1
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
2
|
Braun MR, Moore AC, Lindbloom JD, Hodgson KA, Dora EG, Tucker SN. Elimination of Human Papillomavirus 16-Positive Tumors by a Mucosal rAd5 Therapeutic Vaccination in a Pre-Clinical Murine Study. Vaccines (Basel) 2024; 12:955. [PMID: 39339987 PMCID: PMC11435741 DOI: 10.3390/vaccines12090955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic vaccination can harness the body's cellular immune system to target and destroy cancerous cells. Several treatment options are available to eliminate pre-cancerous and cancerous lesions caused by human papillomaviruses (HPV), but may not result in a long-term cure. Therapeutic vaccination may offer an effective, durable, and minimally intrusive alternative. We developed mucosally delivered, recombinant, non-replicating human adenovirus type 5 (rAd5)-vectored vaccines that encode HPV16's oncogenic proteins E6 and E7 alongside a molecular dsRNA adjuvant. The induction of antigen-specific T cells and the therapeutic efficacy of rAd5 were evaluated in a mouse model of HPV tumorigenesis where E6E7-transformed cells, TC-1, were implanted subcutaneously in C57BL/6 mice. After tumor growth, mice were treated intranasally with rAd5 vaccines expressing the wildtype form of E6E7 (rAd5-16/E6E7Wt) in combination with an anti-PD-1 antibody or isotype control. Animals treated with rAd5-16/E6E7Wt with and without anti-PD-1 had significant reductions in tumor volume and increased survival compared to controls. Further, animals treated with rAd5-16/E6E7Wt had increased CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) and produced a cytotoxic tumor microenvironment. In a second study, the immunogenicity of a non-transformative form of E6E7 (rAd5-16/E6E7Mu) and a vaccine encoding predicted T cell epitopes of E6E7 (rAd5-16/E6E7epi) were evaluated. These vaccines elicited significant reductions in TC-1 tumor volume and increased survival of animals. Antigen-specific CD8+ T effector memory cells were observed in the animals treated with E6E7-encoding rAd5, but not in the rAd5-empty group. The work described here demonstrates that this mucosal vaccination can be used therapeutically to elicit specific cellular immunity and further identifies a clinical candidate with great potential for the treatment and prevention of human cervical cancer.
Collapse
Affiliation(s)
- Molly R Braun
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
| | - Anne C Moore
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- National Institute of Bioprocessing Research and Training, A94 X099 Dublin, Ireland
| | | | | | - Emery G Dora
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
| | - Sean N Tucker
- Vaxart Inc., 170 Harbor Way Suite 300, South San Francisco, CA 94080, USA
| |
Collapse
|
3
|
Xia J, Xu M, Hu H, Zhang Q, Yu D, Cai M, Geng X, Zhang H, Zhang Y, Guo M, Lu D, Xu H, Li L, Zhang X, Wang Q, Liu S, Zhang W. 5,7,4'-Trimethoxyflavone triggers cancer cell PD-L1 ubiquitin-proteasome degradation and facilitates antitumor immunity by targeting HRD1. MedComm (Beijing) 2024; 5:e611. [PMID: 38938284 PMCID: PMC11208742 DOI: 10.1002/mco2.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4'-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.
Collapse
Affiliation(s)
- Jianhua Xia
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchi Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Linyang Li
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosafetyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
4
|
Yang W, Sun Q, Zhang X, Zheng L, Yang X, He N, Pang Y, Wang X, Lai Z, Zheng W, Zheng S, Wang W. A novel doxorubicin/CTLA-4 blocker co-loaded drug delivery system improves efficacy and safety in antitumor therapy. Cell Death Dis 2024; 15:386. [PMID: 38824143 PMCID: PMC11144200 DOI: 10.1038/s41419-024-06776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.
Collapse
Affiliation(s)
- Wenli Yang
- Public Research Center, Hainan Medical University, Haikou, China
- Department of Anatomy, Zunyi Medical University, Zunyi, China
| | - Qinghui Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Tropical Medicine, Hainan MedicalUniversity, Haikou, China
| | - Xiaodian Zhang
- Hainan Cancer Medical Center of The First Affiliated Hospital, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Haikou, China
| | - Liping Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaomei Yang
- Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Na He
- School of Tropical Medicine, Hainan MedicalUniversity, Haikou, China
| | - Yanyang Pang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Xi Wang
- Department of Anesthesiology, Haikou Third People's Hospital, Haikou, China
| | - Zhiheng Lai
- Department of Anorectal, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Wuping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Shaoping Zheng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wu Wang
- Public Research Center, Hainan Medical University, Haikou, China.
| |
Collapse
|
5
|
Inaguma S, Wang C, Ito S, Ueki A, Lasota J, Czapiewski P, Langfort R, Rys J, Szpor J, Waloszczyk P, Okoń K, Biernat W, Takiguchi S, Schrump DS, Miettinen M, Takahashi S. Characterization of Pleural Mesothelioma by Hierarchical Clustering Analyses Using Immune Cells within Tumor Microenvironment. Pathobiology 2024; 91:313-325. [PMID: 38527431 DOI: 10.1159/000538520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
INTRODUCTION Over the past decade, classifications using immune cell infiltration have been applied to many types of tumors; however, mesotheliomas have been less frequently evaluated. METHODS In this study, 60 well-characterized pleural mesotheliomas (PMs) were evaluated immunohistochemically for the characteristics of immune cells within tumor microenvironment (TME) using 10 immunohistochemical markers: CD3, CD4, CD8, CD56, CD68, CD163, FOXP3, CD27, PD-1, and TIM-3. For further characterization of PMs, hierarchical clustering analyses using these 10 markers were performed. RESULTS Among the immune cell markers, CD3 (p < 0.0001), CD4 (p = 0.0016), CD8 (p = 0.00094), CD163+ (p = 0.042), and FOXP3+ (p = 0.025) were significantly associated with an unfavorable clinical outcome. Immune checkpoint receptor expressions on tumor-infiltrating lymphocytes such as PD-1 (p = 0.050), CD27 (p = 0.014), and TIM-3 (p = 0.0098) were also associated with unfavorable survival. Hierarchical clustering analyses identified three groups showing specific characteristics and significant associations with patient survival (p = 0.016): the highest number of immune cells (ICHigh); the lowest number of immune cells, especially CD8+ and CD163+ cells (ICLow); and intermediate number of immune cells (ICInt). ICHigh tumors showed significantly higher expression of PD-L1 (p = 0.00038). Cox proportional hazard model identified ICHigh [hazard ratio (HR) = 2.90] and ICInt (HR = 2.97) as potential risk factors compared with ICLow. Tumor CD47 (HR = 2.36), tumor CD70 (HR = 3.04), and tumor PD-L1 (HR = 3.21) expressions were also identified as potential risk factors for PM patients. CONCLUSION Our findings indicate immune checkpoint and/or immune cell-targeting therapies against CD70-CD27 and/or CD47-SIRPA axes may be applied for PM patients in combination with PD-L1-PD-1 targeting therapies in accordance with their tumor immune microenvironment characteristics.
Collapse
Affiliation(s)
- Shingo Inaguma
- Department of Pathology, Nagoya City University East Medical Center, Nagoya, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Piotr Czapiewski
- Department of Pathology, Dessau Medical Centre, Dessau-Roßlau, Germany
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Janusz Rys
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University, Kraków, Poland
| | | | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University, Kraków, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - David S Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Toyofuku T, Ishikawa T, Nojima S, Kumanogoh A. Efficacy against Lung Cancer Is Augmented by Combining Aberrantly N-Glycosylated T Cells with a Chimeric Antigen Receptor Targeting Fragile X Mental Retardation 1 Neighbor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:917-927. [PMID: 38214607 PMCID: PMC10876419 DOI: 10.4049/jimmunol.2300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
The adaptive transfer of T cells redirected to cancer cells via chimeric Ag receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to solid cancer, we screened CARs targeting surface Ags on human lung cancer cells using (to our knowledge) novel expression cloning based on the Ag receptor-induced transcriptional activation of IL-2. Isolated CARs were directed against fragile X mental retardation 1 neighbor (FMR1NB), a cancer-testis Ag that is expressed by malignant cells and adult testicular germ cells. Anti-FMR1NB CAR human T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in mouse xenograft models of lung cancer. Furthermore, to protect CAR T cells from immune-inhibitory molecules, which are present in the tumor microenvironment, we introduced anti-FMR1NB CARs into 2-deoxy-glucose (2DG)-treated human T cells. These cells exhibited reduced binding affinity to immune-inhibitory molecules, and the suppressive effects of these molecules were resisted through blockade of the N-glycosylation of their receptors. Anti-FMR1NB CARs in 2DG-treated human T cells augmented target-specific cytotoxicity in vitro and in vivo. Thus, our findings demonstrated the feasibility of eradicating lung cancer cells using 2DG-treated human T cells, which are able to direct tumor-specific FMR1NB via CARs and survive in the suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, The Center of Medical Innovation and Translational Research, Osaka University, Suita, Osaka, Japan
| | - Takako Ishikawa
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, The Center of Medical Innovation and Translational Research, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Nielsen S, Sitarz MK, Sinha PM, Folefac CA, Høyer M, Sørensen BS, Horsman MR. Using immunotherapy to enhance the response of a C3H mammary carcinoma to proton radiation. Acta Oncol 2023; 62:1581-1586. [PMID: 37498559 DOI: 10.1080/0284186x.2023.2238550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND The benefit of combining immunotherapy with photon irradiation has been shown pre-clinically and clinically. This current pre-clinical study was designed to investigate the anti-tumour action of combining immunotherapy with protons. MATERIALS AND METHODS Male CDF1 mice, with a C3H mammary carcinoma inoculated on the right rear foot, were locally irradiated with single radiation doses when tumours reached 200mm3. Radiation was delivered with an 83-107MeV pencil scanning proton beam in the centre of a 3 cm spread out Bragg peak. Following irradiation (day 0), mice were injected intraperitoneal with anti-CTLA-4, anti-PD-1, or anti-PD-L1 (10 mg/kg) twice weekly for two weeks. Endpoints were tumour growth time (TGT3; time to reach 3 times treatment volume) or local tumour control (percent of mice showing tumour control at 90 days). A Student's T-test (tumour growth) or Chi-squared test (tumour control) were used for statistical analysis; significance levels of p < 0.05. RESULTS Untreated tumours had a mean (± 1 S.E.) TGT3 of 4.6 days (± 0.4). None of the checkpoint inhibitors changed this TGT3. A linear increase in TGT3 was seen with increasing radiation doses (5-20 Gy), reaching 17.2 days (± 0.7) with 20 Gy. Anti-CTLA-4 had no effect on radiation doses up to 15 Gy, but significantly enhanced 20 Gy; the TGT3 being 23.0 days (± 1.3). Higher radiation doses (35-60 Gy) were investigated using a tumour control assay. Logit analysis of the dose response curve, resulted in a TCD50 value (radiation dose causing 50% tumour control; with 95% confidence intervals) of 48 Gy (44-53) for radiation only. This significantly decreased to 43 Gy (38-49) when mice were treated with anti-CTLA-4. Neither anti-PD-1 nor anti-PD-L1 significantly affected tumour control. CONCLUSION Checkpoint inhibitors enhanced the response of this C3H mammary carcinoma to proton irradiation. However, this enhancement depended on the checkpoint inhibitor and radiation dose.
Collapse
Affiliation(s)
- Steffen Nielsen
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Mateusz K Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Priyanshu M Sinha
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlemagne A Folefac
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita S Sørensen
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
9
|
Roy D, Gilmour C, Patnaik S, Wang LL. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors. Front Immunol 2023; 14:1264327. [PMID: 37928556 PMCID: PMC10620683 DOI: 10.3389/fimmu.2023.1264327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.
Collapse
Affiliation(s)
- Dia Roy
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Cassandra Gilmour
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sachin Patnaik
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
10
|
Yang W, Pang Y, Wang X, Lai Z, Lu Y, Zheng S, Wang W. A novel CTLA-4 blocking strategy based on nanobody enhances the activity of dendritic cell vaccine-stimulated antitumor cytotoxic T lymphocytes. Cell Death Dis 2023; 14:406. [PMID: 37419930 PMCID: PMC10328924 DOI: 10.1038/s41419-023-05914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Despite the great success of CTLA-4 blocking in cancer treatment, the use of anti-CTLA-4 monoclonal antibodies still faces many limitations. Now, immune checkpoint blocking coupled with adoptive cell therapy is gaining much attention. In this paper, we reported a strategy on the basis of anti-CTLA-4 nanobody (Nb)-modified liposomes to improve these obstacles. An Nb36/liposome complex was constructed and utilized as a blocker of the CTLA-4/B7 signal pathway in a combination with dendritic cell (DC)/tumor fusion vaccine to enhance the CD8+ T cell cytokine secretion, activation, proliferation, as well as specific cytotoxicity. Moreover, the CD8+ T cells induced by LPS-Nb36 and DC/tumor fusion vaccine led to higher CD8+ T cell effector function in vivo, which significantly retarded tumor growth and lengthened survival of tumor-bearing mice (HepG2, A549, and MGC-803). Our data demonstrate that the anti-CTLA-4 Nb-modified liposomes in connection with DC/tumor fusion vaccines enhance the CD8+ T cell antitumor activity in vitro and in vivo, and is expected to be an alternative therapy for patients with malignancies that have T cell dysfunction or have poor treatment against anti-CTLA-4 mAb.
Collapse
Affiliation(s)
- Wenli Yang
- Public Research Center of Hainan Medical University, Hainan Medical University, Haikou, 570100, China
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
- Department of Anatomy, Zunyi Medical University, Zunyi, 563006, China
| | - Yanyang Pang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, 530021, China
| | - Xi Wang
- Department of Anesthesiology, Haikou Third People's Hospital, Haikou, 570100, China
| | - Zhiheng Lai
- Department of Anorectal, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, 570100, China
| | - Yanda Lu
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Shaojiang Zheng
- Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Wu Wang
- Public Research Center of Hainan Medical University, Hainan Medical University, Haikou, 570100, China.
| |
Collapse
|
11
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
12
|
Menon T, Gopal S, Rastogi Verma S. Targeted therapies in non-small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnol Appl Biochem 2023; 70:344-356. [PMID: 35609005 DOI: 10.1002/bab.2356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer is the most prevalent lung cancer, and almost three-fourths of patients are diagnosed in the advanced stage directly. In this stage, chemotherapy gives only a 15% 5-year survival rate. As people have varied symptoms and reactions to a specific cancer type, treatment for the tumor is likely to fall short, complicating cancer therapy. Immunotherapy is a breakthrough treatment involving drugs targeting novel immune checkpoint inhibitors like CTLA-4 and PD-1/PD-L1, along with combination therapies. In addition, the utility of engineered CAR-T and CAR-NK cells can be an effective strategy to promote the immune response against tumors. The concept of personalized cancer vaccines with the discovery of neoantigens loaded on dendritic cell vectors can also be an effective approach to cure cancer. Advances in genetic engineering tools like CRISPR/Cas9-mediated gene editing of T cells to enhance their effector function is another ray of hope. This review aims to provide an overview of recent developments in cancer immunotherapy, which can be used in first- and second-line treatments in the clinical space. Further, the intervention of artificial intelligence to detect cancer tumors at an initial stage with the help of machine learning techniques is also explored.
Collapse
Affiliation(s)
- Tarunya Menon
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shubhang Gopal
- Department of Information Technology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
13
|
Injectable Polypeptide Hydrogel Depots Containing Dual Immune Checkpoint Inhibitors and Doxorubicin for Improved Tumor Immunotherapy and Post-Surgical Tumor Treatment. Pharmaceutics 2023; 15:pharmaceutics15020428. [PMID: 36839750 PMCID: PMC9965187 DOI: 10.3390/pharmaceutics15020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
In this work, we developed a strategy for local chemo-immunotherapy through simultaneous incorporation of dual immune checkpoint blockade (ICB) antibodies, anti-cytotoxic T-lymphocyte-associated protein 4 (aCTLA-4) and anti-programmed cell death protein 1 (aPD-1), and a chemotherapy drug, doxorubicin (Dox), into a thermo-gelling polypeptide hydrogel. The hydrogel encapsulating Dox or IgG model antibody showed sustained release profiles for more than 12 days in vitro, and the drug release and hydrogel degradation were accelerated in the presence of enzymes. In comparison to free drug solutions or hydrogels containing Dox or antibodies only, the Dox/aCTLA-4/aPD-1 co-loaded hydrogel achieved improved tumor suppression efficiency, strengthened antitumor immune response, and prolonged animal survival time after peritumoral injection into mice bearing B16F10 melanoma. Additionally, after injection of Dox/aCTLA-4/aPD-1 co-loaded hydrogel into the surgical site following tumor resection, a significantly enhanced inhibition on tumor reoccurrence was demonstrated. Thus, the polypeptide hydrogel-based chemo-immunotherapy strategy has potential in anti-tumor therapy and the prevention of tumor reoccurrence.
Collapse
|
14
|
Fang Z, Gao ZJ, Yu X, Sun SR, Yao F. Identification of a centrosome-related prognostic signature for breast cancer. Front Oncol 2023; 13:1138049. [PMID: 37035151 PMCID: PMC10073657 DOI: 10.3389/fonc.2023.1138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background As the major microtubule organizing center in animal cells, the centrosome is implicated with human breast tumor in multiple ways, such as promotion of tumor cell immune evasion. Here, we aimed to detect the expression of centrosome-related genes (CRGs) in normal and malignant breast tissues, and construct a novel centrosome-related prognostic model to discover new biomarkers and screen drugs for breast cancer. Methods We collected CRGs from the public databases and literature. The differentially expressed CRGs between normal and malignant breast tissues were identified by the DESeq2. Univariate Cox and LASSO regression analyses were conducted to screen candidate prognostic CRGs and develop a centrosome-related signature (CRS) to score breast cancer patients. We further manipulated and visualized data from TCGA, GEO, IMvigor210, TCIA and TIMER to explore the correlation between CRS and patient outcomes, clinical manifestations, mutational landscapes, tumor immune microenvironments, and responses to diverse therapies. Single cell analyses were performed to investigate the difference of immune cell landscape between high- and low-risk group patients. In addition, we constructed a nomogram to guide clinicians in precise treatment. Results A total of 726 CRGs were collected from the public databases and literature. PSME2, MAPK10, EIF4EBP1 were screened as the prognostic genes in breast cancer. Next, we constructed a centrosome-related prognostic signature and validated its efficacy based on the genes for predicting the survival of breast cancer patients. The high-risk group patients had poor prognoses, the area under the ROC curve for 1-, 3-, and 5-year overall survival (OS) was 0.77, 0.67, and 0.65, respectively. The predictive capacity of CRS was validated by other datasets from GEO dataset. In addition, high-risk group patients exhibited elevated level of mutational landscapes and decreased level of immune infiltration, especially T and B lymphocytes. In terms of treatment responses, patients in the high-risk group were found to be resistant to immunotherapy but sensitive to chemotherapy. Moreover, we screened a series of candidate anticancer drugs with high sensitivity in the high-risk group. Conclusion Our work exploited a centrosome-related prognostic signature and developed a predictive nomogram capable of accurately predicting breast cancer OS. The above discoveries provide deeper insights into the vital roles of the centrosome and contribute to the development of personalized treatment for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Feng Yao
- *Correspondence: Feng Yao, ; Sheng-Rong Sun,
| |
Collapse
|
15
|
The traditional chinese medicine monomer Ailanthone improves the therapeutic efficacy of anti-PD-L1 in melanoma cells by targeting c-Jun. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:346. [PMID: 36522774 PMCID: PMC9753288 DOI: 10.1186/s13046-022-02559-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND C-Jun, a critical component of AP-1, exerts essential functions in various tumors, including melanoma, and is believed to be a druggable target for cancer therapy. Unfortunately, no effective c-Jun inhibitors are currently approved for clinical use. The advent of immune checkpoint inhibitor (ICI) has brought a paradigm shift in melanoma therapy, but more than half of patients fail to exhibit clinical responses. The exploration of new combination therapies has become the current pursuit of melanoma treatment strategy. This study aims to screen out Chinese herbal monomers that can target c-Jun, explore the combined effect of c-Jun inhibitor and ICI, and further clarify the related molecular mechanism. METHODS: We adopted a combinatorial screening strategy, including molecular docking, ligand-based online approaches and consensus quantitative structure-activity relationship (QSAR) model, to filter out c-Jun inhibitors from a traditional Chinese medicine (TCM) library. A mouse melanoma model was used to evaluate the therapeutic efficacy of monotherapy and combination therapy. Multicolor flow cytometry was employed to assess the tumor microenvironment (TME). Multiple in vitro assays were performed to verify down-streaming signaling pathway. CD4 + T-cell differentiation assay was applied to investigate Treg differentiation in vitro. RESULTS Ailanthone (AIL) was screened out as a c-Jun inhibitor, and inhibited melanoma cell growth by directly targeting c-Jun and promoting its degradation. Surprisingly, AIL also facilitated the therapeutic efficacy of anti-programmed death ligand-1 (PD-L1) in melanoma cells by reducing the infiltration of Tregs in TME. Additionally, AIL treatment inhibited c-Jun-induced PD-L1 expression and secretion. As a consequence, Treg differentiation was attenuated after treatment with AIL through the c-Jun/PD-L1 axis. CONCLUSION Our findings identified AIL as a novel c-Jun inhibitor, and revealed its previously unrecognized anti-melanoma effects and the vital role in regulating TME by Treg suppression, which provides a novel combination therapeutic strategy of c-Jun inhibition by AIL with ICI. AIL down-regulates c-Jun by reducing its stability, and inhibits the function of Tregs via AIL-c-Jun-PD-L1 pathway, ultimately suppressing melanoma progression and enhancing the efficacy of anti-PD-L1.
Collapse
|
16
|
Yang Y, Beeraka NM, Liu J, Zuo X, Wang X, Li T, Fan R. Comparative Combinatorial Implications and Theranostics of Immunotherapy in the Impediment of Alveolar Soft Part Sarcoma. Curr Pharm Des 2022; 28:3404-3412. [PMID: 36154597 DOI: 10.2174/1381612828666220921151750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), specifically programmed cell death receptor- 1/ligand 1 (PD-1/L1) inhibitors, have shown potential pharmacological efficacy in several cancers. Nonetheless, data pertinent to their therapeutic efficacy in alveolar soft-part sarcoma (ASPS) are limited. OBJECTIVE The retrospective aspects of ICIs (anti-PD1/PD-L1 blockers) to target ASPS are comparatively analyzed for clinical outcomes with other targeted immunotherapy modalities. METHODS We have conducted a systematic review without statistical analysis or comprehensive meta-analysis by collecting the articles published between 1952 and Sep 10th, 2020, by searching the following words: alveolar soft part sarcoma and immunotherapy including immune checkpoint, immune checkpoint inhibitors, and PD-1, PD-L1. We performed a pooled analysis of case reports, conferences, clinical trials, and other research reports pertinent to the efficacy of a PD-1 or PD-L1 antagonist in patients diagnosed with metastatic ASPS. RESULTS The effective studies include 10 case reports, 2 conference reports, 5 clinical trials, and 2 additional research reports. A total of 110 patients were reported to be enrolled in the pooled analysis; among them, 87 (78.38%) received a PD-1/PD-L1 antagonist. For patients who received anti-PD-1/PD-L1as monotherapy, their clinical response rates (CRR) were 63.22% whereas those who received targeted therapy and immunotherapy had a CRR of 78.95% (15/19). In the patients treated with double immunotherapy, their CRR was 100% (4/4). Tumor mutational burden and mismatch repair status have significant implications for predicting the ASPS prognosis. CONCLUSION Alveolar soft-part sarcoma patients with distant metastases can exhibit better clinical outcomes with immunotherapy, particularly toripalimab, atezolizumab, and axitinib combinatorial regimen with pembrolizumab. In addition, this review describes the therapeutic implications to guide personalized medicine depending on the expression patterns of PD-1/PD-L1 during the immunotherapy with ASPS.
Collapse
Affiliation(s)
- Ya Yang
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Narasimha M Beeraka
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow, 119991, Russia.,Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Junqi Liu
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxiao Zuo
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Wang
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tingxuan Li
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruitai Fan
- Department of Radiation Therapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
Prostaglandin E 2-Induced Immune Suppression via Cytotoxic T-Lymphocyte Antigen 4 in Paratuberculosis. Infect Immun 2022; 90:e0021022. [PMID: 36102658 PMCID: PMC9584316 DOI: 10.1128/iai.00210-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paratuberculosis is a chronic enteritis of ruminants caused by the facultative intracellular pathogen Mycobacterium avium subsp. paratuberculosis. The Th1 response inhibits the proliferation of M. avium subsp. paratuberculosis during the early subclinical stage. However, we have previously shown that immune inhibitory molecules, such as prostaglandin E2 (PGE2), suppress M. avium subsp. paratuberculosis-specific Th1 responses as the disease progresses. To date, the mechanism underlying immunosuppression during M. avium subsp. paratuberculosis infection has not been elucidated. Therefore, in the present study, we investigated the function of cytotoxic T-lymphocyte antigen 4 (CTLA-4) expressed by peripheral blood mononuclear cells (PBMCs) from cattle with paratuberculosis because CTLA-4 expression is known to be elevated in T cells under an M. avium subsp. paratuberculosis experimental infection. M. avium subsp. paratuberculosis antigen induced CTLA-4 expression in T cells from cattle experimentally infected with M. avium subsp. paratuberculosis. Interestingly, both PGE2 and an E prostanoid 4 agonist also induced CTLA-4 expression in T cells. In addition, a functional assay with a bovine CTLA-4-immunogobulin fusion protein (CTLA-4-Ig) indicated that CTLA-4 inhibited gamma interferon (IFN-γ) production in M. avium subsp. paratuberculosis-stimulated PBMCs, while blockade by anti-bovine CTLA-4 monoclonal antibody increased the secretion of IFN-γ and tumor necrosis factor alpha production in these PBMCs. These preliminary findings show that PGE2 has immunosuppressive effects via CTLA-4 to M. avium subsp. paratuberculosis. Therefore, it is necessary to clarify in the future whether CTLA-4-mediated immunosuppression facilitates disease progression of paratuberculosis in cattle.
Collapse
|
18
|
Sri-ngern-ngam K, Keawvilai P, Pisitkun T, Palaga T. Upregulation of programmed cell death 1 by interferon gamma and its biological functions in human monocytes. Biochem Biophys Rep 2022; 32:101369. [PMID: 36275930 PMCID: PMC9578978 DOI: 10.1016/j.bbrep.2022.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death 1 (PD-1) is a co-inhibitory checkpoint receptor expressed in various immune cells, especially in activated T cells. Engagement of PD-1 with its ligand leads to the exhausted T cells and impaired antitumor immunity. To date, PD-1 expression and its roles have been widely reported in T cells but not well defined in innate immune cells including monocytes. In this study, expression of PD-1 was investigated in human monocytes. Here we observed that among cytokines tested, IFN-γ significantly upregulated the PD-1 expression in both THP-1 cell line and human primary monocytes in a dose- and time-dependent manner. This effect was reduced by PI3K inhibitor, suggesting that the involvement of PI3K/AKT pathway. Furthermore, enrichment of active histone mark H3K4me3 in the Pdcd1 promotor was also observed in IFN-γ-induced THP-1, indicating that epigenetic regulation also plays a role in IFN-γ-induced PD-1 expression. To investigate the biological functions of PD-1, Pdcd1 was deleted in THP-1 cell line by CRISPR/Cas9 system and the phagocytic ability was investigated. The results showed that the PD-1 deficiency in THP-1 cell line resulted in significantly poor phagocytic potency against carboxylated-modified latex beads. Moreover, the PD-1 deficiency or blocking PD-1/PD-L1 interaction by immune checkpoint inhibitor resulted in an impaired induction of IL-4-induced CD163 expression in THP-1 cell line. Taken together, these results highlighted the importance of PD-1 expression in some of key monocyte functions. Interferon gamma treatment induces PD-1 upregulation in human monocytes. PI3K/AKT pathway is crucial for IFN-γ-induced PD-1 expression. Active histone mark H3K4me3 in Pdcd1 promoter accompanies IFN-γ treatment. PD-1 knockout in THP-1 cell line impairs phagocytosis and M2 polarization.
Collapse
Affiliation(s)
- Kittitach Sri-ngern-ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,Graduate Program in Microbiology and Microbial Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornlapat Keawvilai
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand,Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand,Corresponding author. Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
20
|
Xu J, Huang Z, Wang Y, Xiang Z, Xiong B. Identification of Novel Tumor Microenvironment Regulating Factor That Facilitates Tumor Immune Infiltration in Cervical Cancer. Front Oncol 2022; 12:846786. [PMID: 35847936 PMCID: PMC9277773 DOI: 10.3389/fonc.2022.846786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is one of the most common gynecologic malignancies and one of the leading causes of cancer-related deaths in women worldwide. There are more than 30 categories of human papillomavirus infections in the genital tract. The recently discovered immune checkpoint suppression is a potential approach to improve clinical outcomes in these patients by altering immune cell function. However, many questions remain unanswered in terms of this method. For example, the proportion of responders is limited and the exact mechanism of action is uncertain. The tumor microenvironment (TME) has long been regarded as having nonnegligible influence on effectiveness of immunotherapy. The programmed cell death protein 1 (PD-1) pathway has received much attention due to its involvement in activating T-cell immune checkpoint responses. Since tumor cells may evade immune detection and become highly resistant to conventional treatments, anti-PD-1/PD-L1 antibodies are preferred as a kind of cancer treatment and many have just been licensed. To provide a theoretical basis for the development of new therapies, investigating the effect of tumor microenvironment on the prognosis of cervical cancer is necessary. In this work, immunological scores obtained from the ESTIMATE algorithm were used to differentiate between patients with high and low immune cell infiltration. We identified 11 immunologically significant differentially expressed genes (DEGs). For example, CXCR3 was found to be an important factor in CD8+ T cell recruitment and tumor immunological infiltration in cervical cancer. These results may lead to novel directions of understanding complex interactions between cancer cells and the tumor microenvironment, as well as new treatment options for cervical cancer.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhe Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yishu Wang
- Department of Legal English and TOEIC, Adelaide University, North Terrace, SA, Australia
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
21
|
Chen Y, Lai X. Modeling the effect of gut microbiome on therapeutic efficacy of immune checkpoint inhibitors against cancer. Math Biosci 2022; 350:108868. [PMID: 35753521 DOI: 10.1016/j.mbs.2022.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitors have been shown to be highly successful against some solid metastatic malignancies, but only for a subset of patients who show durable clinical responses. The overall patient response rate is limited due to the interpatient heterogeneity. Preclinical and clinical studies have recently shown that the therapeutic responses can be improved through the modulation of gut microbiome. However, the underlying mechanisms are not fully understood. In this paper, we explored the effect of favorable and unfavorable gut bacteria on the therapeutic efficacy of anti-PD-1 against cancer by modeling the tumor-immune-gut microbiome interactions, and further examined the predictive markers of responders and non-responders to anti-PD-1. The dynamics of the gut bacteria was fitted to the clinical data of melanoma patients, and virtual patients data were generated based on the clinical patient survival data. Our simulation results show that low initial growth rate and low level of favorable bacteria at the initiation of anti-PD-1 therapy are predictive of non-responders, while high level of favorable bacteria at the initiation of anti-PD-1 therapy is predictive of responders. Simulation results also confirmed that it is possible to promote patients' response rate to anti-PD-1 by manipulating the gut bacteria composition of non-responders, whereby achieving long-term progression-free survival.
Collapse
Affiliation(s)
- Yu Chen
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
| | - Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
22
|
Zhou P, Wang X, Xing M, Yang X, Wu M, Shi H, Zhu C, Wang X, Guo Y, Tang S, Huang Z, Zhou D. Intratumoral delivery of a novel oncolytic adenovirus encoding human antibody against PD-1 elicits enhanced antitumor efficacy. Mol Ther Oncolytics 2022; 25:236-248. [PMID: 35615266 PMCID: PMC9118129 DOI: 10.1016/j.omto.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
To date, diverse combination therapies with immune checkpoint inhibitors (ICIs), particularly oncolytic virotherapy, have demonstrated enhanced therapeutic outcomes in cancer treatment. However, high pre-existing immunity against the widely used adenovirus human serotype 5 (AdHu5) limits its extensive clinical application. In this study, we constructed an innovative oncolytic virus (OV) based on a chimpanzee adenoviral vector with low seropositivity in the human population, named AdC68-spE1A-αPD-1, which endows the parental OV (AdC68-spE1A-ΔE3) with the ability to express full-length anti-human programmed cell death-1 monoclonal antibody (αPD-1). In vitro studies indicated that the AdC68-spE1A-αPD-1 retained parental oncolytic capacity, and αPD-1 was efficiently secreted from the infected tumor cells and bound exclusively to human PD-1 (hPD-1) protein. In vivo, intratumoral treatment with AdC68-spE1A-αPD-1 resulted in significant tumor suppression, prolonged overall survival, and enhanced systemic antitumor memory response in an hPD-1 knockin mouse tumor model. This strategy outperformed the unarmed OV and was comparable with combination therapy with intratumoral injection of AdC68-spE1A-ΔE3 and systemic administration of commercial αPD-1. In summary, AdC68-spE1A-αPD-1 is a cost-effective approach with potential clinical applications. .
Collapse
Affiliation(s)
- Ping Zhou
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuchen Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mangteng Wu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyang Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Caihong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shubing Tang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
23
|
Daei Sorkhabi A, Sarkesh A, Fotouhi A, Saeedi H, Aghebati-Maleki L. Cancer combination therapies by silencing of CTLA-4, PD-L1, and TIM3 in osteosarcoma. IUBMB Life 2022; 74:908-917. [PMID: 35638098 DOI: 10.1002/iub.2655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common orthopedic neoplasm, with a high metastasis rate and a dismal prognosis despite surgery and chemotherapy. Immunotherapies have offered cancer patients a ray of optimism, but their impact on OS has been disappointing. The objective of this study is to assess the effect of mono, dual, and triple combinations of CTLA-4, PD-L1, and TIM3 blockade on OS cell viability, apoptosis, and migration. METHOD The MG-63 and U-2 OS cell lines were transfected with mono, dual, and triple combinations of siRNAs specific for CTLA-4, PD-L1, and TIM3. After evaluation for transfection efficacy by qRT-PCR, MTT assay and flow cytometry were applied to assess cell viability and apoptosis rate in siRNA-transfected cells, respectively. Ultimately, the migration of transfected cells was measured by wound healing assay. RESULTS First, the qRT-PCR analysis revealed that in siRNA-transfected OS cells, CTLA-4, PD-L1, and TIM3 were downregulated. The MTT assay and flow cytometry results confirmed that silencing of these immune checkpoints in dual or triple combinations, but not in the single-agent blockade, significantly decreases cell viability and increases apoptosis, respectively. These effects were more significant when triple silencing was performed. Finally, the wound healing assay revealed that dual and triple silencing of immune checkpoints significantly inhibit cell migration, with triple silencing exhibiting a greater effect. CONCLUSION Our findings suggest that triple blockade of CTLA-4, PD-L1, and TIM3 is an effective strategy for inhibiting tumor cell progression and migration in OS, which requires large-scale clinical investigations to be translated into broad therapeutic applicability for OS patients.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Zhang J, Zhang G, Zhang W, Bai L, Wang L, Li T, Yan L, Xu Y, Chen D, Gao W, Gao C, Chen C, Ren M, Jiao Y, Qin H, Sun Y, Zhi L, Qi Y, Zhao J, Liu Q, Liu H, Wang Y. Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer. Cell Death Differ 2022; 29:2247-2261. [PMID: 35538152 PMCID: PMC9613699 DOI: 10.1038/s41418-022-01012-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy has been widely utilized in multiple tumors, however, its efficacy in the treatment of triple-negative breast cancers (TNBC) is still being challenged. Meanwhile, functions and mechanisms of RNA binding proteins in regulating immunotherapy for TNBC remain largely elusive. Here we reported that the RNA binding protein RBMS1 is prevalent among immune-cold TNBC. Through a systematic shRNA-mediated screen, we found depletion of RBMS1 significantly reduced the level of programmed death ligand 1 (PD-L1) in TNBC. Clinically, RBMS1 was increased in breast cancer and its level was positively correlated to that of PD-L1. RBMS1 ablation stimulated cytotoxic T cell mediated anti-tumor immunity. Mechanistically, RBMS1 regulated the mRNA stability of B4GALT1, a newly identified glycosyltransferase of PD-L1. Depletion of RBMS1 destabilized the mRNA of B4GALT1, inhibited the glycosylation of PD-L1 and promoted the ubiquitination and subsequent degradation of PD-L1. Importantly, combination of RBMS1 depletion with CTLA4 immune checkpoint blockade or CAR-T treatment enhanced anti-tumor T-cell immunity both in vitro and in vivo. Together, our findings provided a new immunotherapeutic strategy against TNBC by targeting the immunosuppressive RBMS1.
Collapse
Affiliation(s)
- Jinrui Zhang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lu Bai
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Luning Wang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Tiantian Li
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Li Yan
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, 518035, China
| | - Yang Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518035, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Wenting Gao
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, 116044, China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Menglin Ren
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Yuexia Jiao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yu Sun
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lili Zhi
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Quentin Liu
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Han Liu
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
25
|
Sailer N, Fetzer I, Salvermoser M, Braun M, Brechtefeld D, Krendl C, Geiger C, Mutze K, Noessner E, Schendel DJ, Bürdek M, Wilde S, Sommermeyer D. T-Cells Expressing a Highly Potent PRAME-Specific T-Cell Receptor in Combination with a Chimeric PD1-41BB Co-Stimulatory Receptor Show a Favorable Preclinical Safety Profile and Strong Anti-Tumor Reactivity. Cancers (Basel) 2022; 14:cancers14081998. [PMID: 35454906 PMCID: PMC9030144 DOI: 10.3390/cancers14081998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The development of effective adoptive T-cell therapies (ATCs) to treat solid tumors has several challenges: the choice of a suitable target antigen, the generation of a specific T-cell receptor (TCR) directed against this target, and the hostile tumor microenvironment (TME). The cancer/testis antigen Preferentially Expressed Antigen in Melanoma (PRAME) is a promising target for ATCs since it is highly expressed in several solid tumor indications, while its expression in normal tissues is mainly restricted to the testis. Using our well-established high throughput TCR generation and characterization process, we identified a highly potent PRAME-specific TCR. To convert the inhibitory PD-1 signal in T-cells to an activating signal, we designed a chimeric receptor consisting of the extracellular domain of PD-1 and the signaling domain of 4-1BB. Combining this PD1-41BB receptor with our lead PRAME-TCR generated a very promising T-cell product with a favorable preclinical in vitro safety profile and enhanced in vitro and in vivo anti-tumor efficacy. Abstract The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications. A TCR with high specificity and sensitivity for PRAME was isolated from non-tolerized T-cell repertoires and introduced into T-cells alongside a chimeric PD1-41BB receptor, consisting of the natural extracellular domain of PD-1 and the intracellular signaling domain of 4-1BB, turning an inhibitory pathway into a T-cell co-stimulatory pathway. The addition of PD1-41BB to CD8+ T-cells expressing the transgenic PRAME-TCR enhanced IFN-γ secretion, improved cytotoxic capacity, and prevented exhaustion upon repetitive re-challenge with tumor cells in vitro without altering the in vitro safety profile. Furthermore, a single dose of TCR-Ts co-expressing PD1-41BB was sufficient to clear a hard-to-treat melanoma xenograft in a mouse model, whereas TCR-Ts without PD1-41BB could not eradicate the PD-L1-positive tumors. This cutting-edge strategy supports development efforts to provide more effective TCR-T immunotherapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Nadja Sailer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Ina Fetzer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Melanie Salvermoser
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Monika Braun
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Doris Brechtefeld
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Christian Krendl
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Christiane Geiger
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Kathrin Mutze
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Elfriede Noessner
- Immunoanalytics-Research Group Tissue Control of Immunocytes (TCI), Helmholtz Zentrum München, 81377 Munich, Germany;
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
- Medigene AG, 82152 Planegg, Germany
- Correspondence: or
| | - Maja Bürdek
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Susanne Wilde
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| | - Daniel Sommermeyer
- Medigene Immunotherapies GmbH, 82152 Planegg, Germany; (N.S.); (I.F.); (M.S.); (M.B.); (D.B.); (C.K.); (C.G.); (K.M.); (M.B.); (S.W.); (D.S.)
| |
Collapse
|
26
|
Zhang Q, Tan Y, Zhang J, Shi Y, Qi J, Zou D, Ci W. Pyroptosis-Related Signature Predicts Prognosis and Immunotherapy Efficacy in Muscle-Invasive Bladder Cancer. Front Immunol 2022; 13:782982. [PMID: 35479097 PMCID: PMC9035667 DOI: 10.3389/fimmu.2022.782982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis has profound impacts on tumor cell proliferation, invasion, and metastasis and is of great clinical significance for different cancers. However, the role of pyroptosis in the progression and prognosis of muscle invasive bladder cancer (MIBC) remains poorly characterized. Here, we collected multicenter MIBC data and performed integrated analysis to dissect the role of pyroptosis in MIBC and provide an optimized treatment for this disease. Based on transcriptomic data, we developed a novel prognostic model named the pyroptosis-related gene score (PRGScore), which summarizes immunological features, genomic alterations, and clinical characteristics associated with the pyroptosis phenotype. Samples with high PRGScore showed enhancement in CD8+ T cell effector function, antigen processing machinery and immune checkpoint and better response to immunotherapy by programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors, which indicates that PRGScore is a valuable signature in the identification of populations sensitive to immune checkpoint inhibitors. Collectively, our study provides insights into further research targeting pyroptosis and its tumor immune microenvironment (TME) and offers an opportunity to optimize the treatment of MIBC.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yezhen Tan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yue Shi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daojia Zou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Weimin Ci,
| |
Collapse
|
27
|
Natural killer cells and immune-checkpoint inhibitor therapy: Current knowledge and new challenges. Mol Ther Oncolytics 2022; 24:26-42. [PMID: 34977340 PMCID: PMC8693432 DOI: 10.1016/j.omto.2021.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery of immune checkpoints (ICs) and the development of specific blockers to relieve immune effector cells from this inhibiting mechanism has changed the view of anti-cancer therapy. In addition to cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed death 1 (PD1), classical ICs of T lymphocytes and recently described also on a fraction of natural killer (NK) cells, several NK cell receptors, including killer immunoglobulin-like inhibitory receptors (KIRs) and NGK2A, have been recognized as checkpoint members typical of the NK cell population. This offers the opportunity of a dual-checkpoint inhibition approach, targeting classical and non-classical ICs and leading to a synergistic therapeutic effect. In this review, we will overview and discuss this new perspective, focusing on the most relevant candidates for this role among the variety of potential NK ICs. Beside listing and defining classical ICs expressed also by NK cells, or non-classical ICs either on T or on NK cells, we will address their role in NK cell survival, chronic stimulation or functional exhaustion, and the potential relevance of this phenomenon on anti-tumor immune response. Furthermore, NK ICs will be proposed as possible new targets for the development of efficient combined immunotherapy, not forgetting the relevant concerns that may be raised on NK IC blockade. Finally, the impact of epigenetic drugs in such a complex therapeutic picture will be briefly addressed.
Collapse
|
28
|
Oster P, Vaillant L, Riva E, McMillan B, Begka C, Truntzer C, Richard C, Leblond MM, Messaoudene M, Machremi E, Limagne E, Ghiringhelli F, Routy B, Verdeil G, Velin D. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut 2022; 71:457-466. [PMID: 34253574 PMCID: PMC8862014 DOI: 10.1136/gutjnl-2020-323392] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Erika Riva
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christina Begka
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Caroline Truntzer
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | - Corentin Richard
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Marine M Leblond
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Meriem Messaoudene
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Elisavet Machremi
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Emeric Limagne
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | | | - Bertrand Routy
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Gregory Verdeil
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Blinova VG, Gladilina YA, Eliseeva DD, Lobaeva TA, Zhdanov DD. [Increased suppressor activity of transformed ex vivo regulatory T-cells in comparison with unstimulated cells of the same donor]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:55-67. [PMID: 35221297 DOI: 10.18097/pbmc20226801055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regulatory T-cells CD4⁺CD25⁺FoxP3⁺CD127low (Tregs) play a key role in the maintenance of tolerance to auto antigens, inhibit function of effector T and B lymphocytes, and provide a balance between effector and regulatory arms of immunity. Patients with autoimmune diseases have decreased Treg numbers and impaired suppressive activity. Transformed ex vivo autologous Tregs could restore destroyed balance of the immune system. We developed a method for Treg precursor cell cultivation. Following the method, we were able to grown up 300-400 million of Tregs cells from 50 ml of peripheral blood during a week. Transformed ex vivo Tregs are 90-95% CD4⁺CD25⁺FoxP3⁺CD127low and have increased expression of transcription genes FoxP3 and Helios. Transformed ex vivo Tregs have increased demethylation of FoxP3 promoter and activated genes of proliferation markers Cycline B1, Ki67 and LGALS 1. Transformed ex vivo Tregs have increased suppressive activity and up to 80-90% these cells secrete cytokines TNFα и IFNγ. Our data suggest transformed ex vivo autologous Tregs have genetic, immunophenotypic and functional characteristics for regulatory T-cells and further can be used for adoptive immunotherapy autoimmune diseases and inhibition of transplantation immunity.
Collapse
Affiliation(s)
- V G Blinova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - T A Lobaeva
- Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia; Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
30
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
31
|
Kim J, Kang S, Kim KW, Heo MG, Park DI, Lee JH, Lim NJ, Min DH, Won C. Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy. Biomaterials 2021; 280:121257. [PMID: 34839122 DOI: 10.1016/j.biomaterials.2021.121257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Recent strategies in cancer immunotherapy based on interleukin-2 (IL-2) are generally focused on reducing regulatory T cell (Treg) development by modifying IL-2 receptor alpha (IL-2Rα) domain. However, the clinical utility of high-dose IL-2 treatment is mainly limited by severe systemic toxicity. We find that peritumorally injectable 'BALLkine-2', recombinant human IL-2 (rIL-2) loaded porous nanoparticle, dramatically reduces systemic side effects of rIL-2 by minimizing systemic IL-2 exposure. Notably, in cynomolgus monkeys, subcutaneous (SC)-injection of BALLkine-2 not only dramatically reduces systemic circulation of rIL-2 in the blood, but also increases half-life of IL-2 compared to IV- or SC-injection of free rIL-2. Peritumorally-injected BALLkine-2 enhances intratumoral lymphocyte infiltration without inducing Treg development and more effectively synergizes with PD-1 blockade than high-dose rIL-2 administration in B16F10 melanoma model. BALLkine-2 could be a highly potent therapeutic option due to higher anti-tumor efficacy with lower and fewer doses and reduced systemic toxicity compared to systemic rIL-2.
Collapse
Affiliation(s)
- Jun Kim
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Won Kim
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Myeong-Gang Heo
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Dae-In Park
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Joon-Hyung Lee
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Nam Ju Lim
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Dal-Hee Min
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea; Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea.
| |
Collapse
|
32
|
Ahmed F, Onwumeh-Okwundu J, Yukselen Z, Endaya Coronel MK, Zaidi M, Guntipalli P, Garimella V, Gudapati S, Mezidor MD, Andrews K, Mouchli M, Shahini E. Atezolizumab plus bevacizumab versus sorafenib or atezolizumab alone for unresectable hepatocellular carcinoma: A systematic review. World J Gastrointest Oncol 2021; 13:1813-1832. [PMID: 34853653 PMCID: PMC8603457 DOI: 10.4251/wjgo.v13.i11.1813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite the use of current standard therapy, the prognosis of patients with unresectable hepatocellular carcinoma (HCC) is poor, with median survival times of 40 mo for intermediate HCC (Barcelona Clinic Liver Cancer [BCLC] stage B) and 6–8 mo for advanced HCC (BCLC stage C). Although patients with early-stage HCC are usually suitable for therapies with curative intention, up to 70% of patients experience relapse within 5 years. In the past decade, the United States Food and Drug Administration has approved different immunogenic treatment options for advanced HCC, the most common type of liver cancer among adults. Nevertheless, no treatment is useful in the adjuvant setting. Since 2007, the multi-kinase inhibitor sorafenib has been used as a first-line targeted drug to address the increased mortality and incidence rates of HCC. However, in 2020, the IMbrave150 trial demonstrated that combination therapy of atezolizumab (anti-programmed death-ligand 1 [PD-L1]) and bevacizumab (anti-vascular endothelial growth factor [VEGF]) is superior to sorafenib, a single anti-programmed death 1/PD-L1 antibody inhibitor used as an anti-cancer monotherapy for HCC treatment.
AIM To conduct a systematic literature review to evaluate the evidence supporting the efficacy and safety of atezolizumab/bevacizumab as preferred first-line drug therapy over the conventional sorafenib or atezolizumab monotherapies, which are used to improve survival outcomes and reduce disease progression in patients with unresectable HCC and non-decompensated liver disease.
METHODS A comprehensive literature review was conducted using the PubMed, Scopus, ScienceDirect, clinicaltrials.gov, PubMed Central, Embase, EuropePMC, and CINAHL databases to identify studies that met the inclusion criteria using relevant MeSH terms. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and risk of bias (RoB) were assessed using the Cochrane RoB 2 tool and Sevis.
RESULTS In the atezolizumab/bevacizumab group, an improvement in overall tumor response, reduction of disease progression, and longer progression-free survival were observed compared to monotherapy with either sorafenib or atezolizumab. Hypertension and proteinuria were the most common adverse events, and the rates of adverse events were comparable to those with the monotherapy. Of the studies, there were two completed trials and two ongoing trials analyzed using high quality and low bias. A more thorough analysis was only performed on the completed trials.
CONCLUSION Treatment of HCC with atezolizumab/bevacizumab combination therapy was confirmed to be an effective first-line treatment to improve survival in patients with unresectable HCC and non-decompensated liver disease compared to monotherapy with either sorafenib or atezolizumab.
Collapse
Affiliation(s)
- Faiza Ahmed
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | | | - Zeynep Yukselen
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | | | - Madiha Zaidi
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | - Prathima Guntipalli
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | - Vamsi Garimella
- College of Medicine, Howard University, Washington, DC 520, United States
| | - Sravya Gudapati
- College of Medicine, Washington University of Health and Science, San Pedro, Belize
| | - Marc Darlene Mezidor
- Department of Radiology, Amita Health Saint Francis Hospital, Evaston, IL 60202, United States
| | - Kim Andrews
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahad University, Al Khobar 31952, Saudi Arabia
| | - Mohamad Mouchli
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Endrit Shahini
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte (Bari) 70013, Italy
| |
Collapse
|
33
|
Ahmed F, Onwumeh-Okwundu J, Yukselen Z, Endaya Coronel MK, Zaidi M, Guntipalli P, Garimella V, Gudapati S, Mezidor MD, Andrews K, Mouchli M, Shahini E. Atezolizumab plus bevacizumab versus sorafenib or atezolizumab alone for unresectable hepatocellular carcinoma: A systematic review. World J Gastrointest Oncol 2021. [PMID: 34853653 DOI: 10.4251/wjgo.v13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Despite the use of current standard therapy, the prognosis of patients with unresectable hepatocellular carcinoma (HCC) is poor, with median survival times of 40 mo for intermediate HCC (Barcelona Clinic Liver Cancer [BCLC] stage B) and 6-8 mo for advanced HCC (BCLC stage C). Although patients with early-stage HCC are usually suitable for therapies with curative intention, up to 70% of patients experience relapse within 5 years. In the past decade, the United States Food and Drug Administration has approved different immunogenic treatment options for advanced HCC, the most common type of liver cancer among adults. Nevertheless, no treatment is useful in the adjuvant setting. Since 2007, the multi-kinase inhibitor sorafenib has been used as a first-line targeted drug to address the increased mortality and incidence rates of HCC. However, in 2020, the IMbrave150 trial demonstrated that combination therapy of atezolizumab (anti-programmed death-ligand 1 [PD-L1]) and bevacizumab (anti-vascular endothelial growth factor [VEGF]) is superior to sorafenib, a single anti-programmed death 1/PD-L1 antibody inhibitor used as an anti-cancer monotherapy for HCC treatment. AIM To conduct a systematic literature review to evaluate the evidence supporting the efficacy and safety of atezolizumab/bevacizumab as preferred first-line drug therapy over the conventional sorafenib or atezolizumab monotherapies, which are used to improve survival outcomes and reduce disease progression in patients with unresectable HCC and non-decompensated liver disease. METHODS A comprehensive literature review was conducted using the PubMed, Scopus, ScienceDirect, clinicaltrials.gov, PubMed Central, Embase, EuropePMC, and CINAHL databases to identify studies that met the inclusion criteria using relevant MeSH terms. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and risk of bias (RoB) were assessed using the Cochrane RoB 2 tool and Sevis. RESULTS In the atezolizumab/bevacizumab group, an improvement in overall tumor response, reduction of disease progression, and longer progression-free survival were observed compared to monotherapy with either sorafenib or atezolizumab. Hypertension and proteinuria were the most common adverse events, and the rates of adverse events were comparable to those with the monotherapy. Of the studies, there were two completed trials and two ongoing trials analyzed using high quality and low bias. A more thorough analysis was only performed on the completed trials. CONCLUSION Treatment of HCC with atezolizumab/bevacizumab combination therapy was confirmed to be an effective first-line treatment to improve survival in patients with unresectable HCC and non-decompensated liver disease compared to monotherapy with either sorafenib or atezolizumab.
Collapse
Affiliation(s)
- Faiza Ahmed
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | | | - Zeynep Yukselen
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | | | - Madiha Zaidi
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | - Prathima Guntipalli
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, FL 33143, United States
| | - Vamsi Garimella
- College of Medicine, Howard University, Washington, DC 520, United States
| | - Sravya Gudapati
- College of Medicine, Washington University of Health and Science, San Pedro, Belize
| | - Marc Darlene Mezidor
- Department of Radiology, Amita Health Saint Francis Hospital, Evaston, IL 60202, United States
| | - Kim Andrews
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahad University, Al Khobar 31952, Saudi Arabia
| | - Mohamad Mouchli
- Department of Gastroenterology, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Endrit Shahini
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte (Bari) 70013, Italy.
| |
Collapse
|
34
|
Li Z, Wu X, Zhao Y, Xiao Y, Zhao Y, Zhang T, Li H, Sha F, Wang Y, Deng L, Ma X. Clinical benefit of neoadjuvant anti-PD-1/PD-L1 utilization among different tumors. MedComm (Beijing) 2021; 2:60-68. [PMID: 34766136 PMCID: PMC8491227 DOI: 10.1002/mco2.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023] Open
Abstract
PD‐1/PD‐L1 (programmed cell death‐1 and programmed death‐ligand 1) inhibitors utilization in neoadjuvant therapy has been assessed in tumors. This study focused on the clinical benefits of neoadjuvant anti‐PD‐1/PD‐L1 therapy. A comprehensive search was conducted in electronic databases to identify eligible studies. Major response rate (MRR) and complete response rate (CRR) were pooled in this analysis to assess the efficacy of neoadjuvant anti‐PD‐1/PD‐L1 utilization, all grades and high‐grade adverse events (AEs) were pooled to evaluate its safety. Twenty studies were included in this meta‐analysis, with 828 patients suffering from different tumors. The pooled CRR of triple‐negative breast cancer was 0.569 (95% CI 0.514, 0.624, I2 = 0%) and the pooled MRR of lung cancer was 0.471 (95% CI 0.267, 0.575, I2 = 0%). The most frequent adverse event was fatigue (0.272 95% CI 0.171, 0.402, I2 = 87%), and the most common high‐grade adverse event was febrile neutropenia (0.084 95% CI 0.063, 0.112, I2 = 85%). In conclusion, neoadjuvant anti‐PD‐1/PD‐L1 therapy received satisfactory clinical results in these tumors included.
Collapse
Affiliation(s)
- Zhiyang Li
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,West China Hospital, West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Xin Wu
- Head and Neck Carcinoma Department, Radiation Oncology Department, Cancer Center West China Hospital Chengdu Sichuan China
| | - Yanjie Zhao
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,West China Hospital, West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Yinan Xiao
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,State Key Laboratory of Biotherapy Department of Biotherapy, West China Hospital, Cancer Center Sichuan University Chengdu Sichuan China
| | - Yunuo Zhao
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,State Key Laboratory of Biotherapy Department of Biotherapy, West China Hospital, Cancer Center Sichuan University Chengdu Sichuan China
| | - Ting Zhang
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,West China Hospital, West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Hui Li
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,West China Hospital, West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Fushen Sha
- Department of Internal Medicine State University of New York: Downstate Medical Center Brooklyn New York USA
| | - Yating Wang
- Department of Internal Medicine Louis A. Weiss Memorial Hospital Chicago Illinois USA
| | - Lei Deng
- Jacobi Medical Center Albert Einstein College of Medicine, Bronx New York New York USA
| | - Xuelei Ma
- Department of Biotherapy State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China.,State Key Laboratory of Biotherapy Department of Biotherapy, West China Hospital, Cancer Center Sichuan University Chengdu Sichuan China
| |
Collapse
|
35
|
Ravindran Menon D, Li Y, Yamauchi T, Osborne DG, Vaddi PK, Wempe MF, Zhai Z, Fujita M. EGCG Inhibits Tumor Growth in Melanoma by Targeting JAK-STAT Signaling and Its Downstream PD-L1/PD-L2-PD1 Axis in Tumors and Enhancing Cytotoxic T-Cell Responses. Pharmaceuticals (Basel) 2021; 14:1081. [PMID: 34832863 PMCID: PMC8618268 DOI: 10.3390/ph14111081] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, therapies targeting immune checkpoints, such as programmed death-1 (PD-1), have revolutionized the field of cancer immunotherapy. However, low response rates and immune-related adverse events remain a major concern. Here, we report that epigallocatechin gallate (EGCG), the most abundant catechin in green tea, inhibits melanoma growth by modulating an immune response against tumors. In vitro experiments revealed that EGCG treatment inhibited interferon-gamma (IFN-γ)-induced PD-L1 and PD-L2 expression and JAK-STAT signaling. We confirmed that this effect was driven by inhibiting STAT1 gene expression and STAT1 phosphorylation, thereby downregulating the PD-L1/PD-L2 transcriptional regulator IRF1 in both human and mouse melanoma cells. Animal studies revealed that the in vivo tumor-inhibitory effect of EGCG was through CD8+ T cells and that the inhibitory effect of EGCG was comparable to anti-PD-1 therapy. However, their mechanisms of action were different. Dissimilar to anti-PD-1 treatment that blocks PD-1/PD-L1 interaction, EGCG inhibited JAK/STAT signaling and PD-L1 expression in tumor cells, leading to the re-activation of T cells. In summary, we demonstrate that EGCG enhances anti-tumor immune responses by inhibiting JAK-STAT signaling in melanoma. EGCG could be used as an alternative treatment strategy to target the PD-L1/PD-L2-PD-1 axis in cancers.
Collapse
Affiliation(s)
- Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Yang Li
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Prasanna Kumar Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Pokhrel RH, Acharya S, Ahn JH, Gu Y, Pandit M, Kim JO, Park YY, Kang B, Ko HJ, Chang JH. AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway. Mol Cancer 2021; 20:133. [PMID: 34649584 PMCID: PMC8515644 DOI: 10.1186/s12943-021-01420-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background AMP-activated protein kinase (AMPK) is a metabolic sensor that maintains energy homeostasis. AMPK functions as a tumor suppressor in different cancers; however, its role in regulating antitumor immunity, particularly the function of regulatory T cells (Tregs), is poorly defined. Methods AMPKα1fl/flFoxp3YFP-Cre, Foxp3YFP-Cre, Rag1−/−, and C57BL/6 J mice were used for our research. Flow cytometry and cell sorting, western blotting, immuno-precipitation, immuno-fluorescence, glycolysis assay, and qRT-PCR were used to investigate the role of AMPK in suppressing programmed cell death 1 (PD-1) expression and for mechanistic investigation. Results The deletion of the AMPKα1 subunit in Tregs accelerates tumor growth by increasing the expression of PD-1. Metabolically, loss of AMPK in Tregs promotes glycolysis and the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a key enzyme of the mevalonate pathway. Mechanistically, AMPK activates the p38 mitogen-activated protein kinase (MAPK) that phosphorylates glycogen synthase kinase-3β (GSK-3β), inhibiting the expression of PD-1 in Tregs. Conclusion Our study identified an AMPK regulatory mechanism of PD-1 expression via the HMGCR/p38 MAPK/GSK3β signaling pathway. We propose that the AMPK activator can display synergic antitumor effect in murine tumor models, supporting their potential clinical use when combined with anti-PD-1 antibody, anti-CTLA-4 antibody, or a HMGCR inhibitor. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01420-9.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Jong-Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, Republic of Korea.
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea.
| |
Collapse
|
37
|
Wang H, Jiang W, Wang H, Wei Z, Li H, Yan H, Han P. Identification of Mutation Landscape and Immune Cell Component for Liver Hepatocellular Carcinoma Highlights Potential Therapeutic Targets and Prognostic Markers. Front Genet 2021; 12:737965. [PMID: 34603396 PMCID: PMC8481807 DOI: 10.3389/fgene.2021.737965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a primary malignancy, and there is a lack of effective treatment for advanced patients. Although numerous studies exist to reveal the carcinogenic mechanism of LIHC, few studies have integrated multi-omics data to systematically analyze pathogenesis and reveal potential therapeutic targets. Here, we integrated genomic variation data and RNA-seq profiles obtained by high-throughput sequencing to define high- and low-genomic instability samples. The mutational landscape was reported, and the advanced patients of LIHC were characterized by high-genomic instability. We found that the tumor microenvironment underwent metabolic reprograming driven by mutations accumulate to satisfy tumor proliferation and invasion. Further, the co-expression network identifies three mutant long non-coding RNAs as potential therapeutic targets, which can promote tumor progression by participating in specific carcinogenic mechanisms. Then, five potential prognostic markers (RP11-502I4.3, SPINK5, CHRM3, SLC5A12, and RP11-467L13.7) were identified by examining the association of genes and patient survival. By characterizing the immune landscape of LIHC, loss of immunogenicity was revealed as a key factor of immune checkpoint suppression. Macrophages were found to be significantly associated with patient risk scores, and high levels of macrophages accelerated patient mortality. In summary, the mutation-driven mechanism and immune landscape of LIHC revealed by this study will serve precision medicine.
Collapse
Affiliation(s)
- Hengzhen Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haijun Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Wei
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hali Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haichao Yan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Han
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR. Acta Pharm Sin B 2021; 11:3134-3149. [PMID: 34745852 PMCID: PMC8551420 DOI: 10.1016/j.apsb.2021.03.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft via activating tumor-infiltrating T-cell immunity. Mechanistically, TBM-1 triggers PD-L1 lysosomal degradation in a TFEB-dependent, autophagy-independent pathway. TBM-1 selectively binds to the mammalian target of rapamycin (mTOR) kinase and suppresses the activation of mTORC1, leading to the nuclear translocation of TFEB and lysosome biogenesis. Moreover, the combination of TBM-1 and anti-CTLA-4 effectively enhances antitumor T-cell immunity and reduces immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells. Our findings reveal a previously unrecognized antitumor mechanism of TBM-1 and represent an alternative ICB therapeutic strategy to enhance the efficacy of cancer immunotherapy.
Collapse
Key Words
- 4EBP1, eIF4E-binding protein 1
- Baf, bafilomycin A1
- CETSA, cellular thermal shift assay
- CHX, cycloheximide
- CQ, chloroquine
- IB, immunoblotting
- ICB, immune checkpoint blockade
- IHC, immunohistochemistry
- Immune checkpoint blockade
- LLC, Lewis lung carcinoma
- Lysosome
- MDSCs, myeloid-derived suppressor cells
- NAG, β-N-acetylglucosaminidase
- NSCLC, non-small cell lung cancer
- PD-1, programmed cell death-1
- PD-L1
- PD-L1, programmed cell death ligand- 1
- SPR, surface plasmon resonance
- TBM-1, tubeimoside-1
- TFEB, nuclear transcriptional factor EB
- TILs, tumor-infiltrating lymphocytes
- Transcription factor EB
- Tregs, regulatory T-lymphocytes
- mTOR
- mTOR, mammalian target of rapamycin
- p70S6K, phosphorylation of p70 S6 kinase
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
|
39
|
van Bömmel F, Berg T. Risks and Benefits of Discontinuation of Nucleos(t)ide Analogue Treatment: A Treatment Concept for Patients With HBeAg-Negative Chronic Hepatitis B. Hepatol Commun 2021; 5:1632-1648. [PMID: 34558833 PMCID: PMC8485892 DOI: 10.1002/hep4.1708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Systematic discontinuation of long-term treatment with nucleos(t)ide analogues (NAs) is one strategy to increase functional cure rates in patients with chronic hepatitis B e antigen (HBeAg)-negative hepatitis B. Currently, available study results are heterogeneous; however, long-term hepatitis B surface antigen (HBsAg) loss rates of up to 20% have been reported in prospective trials. This review proposes criteria that can be used when considering NA discontinuation in patients with chronic hepatitis B virus (HBV). Discontinuing NA treatment frequently results in a virologic and biochemical relapse that runs through different phases: the lag phase, reactivation phase, and consolidation phase. The HBV-DNA flares observed during the reactivation phase are often transient and most likely represent a trigger for inducing a long-term immune control by specific CD8+ T cells, and therefore do not need immediate interventions but close follow-up evaluation. Low HBsAg levels at the time of treatment cessation predict a positive long-term response to NA discontinuation associated with a higher likelihood of HBsAg clearance. Other host and viral biomarkers are currently under evaluation that may prove to be helpful to further characterize the population that may benefit most from the finite NA treatment concept. Potential harmful biochemical flares during the reactivation phase need to be identified early and can be effectively terminated by reintroducing NA treatment. Hepatic decompensation represents a risk to patients with cirrhosis undergoing NA discontinuation. Therefore, the finite NA approach should only be considered after excluding advanced fibrosis and cirrhosis and if a close follow-up of the patient and supervision by an experienced physician can be guaranteed. Conclusion: For selected patients, NA discontinuation has become a powerful tool to achieve control over HBeAg-negative HBV infections. Its significant effect represents a challenge to novel treatment approaches, but it may also serve as their enhancer.
Collapse
Affiliation(s)
- Florian van Bömmel
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzigGermany
| | | |
Collapse
|
40
|
Ariafar A, Habibagahi M, Jaberipour M, Khezri A, Hadi Khezri M, Bozorgi H, Hosseini A, Razmkhah M. Upregulation of Cytotoxic T-Lymphocyte-Associated Protein 4 and Forkhead Box P3 Transcripts in Peripheral Blood of Patients with Bladder Cancer. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:339-346. [PMID: 34539008 PMCID: PMC8438340 DOI: 10.30476/ijms.2020.84462.1426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 11/19/2022]
Abstract
Background Regulatory T cells (Tregs) play a key role in the progression of tumors. These cells express forkhead box P3 (FOXP3) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which are the potential targets for cancer immunotherapy. The present study aimed to evaluate FOXP3 and CTLA4 transcripts in patients with bladder cancer (BC) compared with healthy individuals. Methods Transcripts of CTLA4 and FOXP3 genes in the peripheral blood mononuclear cells (PBMCs) of 50 patients with histologically confirmed BC and 50 healthy individuals were assessed at the Institute for Cancer Research, Shiraz University of Medical Sciences (Shiraz, Iran) during 2014-2016. RNA was extracted from PBMCs, then cDNA was synthesized and subjected to quantitative real-time PCR (qRT-PCR) using appropriate primers. Statistical analysis was performed using SPSS software (version 21.0). Results Significantly higher amounts of CTLA4 and FOXP3 gene transcripts were found in the peripheral blood of BC patients compared with healthy individuals. The expression of both genes was significantly higher in patients with non-invasive and grade I/II BC. The median of CTLA4 and FOXP3 transcript expressions was 3.74 and 5.39, respectively, in non-invasive BC patients, which was significant compared with the control group (P=0.0016 and P=0.009, respectively). The median of target gene mRNA expression in grade I/II BC patients was 2.9 for CTLA4 and 6.61 for FOXP3, which was significant compared with the controls (P=0.013 and P=0.0037, respectively). Conclusion This study highlights the functional activity of Tregs in early stages of bladder cancer and showed the importance of CTLA4 and FOXP3, when it comes to screening BC.
Collapse
Affiliation(s)
- Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Habibagahi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Jaberipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolaziz Khezri
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Khezri
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hale Bozorgi
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
Therapeutic Modification of Hypoxia. Clin Oncol (R Coll Radiol) 2021; 33:e492-e509. [PMID: 34535359 DOI: 10.1016/j.clon.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
Regions of reduced oxygenation (hypoxia) are a characteristic feature of virtually all animal and human solid tumours. Numerous preclinical studies, both in vitro and in vivo, have shown that decreasing oxygen concentration induces resistance to radiation. Importantly, hypoxia in human tumours is a negative indicator of radiotherapy outcome. Hypoxia also contributes to resistance to other cancer therapeutics, including immunotherapy, and increases malignant progression as well as cancer cell dissemination. Consequently, substantial effort has been made to detect hypoxia in human tumours and identify realistic approaches to overcome hypoxia and improve cancer therapy outcomes. Hypoxia-targeting strategies include improving oxygen availability, sensitising hypoxic cells to radiation, preferentially killing these cells, locating the hypoxic regions in tumours and increasing the radiation dose to those areas, or applying high energy transfer radiation, which is less affected by hypoxia. Despite numerous clinical studies with each of these hypoxia-modifying approaches, many of which improved both local tumour control and overall survival, hypoxic modification has not been established in routine clinical practice. Here we review the background and significance of hypoxia, how it can be imaged clinically and focus on the various hypoxia-modifying techniques that have undergone, or are currently in, clinical evaluation.
Collapse
|
42
|
Wang W, Wang X, Yang W, Zhong K, He N, Li X, Pang Y, Lu Z, Liu A, Lu X. A CTLA-4 blocking strategy based on Nanoboby in dendritic cell-stimulated cytokine-induced killer cells enhances their anti-tumor effects. BMC Cancer 2021; 21:1029. [PMID: 34525966 PMCID: PMC8444408 DOI: 10.1186/s12885-021-08732-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Cytokine-induced killer cells induced with tumor antigen-pulsed dendritic cells (DC-CIK) immunotherapy is a promising strategy for the treatment of malignant tumors. However, itsefficacy isrestricted by the immunosuppression, which is mediated by the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) pathway. In order to overcome the negative co-stimulation from these T cells,we screened a nanobody targeted for CTLA-4 (Nb36) and blocked the CTLA-4 signaling with Nb36. Methods Peripheral blood mononuclear cells (PBMCs) were collected from healthy donors to beused to induce CIK cells in vitro, after which they were co-cultured with DC cells that had received tumor antigens. In addition, wetested whether blocking CTLA-4 signaling with Nb36 could promote in vitro DC-CIK cells proliferation, pro-inflammatory cytokine production and cytotoxicity,or not. For the in vivo experiments, we constructed a subcutaneously transplanted tumor model and placed it in NOD/SCID mice to verify the anti-tumor effect of this therapy. Results After stimulation with Nb36, the DC-CIK cells presented enhanced proliferation and production of IFN-γ in vitro, which strengthened the killing effect on the tumor cells. For the in vivo experiments, it was found that Nb36-treated DC-CIK cells significantly inhibited the growth of subcutaneously transplanted livercancer tumors, as well as reduced the tumor weight and prolonged the survival of tumor-bearing NOD/SCID mice. Conclusions Ourfindings demonstrated that in response to CTLA-4 specific nanobody stimulation, DC-CIK cells exhibited a better anti-tumor effect. In fact, this Nb-based CTLA-4 blocking strategy achieved an anti-tumor efficacy close to that of monoclonal antibodies. Our findings suggest that DC-CIK cells + Nb36 have the potential totreatmalignant tumors through in vivo adoptive therapy.
Collapse
Affiliation(s)
- Wu Wang
- International Nanobody Research Center of Guangxi, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, China.,Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 570100, Hainan, China.,Department of traditional Chinese medicine, The First Affiliated Hospital of Hainan Medical College, Haikou, 570100, Hainan, China
| | - Xi Wang
- Department of Anesthesiology, Tunchang people's Hospital, Tunchang, 571600, Hainan, China
| | - Wenli Yang
- Department of Anatomy, Zunyi Medical University, Zunyi, 563006, China
| | - Kai Zhong
- Department of acupuncture and moxibustion, Hainan General Hospital, The Affiliated Hainan Hospital of Hainan Medical University, Haikou, 570100, Hainan, China
| | - Na He
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 570100, Hainan, China
| | - Xuexia Li
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 570100, Hainan, China
| | - Yanyang Pang
- Department of traditional Chinese medicine, The First Affiliated Hospital of Hainan Medical College, Haikou, 570100, Hainan, China
| | - Zi Lu
- Department of Laboratory Medicine, The second affiliated hospital of Hainan medical university, Haikou, 570311, Hainan, China
| | - Aiqun Liu
- International Nanobody Research Center of Guangxi, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, China. .,Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
43
|
Nanobodies Enhancing Cancer Visualization, Diagnosis and Therapeutics. Int J Mol Sci 2021; 22:ijms22189778. [PMID: 34575943 PMCID: PMC8472690 DOI: 10.3390/ijms22189778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/21/2023] Open
Abstract
Worldwide, cancer is a serious health concern due to the increasing rates of incidence and mortality. Conventional cancer imaging, diagnosis and treatment practices continue to substantially contribute to the fight against cancer. However, these practices do have some risks, adverse effects and limitations, which can affect patient outcomes. Although antibodies have been developed, successfully used and proven beneficial in various oncology practices, the use of antibodies also comes with certain challenges and limitations (large in size, poor tumor penetration, high immunogenicity and a long half-life). Therefore, it is vital to develop new ways to visualize, diagnose and treat cancer. Nanobodies are novel antigen-binding fragments that possess many advantageous properties (small in size, low immunogenicity and a short half-life). Thus, the use of nanobodies in cancer practices may overcome the challenges experienced with using traditional antibodies. In this review, we discuss (1) the challenges with antibody usage and the superior qualities of nanobodies; (2) the use of antibodies and nanobodies in cancer imaging, diagnosis, drug delivery and therapy (surgery, radiotherapy, chemotherapy and immunotherapy); and (3) the potential improvements in oncology practices due to the use of nanobodies as compared to antibodies.
Collapse
|
44
|
Zheng CY, Kim PS. Mathematical Model for Delayed Responses in Immune Checkpoint Blockades. Bull Math Biol 2021; 83:106. [PMID: 34477976 DOI: 10.1007/s11538-021-00933-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
We introduce a set of ordinary differential equations (ODEs) that qualitatively reproduce delayed responses observed in immune checkpoint blockade therapy (e.g. anti-CTLA-4 ipilimumab). This type of immunotherapy has been at the forefront of novel and promising cancer treatments over the past decade and was recognised by the 2018 Nobel Prize in Medicine. Our model describes the competition between effector T cells and non-effector T cells in a tumour. By calibrating a small subset of parameters that control immune checkpoint expression along with the patient's immune-system cancer readiness, our model is able to simulate either a complete absence of patient response to treatment, a quick anti-tumour T cell response (within days) or a delayed response (within months). Notably, the parameter space that generates a delayed response is thin and must be carefully calibrated, reflecting the observation that a small subset of patients experience such reactions to checkpoint blockade therapies. Finally, simulations predict that the anti-tumour T cell storm that breaks the delay is very short-lived compared to the length of time the cancer is able to stay suppressed. This suggests the tumour may subsist off an environment hostile to effector T cells; however, these cells are-at rare times-able to break through the tumour immunosuppressive defences to neutralise the tumour for a prolonged period. Our simulations aim to qualitatively describe the delayed response phenomenon without making precise fits to particular datasets, which are limited. It is our hope that our foundational model will stimulate further interest within the immunology modelling field.
Collapse
Affiliation(s)
- Collin Y Zheng
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Peter S Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| |
Collapse
|
45
|
Song Q, Zhang G, Wang B, Cao G, Li D, Wang Y, Zhang Y, Geng J, Li H, Li Y. Reinforcing the Combinational Immuno-Oncotherapy of Switching "Cold" Tumor to "Hot" by Responsive Penetrating Nanogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36824-36838. [PMID: 34314148 DOI: 10.1021/acsami.1c08201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although immuno-oncotherapy in clinic has gained great success, the immunosuppressive tumor microenvironment (TME) existing in the "cold" tumor with insufficient and exhausted lymphocytes may result in a lower-than-expected therapeutic efficiency. Therefore, a properly designed synergistic strategy that can effectively turn the "cold" tumor to "hot" should be considered to improve the therapeutic effects of immuno-oncotherapy. Herein, TME-responsive penetrating nanogels (NGs) were developed, which can improve the delivery and penetration of the co-loaded resiquimod (R848) and green tea catechin (EGCG) in tumors by a nano-sized controlled releasing system of the soluble cyclodextrin-drug inclusion complex. Consequently, the NGs effectively promoted the maturation of dendritic cells, stimulated the cytotoxic T lymphocytes (CTLs), and decreased the PD-L1 expression in tumors. The combination of NGs with the OX40 agonist (αOX40) further synergistically enhanced the activation and infiltration of CTLs into the deep tumor and inhibited the suppression effects from the regulatory T cells (Tregs). As a result, an increased ratio of active CTLs to Tregs in tumors (20.66-fold) was achieved with a 91.56% tumor suppression effect, indicating a successful switch of "cold" tumors to "hot" for an immunologically beneficial TME with significantly improved anti-tumor immune therapeutics. This strategy could be tailored to other immuno-oncotherapeutic approaches to solve the urgent efficiency concerns of the checkpoint-based treatment in clinic.
Collapse
Affiliation(s)
- Qingle Song
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoli Cao
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Yu Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Geng
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
46
|
A computational study of co-inhibitory immune complex assembly at the interface between T cells and antigen presenting cells. PLoS Comput Biol 2021; 17:e1008825. [PMID: 33684103 PMCID: PMC7971848 DOI: 10.1371/journal.pcbi.1008825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022] Open
Abstract
The activation and differentiation of T-cells are mainly directly by their co-regulatory receptors. T lymphocyte-associated protein-4 (CTLA-4) and programed cell death-1 (PD-1) are two of the most important co-regulatory receptors. Binding of PD-1 and CTLA-4 with their corresponding ligands programed cell death-ligand 1 (PD-L1) and B7 on the antigen presenting cells (APC) activates two central co-inhibitory signaling pathways to suppress T cell functions. Interestingly, recent experiments have identified a new cis-interaction between PD-L1 and B7, suggesting that a crosstalk exists between two co-inhibitory receptors and the two pairs of ligand-receptor complexes can undergo dynamic oligomerization. Inspired by these experimental evidences, we developed a coarse-grained model to characterize the assembling of an immune complex consisting of CLTA-4, B7, PD-L1 and PD-1. These four proteins and their interactions form a small network motif. The temporal dynamics and spatial pattern formation of this network was simulated by a diffusion-reaction algorithm. Our simulation method incorporates the membrane confinement of cell surface proteins and geometric arrangement of different binding interfaces between these proteins. A wide range of binding constants was tested for the interactions involved in the network. Interestingly, we show that the CTLA-4/B7 ligand-receptor complexes can first form linear oligomers, while these oligomers further align together into two-dimensional clusters. Similar phenomenon has also been observed in other systems of cell surface proteins. Our test results further indicate that both co-inhibitory signaling pathways activated by B7 and PD-L1 can be down-regulated by the new cis-interaction between these two ligands, consistent with previous experimental evidences. Finally, the simulations also suggest that the dynamic and the spatial properties of the immune complex assembly are highly determined by the energetics of molecular interactions in the network. Our study, therefore, brings new insights to the co-regulatory mechanisms of T cell activation. The activation of a T cell can be regulated by the receptors on its surface, such as CTLA-4 and PD-1. People used to think that these two receptors inhibit T cell activation through distinct pathways. However, recent experiments discovered that the ligands of these two receptors, B7 and PD-L1, can interact with each other on the same surface of antigen presenting cells. Here we utilized computational simulations to investigate functional roles of this newly discovered interaction in T cell coregulation. The specific environment of interface between T cell and antigen presenting cell has been taken into account of our model. Ligand and receptors randomly diffuse within this interface area. They further involve in different types of interactions, with each other from the same side or the opposite side of cell surface. Using this method, we found ligands and receptors can not only form complexes, but also aggregate into large-scale clusters. We also demonstrated that the engagement between B7 and PD-L1 can reduce the interactions with their corresponding receptors. This study, therefore, offers new insights to our understanding of signal regulation in T cells.
Collapse
|
47
|
Expression and Prognostic Significance of CD47-SIRPA Macrophage Checkpoint Molecules in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22052690. [PMID: 33799989 PMCID: PMC7975978 DOI: 10.3390/ijms22052690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Despite the confirmed anti-cancer effects of T-cell immune checkpoint inhibitors, in colorectal cancer (CRC) they are only effective in a small subset of patients with microsatellite-unstable tumors. Thus, therapeutics targeting other types of CRCs or tumors refractory to T-cell checkpoint inhibitors are desired. The binding of aberrantly expressed CD47 on tumor cells to signal regulatory protein-alpha (SIRPA) on macrophages allows tumor cells to evade immune destruction. Based on these observations, drugs targeting the macrophage checkpoint have been developed with the expectation of anti-cancer effects against T-cell immune checkpoint inhibitor-refractory tumors. In the present study, 269 primary CRCs were evaluated immunohistochemically for CD47, SIRPA, CD68, and CD163 expression to assess their predictive utility and the applicability of CD47-SIRPA axis-modulating drugs. Thirty-five percent of the lesions (95/269) displayed CD47 expression on the cytomembrane of CRC cells. CRCs contained various numbers of tumor-associated immune cells (TAIs) with SIRPA, CD68, or CD163 expression. The log-rank test revealed that patients with CD47-positive CRCs had significantly worse survival than CD47-negative patients. Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio (R) = 0.23), age < 70 years (HR = 0.48), and high SIRPA-positive TAI counts (HR = 0.55) as potential favorable factors. High tumor CD47 expression (HR = 1.75), lymph node metastasis (HR = 2.26), and peritoneal metastasis (HR = 5.80) were cited as potential independent risk factors. Based on our observations, CD47-SIRPA pathway-modulating therapies may be effective in patients with CRC.
Collapse
|
48
|
Nishimura CD, Pulanco MC, Cui W, Lu L, Zang X. PD-L1 and B7-1 Cis-Interaction: New Mechanisms in Immune Checkpoints and Immunotherapies. Trends Mol Med 2021; 27:207-219. [PMID: 33199209 PMCID: PMC7914151 DOI: 10.1016/j.molmed.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Immune checkpoints negatively regulate immune cell responses. Programmed cell death protein 1:programmed death ligand 1 (PD-1:PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4):B7-1 are among the most important immune checkpoint pathways, and are key targets for immunotherapies that seek to modulate the balance between stimulatory and inhibitory signals to lead to favorable therapeutic outcomes. The current dogma of these two immune checkpoint pathways has regarded them as independent with no interactions. However, the newly characterized PD-L1:B7-1 ligand-ligand cis-interaction and its ability to bind CTLA-4 and CD28, but not PD-1, suggests that these pathways have significant crosstalk. Here, we propose that the PD-L1:B7-1 cis-interaction brings novel mechanistic understanding of these pathways, new insights into mechanisms of current immunotherapies, and fresh ideas to develop better treatments in a variety of therapeutic settings.
Collapse
Affiliation(s)
- Christopher D Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Urology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
49
|
Roessner A, Lohmann C, Jechorek D. Translational cell biology of highly malignant osteosarcoma. Pathol Int 2021; 71:291-303. [PMID: 33631032 DOI: 10.1111/pin.13080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Highly malignant osteosarcoma (HMO) is the most frequent malignant bone tumor preferentially occurring in adolescents and children with a second more flat peak in patients over the age of 60. The younger patients benefit from combined neoadjuvant chemotherapy with 65-70% 5-year survival rate. In patients with metastatic HMO the 5-year survival rate is consistently poor with approximately 30%. In the last several years strategies for target therapies have been developed by using next generation sequencing (NGS) for defining targetable molecular factors. However, it has so far been challenging to establish an effective target therapy for so-called 'orphan tumors' without recognizable driver mutations, including HMO. The molecular genetic studies using NGS have shown that HMOs are genomically unstable tumors with highly complex chaotic karyotypes. Before the background of this genetic complexity more investigations should be performed in the future for defining targetable biological factors. As the prognosis could not be improved for 40 years one may expect improvements for patients only by gaining a deeper understanding of the cell and molecular biology of HMO. The cell of origin of HMO is being clarified now. The majority of studies indicate that an osteoblastic progenitor cell is probably the cell of origin of HMO and not an undifferentiated mesenchymal stem cell. This means that the established histopathological definition of HMO through verification of osteoid production by the osteoblastic cells is well justified and will probably be the cornerstone for a precise differential diagnosis of HMO also in the years to come.
Collapse
Affiliation(s)
- Albert Roessner
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Lohmann
- Department of Orthopedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Doerthe Jechorek
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
50
|
Effect of the use of Galectin-9 and blockade of TIM-3 receptor in the latent cellular reservoir of HIV-1. J Virol 2021; 95:JVI.02214-20. [PMID: 33361434 PMCID: PMC8092815 DOI: 10.1128/jvi.02214-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reactivation of latent HIV-1 is a necessary step for the purging of the viral reservoir, although it does not seem to be enough. The stimulation of HIV-1 specific cytotoxic T lymphocytes (CTL) may be just as essential for this purpose. In this study, we aimed to show the effect of galectin-9 (Gal-9), known to revert HIV-1 latency, in combination with the blockade of TIM-3, a natural receptor for Gal-9 and an exhaustion marker. We confirmed the ability of Gal-9 to reactivate latent HIV-1 in Jurkat-LAT-GFP cells, as well as in an IL-7-based cellular model. This reactivation was not mediated via the TIM-3 receptor, but rather by the recognition of the Gal-9 of a specific oligosaccharide pattern of resting memory CD4+ T cells' surfaces. The potency of Gal-9 in inducing transcription of latent HIV-1 was equal to or greater than that of other latency-reversing agents (LRA). Furthermore, the combination of Gal-9 with other LRA did not show synergistic effects in the reactivation of the latent virus. To evaluate the impact of TIM-3 inhibition on the CTL-response, different co-culture experiments with CD4+T, CD8+ T, and NK cells were performed. Our data showed that blocking TIM-3 was associated with control of viral replication in both in vitro and ex vivo models in cells from PLWH on antiretroviral therapy. A joint strategy of the use of Gal-9 to reactivate latent HIV-1 and the inhibition of TIM-3 to enhance the HIV-1 CTL specific-response was associated with control of the replication of the virus that was being reactivated, thus potentially contributing to the elimination of the viral reservoir. Our results place this strategy as a promising approach to be tested in future studies. Reactivation of latent-HIV-1 by Gal-9 and reinvigoration of CD8+ T cells by TIM-3 blockade could be used separately or in combination.ImportanceHIV-1 infection is a health problem of enormous importance that still causes significant mortality. Antiretroviral treatment (ART) has demonstrated efficacy in the control of HIV-1 replication, decreasing the morbidity and mortality of the infection, but it cannot eradicate the virus. In our work, we tested a protein, galectin-9 (Gal-9), an HIV-1 latency-reversing agent, using an in vitro cellular model of latency and in cells from people living with HIV-1 (PLWH) on antiretroviral therapy. Our results confirmed the potential role of Gal-9 as a molecule with a potent HIV-1 reactivation capacity. More importantly, using a monoclonal antibody against T cell immunoglobulin and the mucin domain-containing molecule 3 (TIM-3) receptor we were able to enhance the HIV-1 cytotoxic T lymphocytes (CTL) specific response to eliminate the CD4+ T cells in which the virus had been reactivated. When used together, i.e., Gal-9 and TIM-3 blockade, control of the replication of HIV-1 was observed, suggesting a decrease in the cellular reservoir.
Collapse
|