Photonics, Tampere, Finland
| | - Abdurahman Hassan
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
| | - Curtis W McCloskey
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Sijyl Fasih
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
| | - Jeremy Upham
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Robert W Boyd
- University of Ottawa, Department of Physics, Ottawa, Ontario, Canada
- University of Rochester, Institute of Optics, Department of Physics and Astronomy, Rochester, New Yo, United States
| | | |
Collapse
|
34
|
Russo Spena C, De Stefano L, Palazzolo S, Salis B, Granchi C, Minutolo F, Tuccinardi T, Fratamico R, Crotti S, D'Aronco S, Agostini M, Corona G, Caligiuri I, Canzonieri V, Rizzolio F. Liposomal delivery of a Pin1 inhibitor complexed with cyclodextrins as new therapy for high-grade serous ovarian cancer. J Control Release 2018; 281:1-10. [PMID: 29746956 DOI: 10.1016/j.jconrel.2018.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022]
Abstract
Pin1, a prolyl isomerase that sustains tumor progression, is overexpressed in different types of malignancies. Functional inactivation of Pin1 restrains tumor growth and leaves normal cells unaffected making it an ideal pharmaceutical target. Although many studies on Pin1 have focused on malignancies that are influenced by sex hormones, studies in ovarian cancer have lagged behind. Here, we show that Pin1 is an important therapeutic target in high-grade serous epithelial ovarian cancer. Knock down of Pin1 in ovarian cancer cell lines induces apoptosis and restrains tumor growth in a syngeneic mouse model. Since specific and non-covalent Pin1 inhibitors are still limited, the first liposomal formulation of a Pin1 inhibitor was designed. The drug was efficiently encapsulated in modified cyclodextrins and remotely loaded into pegylated liposomes. This liposomal formulation accumulates preferentially in the tumor and has a desirable pharmacokinetic profile. The liposomal inhibitor was able to alter Pin1 cancer driving-pathways trough the induction of proteasome-dependent degradation of Pin1 and was found to be effective in curbing ovarian tumor growth in vivo.
Collapse
Affiliation(s)
- Concetta Russo Spena
- Department of Translational Research, Experimental and Clinical Pharmacology, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy; Doctoral School in Chemistry, University of Trieste, Italy
| | - Lucia De Stefano
- Department of Translational Research, Experimental and Clinical Pharmacology, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy; Doctoral School in Chemistry, University of Trieste, Italy
| | - Stefano Palazzolo
- Department of Translational Research, Experimental and Clinical Pharmacology, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy
| | - Barbara Salis
- Doctoral School in Molecular Biomedicine, University of Trieste, Italy; Department of Molecular Biology and Translational Research, Pathology Unit, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy
| | | | | | | | - Roberto Fratamico
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara Crotti
- Città della Speranza, Institute of Pediatric Research, Padova, Italy
| | - Sara D'Aronco
- Città della Speranza, Institute of Pediatric Research, Padova, Italy; Department of Surgical, Oncological and Gastroenterological Sciences, First Surgical Clinic Section, University of Padova, Italy
| | - Marco Agostini
- Città della Speranza, Institute of Pediatric Research, Padova, Italy; Department of Surgical, Oncological and Gastroenterological Sciences, First Surgical Clinic Section, University of Padova, Italy
| | - Giuseppe Corona
- Department of Molecular Biology and Translational Research, Immunopathology and Cancer Biomarkers Unit, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy
| | - Isabella Caligiuri
- Department of Molecular Biology and Translational Research, Pathology Unit, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy
| | - Vincenzo Canzonieri
- Department of Molecular Biology and Translational Research, Pathology Unit, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Department of Translational Research, Experimental and Clinical Pharmacology, Center for Molecular Biomedicine - CRO, National Cancer Institute, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University, Venezia-Mestre, Italy.
| |
Collapse
|
35
|
Rodgers LH, Ó hAinmhire E, Young AN, Burdette JE. Loss of PAX8 in high-grade serous ovarian cancer reduces cell survival despite unique modes of action in the fallopian tube and ovarian surface epithelium. Oncotarget 2017; 7:32785-95. [PMID: 27129161 PMCID: PMC5078051 DOI: 10.18632/oncotarget.9051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/02/2016] [Indexed: 12/28/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and lethal form of ovarian cancer. PAX8 is a transcription factor expressed in fallopian tube epithelial cells and in 80–96% of HGSC tumors. The ovarian surface epithelium (OSE) only acquires PAX8 expression after malignant transformation. In this study, forced PAX8 expression in OSE cells increased proliferation and migration through upregulation of EMT factors such as N-cadherin and Fibronectin. OSE cells expressing PAX8 also had an increase in the FOXM1 pathway, but PAX8 alone was not sufficient to drive tumorigenesis. PAX8 knockdown in the oviductal epithelium cells did not decrease expression of the FOXM1 pathway and induced only a slight decrease in cell proliferation. No changes in migration, cell cycle, or apoptosis were detected after PAX8 knockdown in oviductal cells. Finally, PAX8 knockdown in HGSC cell lines resulted in increased apoptosis and decreased FOXM1 levels. The results presented here suggest that PAX8 has a cell specific role in governing proliferation and migration in nontransformed ovarian surface epithelium cells compared to the oviductal cells, but its reduction in serous cancer cell lines provides a common mechanism for reducing cell survival.
Collapse
Affiliation(s)
- Laura H Rodgers
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Eoghainín Ó hAinmhire
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandria N Young
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Vuong NH, Salah Salah O, Vanderhyden BC. 17β-Estradiol sensitizes ovarian surface epithelium to transformation by suppressing Disabled-2 expression. Sci Rep 2017; 7:16702. [PMID: 29196616 PMCID: PMC5711839 DOI: 10.1038/s41598-017-16219-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023] Open
Abstract
Estrogen replacement therapy increases the risk of human ovarian cancer and exogenous estradiol accelerates the onset of ovarian cancer in mouse models. This study uses primary cultures of mouse ovarian surface epithelium (OSE) to demonstrate that one possible mechanism by which estrogen accelerates the initiation of ovarian cancer is by up-regulation of microRNA-378 via the ESR1 pathway to result in the down-regulation of a tumour suppressor called Disabled-2 (Dab2). Estrogen suppression of Dab2 was reproducible in vivo and across many cell types including mouse oviductal epithelium and primary cultures of human ovarian cancer cells. Suppression of Dab2 resulted in increased proliferation, loss of contact inhibition, morphological dysplasia, and resistance to oncogene-induced senescence - all factors that can sensitize OSE to transformation. Given that DAB2 is highly expressed in healthy human OSE and is absent in the majority of ovarian tumours, this study has taken the first steps to provide a mechanistic explanation for how estrogen therapy may play a role in the initiation of ovarian cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Apoptosis Regulatory Proteins
- Carcinoma, Ovarian Epithelial/chemically induced
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelium/metabolism
- Epithelium/pathology
- Estradiol/adverse effects
- Estradiol/pharmacology
- Female
- Humans
- Mice
- Mice, Knockout
- Ovarian Neoplasms/chemically induced
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Nhung H Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Omar Salah Salah
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
37
|
Alwosaibai K, Abedini A, Al-Hujaily EM, Tang Y, Garson K, Collins O, Vanderhyden BC. PAX2 maintains the differentiation of mouse oviductal epithelium and inhibits the transition to a stem cell-like state. Oncotarget 2017; 8:76881-76897. [PMID: 29100356 PMCID: PMC5652750 DOI: 10.18632/oncotarget.20173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Recent studies have provided evidence that the secretory cells of the fallopian tube (oviduct) are a probable origin for high-grade serous ovarian carcinoma. In addition to secretory cells, the fallopian tube epithelium consists of ciliated cells and CD44+ undifferentiated stem-like cells. Loss of PAX2 expression is recognized as an early event in epithelial transformation, but the specific role of PAX2 in this transition is unknown. The aim of this study was to define the role of PAX2 in oviductal epithelial (OVE) cells and its response to transforming growth factor β1 (TGFβ), characterizing specifically its potential involvement in regulating stem cell-like behaviors that may contribute to formation of cancer-initiating cells. Treatment of primary cultures of mouse OVE cells with TGFβ induced an epithelial-mesenchymal transition (EMT) associated with decreased expression of PAX2 and an increase in the fraction of cells expressing CD44. PAX2 knockdown in OVE cells and overexpression in ovarian epithelial cells confirmed that PAX2 inhibits stem cell characteristics and regulates the degree of epithelial differentiation of OVE cells. These results suggest that loss of PAX2, as occurs in serous tubal intraepithelial carcinomas, may shift secretory cells to a more mesenchymal phenotype associated with stem-like features.
Collapse
Affiliation(s)
- Kholoud Alwosaibai
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ontario, Canada.,King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ontario, Canada
| | - Ensaf M Al-Hujaily
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ontario, Canada
| | - Yong Tang
- Department of Urology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Kenneth Garson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ontario, Canada
| | - Olga Collins
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ontario, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Ottawa, Ontario, Canada
| |
Collapse
|
38
|
|
39
|
Wang Y, Wang Y, Wei L, Hong S, Zhao M, Zhang X, Zheng W. BRCA1 expression, proliferative and apoptotic activities in ovarian epithelial inclusions. J Ovarian Res 2017; 10:12. [PMID: 28270171 PMCID: PMC5341199 DOI: 10.1186/s13048-017-0307-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine proliferative and apoptotic activity in relation with BRCA1 expression in ovarian epithelial inclusions (OEIs), the putative precursor lesions of ovarian epithelial cancer (OEC). METHODS Benign ovaries from 95 patients were examined. Dual immunohistochemical staining for both BRCA1 and MIB-1 were performed to examine the relationship between BRCA1 and MIB-1 in OEI cells. Apoptotic activity was assessed on the parallel tissue sections by using TUNEL assay. Patients' age, menstrual phase and menopausal status were analyzed. RESULTS OEIs were present in the ovaries of 53% of the patients. OEIs were less frequently found in premenopausal (45%) than postmenopausal women (58%). BRCA1 and MIB-1 were found in 27 and 47% of the OEI-containing ovaries, respectively. All BRCA1 positive OEI cells are MIB-1 positive with dual staining method, although overall the percentage of positive cells was small. No significant difference was found for BRCA1 and MIB-1 expression in OEIs between menopausal status and menstrual phases. Apoptosis containing OEIs were seen in 70% of the ovaries. Compared to OEIs in proliferative menstrual phase and premenopausal status, significantly more apoptosis was found in OEIs from secretory phase and postmenopausal women. A small fraction of the epithelial cells within OEIs are proliferating or dying. CONCLUSIONS Low estrogen and/or high progesterone levels may promote OEI cell turnover via induction of apoptosis. Imbalance between cell proliferation and death within OEIs under influence of hormones may play a role in the ovarian epithelial tumorigenesis.
Collapse
Affiliation(s)
- Yiying Wang
- Department of Obstetrics and Gynecology, Henan Province People’s Hospital, Zhengzhou, China
- Department of Obstetrics and Gynecology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Province People’s Hospital, Zhengzhou, China
- Department of Obstetrics and Gynecology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Li Wei
- Department of Obstetrics and Gynecology, Henan Province People’s Hospital, Zhengzhou, China
- Department of Obstetrics and Gynecology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Shuhui Hong
- Department of Gynecology, Qianfoshan Hospital of Shandong University, Ji’nan, China
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB6.408, Dallas, 75390-9072 TX USA
| | - Miaoqing Zhao
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Ji’nan, China
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB6.408, Dallas, 75390-9072 TX USA
| | - Xi Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB6.408, Dallas, 75390-9072 TX USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB6.408, Dallas, 75390-9072 TX USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
40
|
Thomas ED, Meza-Perez S, Bevis KS, Randall TD, Gillespie GY, Langford C, Alvarez RD. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice. J Ovarian Res 2016; 9:70. [PMID: 27784340 PMCID: PMC5082415 DOI: 10.1186/s13048-016-0282-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022] Open
Abstract
Background Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus “armed” with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin−12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin−12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8+ T cell response in the omentum and peritoneal cavity. Results All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin−12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8+ T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin−12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin−12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with sterile phosphate buffer solution. Conclusion Our pilot study demonstrates that an interleukin−12-expressing oncolytic herpes simplex virus effectively kills both murine and human ovarian cancer cell lines and promotes tumor antigen-specific CD8+ T-cell responses in the peritoneal cavity and omentum, leading to reduced peritoneal metastasis and improved survival in a mouse model.
Collapse
Affiliation(s)
- Eric D Thomas
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35233, USA.
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Kerri S Bevis
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35233, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
| | - Catherine Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, USA
| | - Ronald D Alvarez
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35233, USA
| |
Collapse
|
41
|
Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G, Rizzolio F. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond) 2016; 11:2431-41. [PMID: 27558906 DOI: 10.2217/nnm-2016-0154] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To demonstrate that exosomes (exo) could increase the therapeutic index of doxorubicin (DOX). MATERIALS & METHODS Exosomes were characterized by nanoparticle tracking analysis and western blot. Tissue toxicity was evaluated by histopathological analysis and drug efficacy by measuring tumor volume. DOX biodistribution was analyzed by MS. RESULTS Exosomal doxorubicin (exoDOX) avoids heart toxicity by partially limiting the crossing of DOX through the myocardial endothelial cells. For this reason, mice can be treated with higher concentration of exoDOX thus increasing the efficacy of DOX as demonstrated in breast and ovarian mouse tumors. CONCLUSION ExoDOX is safer and more effective than free DOX. Importantly, the first spontaneous transformed syngeneic model of high-grade serous ovarian cancer was utilized for providing a new therapeutic opportunity.
Collapse
Affiliation(s)
- Mohamad Hadla
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy.,Doctoral School in Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Palazzolo
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy.,Doctoral School in Nanotechnology, University of Trieste, Trieste, Italy
| | - Giuseppe Corona
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy
| | - Isabella Caligiuri
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy
| | - Vincenzo Canzonieri
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy
| | - Giuseppe Toffoli
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy
| | - Flavio Rizzolio
- Department of Translational Research, National Cancer Institute - CRO-IRCSS, Aviano, Italy
| |
Collapse
|
42
|
Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget 2016; 6:27613-27. [PMID: 26243836 PMCID: PMC4695012 DOI: 10.18632/oncotarget.4546] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/06/2015] [Indexed: 01/02/2023] Open
Abstract
The FOXM1 transcription factor network is frequently activated in high-grade serous ovarian cancer (HGSOC), the most common and lethal subtype of epithelial ovarian cancer (EOC). We used primary human EOC tissues, HGSOC cell lines, mouse and human ovarian surface epithelial (OSE) cells, and a murine transgenic ovarian cancer model to investigate genetic determinants of FOXM1 overexpression in EOC, and to begin to define its functional contribution to disease pathology. The Cancer Genome Atlas (TCGA) data indicated that the FOXM1 locus is amplified in ~12% of HGSOC, greater than any other tumor type examined, and that FOXM1 amplification correlates with increased expression and poor survival. In an independent set of primary EOC tissues, FOXM1 expression correlated with advanced stage and grade. Of the three known FOXM1 isoforms, FOXM1c showed highest expression in EOC. In murine OSE cells, combined knockout of Rb1 and Trp53 synergistically induced FOXM1. Consistently, human OSE cells immortalized with SV40 Large T antigen (IOSE-SV) had significantly higher FOXM1 expression than OSE immortalized with hTERT (IOSE-T). FOXM1 was overexpressed in murine ovarian tumors driven by combined Rb1/Trp53 disruption. FOXM1 induction in IOSE-SV cells was partially dependent on E2F1, and FOXM1 expression correlated with E2F1 expression in human EOC tissues. Finally, FOXM1 functionally contributed to cell cycle progression and relevant target gene expression in human OSE and HGSOC cell models. In summary, gene amplification, p53 and Rb disruption, and E2F1 activation drive FOXM1 expression in EOC, and FOXM1 promotes cell cycle progression in EOC cell models.
Collapse
|
43
|
Howell VM, Davidson B. Editorial: Advances in Epithelial Ovarian Cancer: Model Systems, Microenvironmental Influences, Therapy, and Origins. Front Oncol 2015; 5:205. [PMID: 26442217 PMCID: PMC4585030 DOI: 10.3389/fonc.2015.00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Viive Maarika Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District , St Leonards, NSW , Australia ; Sydney Medical School Northern, University of Sydney , Sydney, NSW , Australia
| | - Ben Davidson
- Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
44
|
Al-Hujaily EM, Tang Y, Yao DS, Carmona E, Garson K, Vanderhyden BC. Divergent Roles of PAX2 in the Etiology and Progression of Ovarian Cancer. Cancer Prev Res (Phila) 2015; 8:1163-73. [DOI: 10.1158/1940-6207.capr-15-0121-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
|
45
|
Bobbs AS, Cole JM, Cowden Dahl KD. Emerging and Evolving Ovarian Cancer Animal Models. CANCER GROWTH AND METASTASIS 2015; 8:29-36. [PMID: 26380555 PMCID: PMC4558890 DOI: 10.4137/cgm.s21221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is the leading cause of death from a gynecological malignancy in the United States. By the time a woman is diagnosed with OC, the tumor has usually metastasized. Mouse models that are used to recapitulate different aspects of human OC have been evolving for nearly 40 years. Xenograft studies in immunocompromised and immunocompetent mice have enhanced our knowledge of metastasis and immune cell involvement in cancer. Patient-derived xenografts (PDXs) can accurately reflect metastasis, response to therapy, and diverse genetics found in patients. Additionally, multiple genetically engineered mouse models have increased our understanding of possible tissues of origin for OC and what role individual mutations play in establishing ovarian tumors. Many of these models are used to test novel therapeutics. As no single model perfectly copies the human disease, we can use a variety of OC animal models in hypothesis testing that will lead to novel treatment options. The goal of this review is to provide an overview of the utility of different mouse models in the study of OC and their suitability for cancer research.
Collapse
Affiliation(s)
- Alexander S Bobbs
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN, USA. ; Harper Cancer Research Institute, South Bend, IN, USA
| | - Jennifer M Cole
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN, USA. ; Harper Cancer Research Institute, South Bend, IN, USA
| | - Karen D Cowden Dahl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN, USA. ; Harper Cancer Research Institute, South Bend, IN, USA. ; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. ; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
46
|
Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors. Front Oncol 2015; 5:154. [PMID: 26236688 PMCID: PMC4505108 DOI: 10.3389/fonc.2015.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOE(LOW)) was developed and continuously passaged in culture to mimic cellular aging (MOE(HIGH)). The MOE(HIGH) cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOE(HIGH) cells proliferated significantly faster than MOE(LOW), and the MOE(HIGH) cells produced more 2D foci and 3D soft agar colonies as compared to MOE(LOW) MOE(HIGH) were xenografted into athymic female nude mice both in the subcutaneous and the intraperitoneal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers, such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOE(HIGH) and MOE(LOW) were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOE(HIGH) had enhanced protein expression of c-myc, Cyclin E, p53, and FOXM1 with reduced expression of p21. MOE(HIGH) were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.
Collapse
Affiliation(s)
- Michael P Endsley
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Georgette Moyle-Heyrman
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Subbulakshmi Karthikeyan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - David A Davis
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University , Chicago, IL , USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| |
Collapse
|