1
|
Deng Z, Tian Y, Wang J, Xu Y, Liu Z, Xiao Z, Wang Z, Hu M, Liu R, Yang P. Enhanced Antitumor Immunity Through T Cell Activation with Optimized Tandem Double-OX40L mRNAs. Int J Nanomedicine 2025; 20:3607-3621. [PMID: 40125432 PMCID: PMC11930255 DOI: 10.2147/ijn.s479434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 03/25/2025] Open
Abstract
Purpose The tumor immune microenvironment (TIME) is often dysfunctional and complex, contributing to tumor metastasis and drug resistance. This study investigates the use of mRNA-based cancer agents as promising tools to combat and reverse refractory TIME conditions. Methods We optimized and engineered an mRNA cancer agent encoding double tandemly repeated sequences of the T cell costimulator Oxford 40 ligand (diOX40L). The diOX40L mRNAs were encapsulated into lipid nanoparticles (LNPs) for effective delivery. The research explored its safety and antitumor effects through a series of in vivo and in vivo experiments. Results Our results demonstrate that diOX40L mRNAs efficiently express increased levels of OX40L proteins. The optimized diOX40L mRNA cancer agent generated potent immune costimulatory signals within the TIME, leading to decreased tumor growth and improved survival compared to the original sequence agent. OX40L expression in subcutaneous tumors promoted CD4+ and CD8+ T cell activation, resulting in heightened IFN-γ and IL-2 secretion and robust immune responses. Combination therapy involving PD-1 antibodies and diOX40L substantially enhanced antitumor efficacy, with increased infiltration of activated CD4+ and CD8+ T cells. Discussion In conclusion, our findings highlight the therapeutic potential of the optimized diOX40L mRNA cancer agent in cancer treatment and its potential as an innovative alternative to protein-based therapies. The study underscores the significance of mRNA-based agents in modulating the immune microenvironment and enhancing antitumor responses.
Collapse
Affiliation(s)
- Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yuying Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jing Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yongru Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zherui Liu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Peking University 302 Clinical Medical School, Peking University, Beijing, People’s Republic of China
| | - Zhaohui Xiao
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhaohai Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Minggen Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Sun L, Li C, Gao T, Liu Z, Hou Y, Han W. Combining immune checkpoints with TNFSF agonists: a new horizon for cancer and autoimmune therapies. Front Immunol 2025; 16:1557176. [PMID: 40165967 PMCID: PMC11955470 DOI: 10.3389/fimmu.2025.1557176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Affiliation(s)
- Lele Sun
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Cuiping Li
- Health Management Center, Zibo Central Hospital, Zibo, Shandong, China
| | - Tingting Gao
- Department of Hepatobiliary Surgery, Zibo Central Hospital, Zibo, Shandong, China
| | - Zhe Liu
- Department of Pharmacy, Zibo First Hospital, Zibo, Shandong, China
| | - Yanli Hou
- Traumatic Orthopaedic Ward, Zibo Central Hospital, Zibo, Shandong, China
| | - Wei Han
- Hematology Department, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
3
|
Sato A, Nagai H, Suzuki A, Ito A, Matsuyama S, Shibui N, Morita M, Hikosaka-Kuniishi M, Ishii N, So T. Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes. Front Immunol 2025; 15:1473815. [PMID: 39867912 PMCID: PMC11757143 DOI: 10.3389/fimmu.2024.1473815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survival-processes essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge. In this study, we successfully engineered soluble OX40L-fusion proteins capable of robustly activating OX40 on T cells. This was achieved by incorporating functional multimerization domains into the TNF homology domain of OX40L. These OX40L proteins bound to OX40, subsequently activated NF-κB signaling, and induced cytokine production by T cells in vitro. In vivo, mice treated with one of the OX40L-fusion proteins-comprising a single-chain OX40L trimer linked to the C-terminus of the human IgG1 Fc domain, forming a dimer of trimers-exhibited significantly enhanced clonal expansion of antigen-specific CD4+ T cells during the primary phase of the immune response. A comparable antibody-fusion single-chain TNF protein incorporating 4-1BBL, CD70 (CD27L), or GITRL in place of OX40L elicited similar in vivo T cell responses. Thus, we propose that optimizing the multimerization of OX40L proteins through innovative design strategies may facilitate the development of more effective agonists for targeted immunotherapies.
Collapse
Affiliation(s)
- Ayaka Sato
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hodaka Nagai
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ayano Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Aya Ito
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shimpei Matsuyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mari Hikosaka-Kuniishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Zhang J, Zhou L, Sun X, Lin Y, Yuan J, Yang C, Liao C. SHR-1806, a robust OX40 agonist to promote T cell-mediated antitumor immunity. Cancer Biol Ther 2024; 25:2426305. [PMID: 39543823 PMCID: PMC11572088 DOI: 10.1080/15384047.2024.2426305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8+ T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities in vitro. In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.
Collapse
Affiliation(s)
- Jun Zhang
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Lei Zhou
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Xing Sun
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Yuan Lin
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Jimin Yuan
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Changyong Yang
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Cheng Liao
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS, Uchendu IK, Pascal AM, Nikitina NM, Rusanov AS, Sanikovich VD, Pirogova YN, Boroda A, Moiseeva AV, Sekacheva MI. Innovative Therapies Targeting Drug-Resistant Biomarkers in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC). Int J Mol Sci 2024; 26:265. [PMID: 39796121 PMCID: PMC11720203 DOI: 10.3390/ijms26010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
A thorough study of Clear Cell Renal Cell Carcinoma (ccRCC) shows that combining tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICI) shows promising results in addressing the tumor-promoting influences of abnormal immunological and molecular biomarkers in metastatic Clear Cell Renal Cell Carcinoma (ccRCC). These abnormal biomarkers enhance drug resistance, support tumor growth, and trigger cancer-related genes. Ongoing clinical trials are testing new treatment options that appear more effective than earlier ones. However, more research is needed to confirm their long-term safety use and potential side effects. This study highlights vital molecular and immunological biomarkers associated with drug resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Furthermore, this study identifies a number of promising drug candidates and biomarkers that serve as significant contributors to the enhancement of the overall survival of ccRCC patients. Consequently, this article offers pertinent insights on both recently completed and ongoing clinical trials, recommending further toxicity study for the prolonged use of this treatment strategy for patients with metastatic ccRCC, while equipping researchers with invaluable information for the progression of current treatment strategies.
Collapse
Affiliation(s)
- Moses Owoicho Abah
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Department of Cancer Bioinformatics and Molecular Biology, Royal Society of Clinical and Academic Researchers (ROSCAR) International, Abuja 900104, Nigeria
| | - Deborah Oganya Ogenyi
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Angelina V. Zhilenkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Freddy Elad Essogmo
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yvan Sinclair Ngaha Tchawe
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Ikenna Kingsley Uchendu
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Akaye Madu Pascal
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Natalia M. Nikitina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander S. Rusanov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Varvara D. Sanikovich
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yuliya N. Pirogova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander Boroda
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Aleksandra V. Moiseeva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Marina I. Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| |
Collapse
|
6
|
Willoughby JE, Dou L, Bhattacharya S, Jackson H, Seestaller-Wehr L, Kilian D, Bover L, Voo KS, Cox KL, Murray T, John M, Shi H, Bojczuk P, Jing J, Niederer H, Shepherd AJ, Hook L, Hopley S, Inzhelevskaya T, Penfold CA, Mockridge CI, English V, Brett SJ, Srinivasan R, Hopson C, Smothers J, Hoos A, Paul E, Martin SL, Morley PJ, Yanamandra N, Cragg MS. Impact of isotype on the mechanism of action of agonist anti-OX40 antibodies in cancer: implications for therapeutic combinations. J Immunother Cancer 2024; 12:e008677. [PMID: 38964788 PMCID: PMC11227834 DOI: 10.1136/jitc-2023-008677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND OX40 has been widely studied as a target for immunotherapy with agonist antibodies taken forward into clinical trials for cancer where they are yet to show substantial efficacy. Here, we investigated potential mechanisms of action of anti-mouse (m) OX40 and anti-human (h) OX40 antibodies, including a clinically relevant monoclonal antibody (mAb) (GSK3174998) and evaluated how isotype can alter those mechanisms with the aim to develop improved antibodies for use in rational combination treatments for cancer. METHODS Anti-mOX40 and anti-hOX40 mAbs were evaluated in a number of in vivo models, including an OT-I adoptive transfer immunization model in hOX40 knock-in (KI) mice and syngeneic tumor models. The impact of FcγR engagement was evaluated in hOX40 KI mice deficient for Fc gamma receptors (FcγR). Additionally, combination studies using anti-mouse programmed cell death protein-1 (mPD-1) were assessed. In vitro experiments using peripheral blood mononuclear cells (PBMCs) examining possible anti-hOX40 mAb mechanisms of action were also performed. RESULTS Isotype variants of the clinically relevant mAb GSK3174998 showed immunomodulatory effects that differed in mechanism; mIgG1 mediated direct T-cell agonism while mIgG2a acted indirectly, likely through depletion of regulatory T cells (Tregs) via activating FcγRs. In both the OT-I and EG.7-OVA models, hIgG1 was the most effective human isotype, capable of acting both directly and through Treg depletion. The anti-hOX40 hIgG1 synergized with anti-mPD-1 to improve therapeutic outcomes in the EG.7-OVA model. Finally, in vitro assays with human peripheral blood mononuclear cells (hPBMCs), anti-hOX40 hIgG1 also showed the potential for T-cell stimulation and Treg depletion. CONCLUSIONS These findings underline the importance of understanding the role of isotype in the mechanism of action of therapeutic mAbs. As an hIgG1, the anti-hOX40 mAb can elicit multiple mechanisms of action that could aid or hinder therapeutic outcomes, dependent on the microenvironment. This should be considered when designing potential combinatorial partners and their FcγR requirements to achieve maximal benefit and improvement of patient outcomes.
Collapse
Affiliation(s)
- Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lang Dou
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Heather Jackson
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laura Seestaller-Wehr
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David Kilian
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laura Bover
- Immunology Department/ Genomics Medicine Department, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kui S Voo
- ORBIT, Institute of Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tom Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mel John
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hong Shi
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Paul Bojczuk
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Junping Jing
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Heather Niederer
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Andrew J Shepherd
- Protein, Cellular and Structural Sciences, GlaxoSmithKline Research & Development Limited, Gunnels Wood Road, Stevenage, UK
| | - Laura Hook
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Stephanie Hopley
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Chris A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Vikki English
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sara J Brett
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Roopa Srinivasan
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christopher Hopson
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - James Smothers
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Axel Hoos
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Elaine Paul
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Stephen L Martin
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Peter J Morley
- Immunology Research Unit, GlaxoSmithKline Research & Development Limited, Gunnels Wood Road, Stevenage, UK
| | - Niranjan Yanamandra
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Du L, Zhang N, Wang B, Cheng W, Wen J. Establishment and validation of a novel disulfidptosis-related immune checkpoint gene signature in clear cell renal cell carcinoma. Discov Oncol 2024; 15:236. [PMID: 38904744 PMCID: PMC11192710 DOI: 10.1007/s12672-024-01105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal tumors and is associated with a unfavorable prognosis. Disulfidptosis is a recently identified form of cell death mediated by disulfide bonds. Numerous studies have highlighted the significance of immune checkpoint genes (ICGs) in ccRCC. Nevertheless, the involvement of disulfidptosis-related immune checkpoint genes (DRICGs) in ccRCC remains poorly understood. METHODS The mRNA expression profiles and clinicopathological data of ccRCC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. The associations between disulfidptosis-related genes (DRGs) and immune checkpoint genes (ICGs) were assessed to identify DRICGs. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were conducted to construct a risk signature. RESULTS A total of 39 differentially expressed immune-related candidate genes were identified. A prognostic signature was constructed utilizing nine DRICGs (CD276, CD80, CD86, HLA-E, LAG3, PDCD1LG2, PVR, TIGIT, and TNFRSF4) and validated using GEO data. The risk model functioned as an independent prognostic indicator for ccRCC, while the associated nomogram provided a reliable scoring system for ccRCC. Gene set enrichment analysis indicated enrichment of phospholipase D, antigen processing and presentation, and ascorbate and aldarate metabolism-related signaling pathways in the high-risk group. Furthermore, the DRICGs exhibited correlations with the infiltration of various immune cells. It is noteworthy that patients with ccRCC categorized into distinct risk groups based on this model displayed varying sensitivities to potential therapeutic agents. CONCLUSIONS The novel DRICG-based risk signature is a reliable indicator for the prognosis of ccRCC patients. Moreover, it also aids in drug selection and correlates with the tumour immune microenvironment in ccRCC.
Collapse
Affiliation(s)
- Lihuan Du
- Department of Urology, The Second Affiliated Hospital of Zhejiang University, NO. 88 Jiefang Road, Hangzhou, 310009, China.
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital of Zhejiang University, NO. 88 Jiefang Road, Hangzhou, 310009, China
| | - Bohan Wang
- Department of Urology, The Second Affiliated Hospital of Zhejiang University, NO. 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei Cheng
- Department of Urology, Traditional Chinese Medicine Hospital of Longyou, Longyou, 324400, Quzhou, China
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital of Zhejiang University, NO. 88 Jiefang Road, Hangzhou, 310009, China
| |
Collapse
|
8
|
Ghanta PP, Dang CM, Nelson CM, Feaster DJ, Forrest DW, Tookes H, Pahwa RN, Pallikkuth S, Pahwa SG. Soluble Plasma Proteins of Tumor Necrosis Factor and Immunoglobulin Superfamilies Reveal New Insights into Immune Regulation in People with HIV and Opioid Use Disorder. Vaccines (Basel) 2024; 12:520. [PMID: 38793771 PMCID: PMC11125794 DOI: 10.3390/vaccines12050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
People with HIV (PWH) frequently suffer from Opioid (OP) Use Disorder (OUD). In an investigation of the impact of OUD on underlying immune dysfunction in PWH, we previously reported that OP use exacerbates inflammation in virally controlled PWH followed in the Infectious Diseases Elimination Act (IDEA) Syringe Services Program (SSP). Unexpectedly, Flu vaccination-induced antibody responses in groups with OUD were superior to PWH without OUD. Here, we investigated the profile of 48 plasma biomarkers comprised of TNF and Ig superfamily (SF) molecules known to impact interactions between T and B cells in 209 participants divided into four groups: (1) HIV+OP+, (2) HIV-OP+, (3) HIV+OP-, and (4) HIV-OP-. The differential expression of the top eight molecules ranked by median values in individual Groups 1-3 in comparison to Group 4 was highly significant. Both OP+ groups 1 and 2 had higher co-stimulatory TNF SF molecules, including 4-1BB, OX-40, CD40, CD30, and 4-1BBL, which were found to positively correlate with Flu Ab titers. In contrast, HIV+OP- exhibited a profile dominant in Ig SF molecules, including PDL-2, CTLA-4, and Perforin, with PDL-2 showing a negative correlation with Flu vaccine titers. These findings are relevant to vaccine development in the fields of HIV and OUD.
Collapse
Affiliation(s)
- Priya P. Ghanta
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.P.G.); (D.W.F.); (H.T.)
| | - Christine M. Dang
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| | - C. Mindy Nelson
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.N.); (D.J.F.)
| | - Daniel J. Feaster
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.N.); (D.J.F.)
| | - David W. Forrest
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.P.G.); (D.W.F.); (H.T.)
| | - Hansel Tookes
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.P.G.); (D.W.F.); (H.T.)
| | - Rajendra N. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.M.D.); (R.N.P.); (S.P.)
| |
Collapse
|
9
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
10
|
Chandrasekar AP, Maynes M, Badley AD. Dynamic modulation of the non-canonical NF-κB signaling pathway for HIV shock and kill. Front Cell Infect Microbiol 2024; 14:1354502. [PMID: 38505285 PMCID: PMC10949532 DOI: 10.3389/fcimb.2024.1354502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
HIV cure still remains an elusive target. The "Shock and Kill" strategy which aims to reactivate HIV from latently infected cells and subsequently kill them through virally induced apoptosis or immune mediated clearance, is the subject of widespread investigation. NF-κB is a ubiquitous transcription factor which serves as a point of confluence for a number of intracellular signaling pathways and is also a crucial regulator of HIV transcription. Due to its relatively lower side effect profile and proven role in HIV transcription, the non-canonical NF-κB pathway has emerged as an attractive target for HIV reactivation, as a first step towards eradication. A comprehensive review examining this pathway in the setting of HIV and its potential utility to cure efforts is currently lacking. This review aims to summarize non-canonical NF-κB signaling and the importance of this pathway in HIV shock-and-kill efforts.
Collapse
Affiliation(s)
- Aswath P. Chandrasekar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN, United States
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
| | - Mark Maynes
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Knisely A, Ahmed J, Stephen B, Piha-Paul SA, Karp D, Zarifa A, Fu S, Hong DS, Ahnert JR, Yap TA, Tsimberidou AM, Alshawa A, Dumbrava EE, Yang Y, Song J, Meric-Bernstam F, Jazaeri AA, Naing A. Phase 1/2 trial of avelumab combined with utomilumab (4-1BB agonist), PF-04518600 (OX40 agonist), or radiotherapy in patients with advanced gynecologic malignancies. Cancer 2024; 130:400-409. [PMID: 37864520 PMCID: PMC10841432 DOI: 10.1002/cncr.35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Immune checkpoint blockade has shown mixed results in advanced/recurrent gynecologic malignancies. Efficacy may be improved through costimulation with OX40 and 4-1BB agonists. The authors sought to evaluate the safety and efficacy of avelumab combined with utomilumab (a 4-1BB agonist), PF-04518600 (an OX40 agonist), and radiotherapy in patients with recurrent gynecologic malignancies. METHODS The primary end point in this six-arm, phase 1/2 trial was safety of the combination regimens. Secondary end points included the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors and immune-related Response Evaluation Criteria in Solid Tumors, the disease control rate (DCR), the duration of response, progression-free survival, and overall survival. RESULTS Forty patients were included (35% with cervical cancer, 30% with endometrial cancer, and 35% with ovarian cancer). Most patients (n = 33; 83%) were enrolled in arms A-C (no radiation). Among 35 patients who were evaluable for efficacy, the ORR was 2.9%, and the DCR was 37.1%, with a median duration of stable disease of 5.4 months (interquartile range, 4.1-7.3 months). Patients with cervical cancer in arm A (avelumab and utomilumab; n = 9 evaluable patients) achieved an ORR of 11% and a DCR of 78%. The median progression-free survival was 2.1 months (95% CI, 1.8-3.5 months), and overall survival was 9.4 months (95% CI, 5.6-11.9 months). No dose-limiting toxicities or grade 3-5 immune-related adverse events were observed. CONCLUSIONS The findings from this trial highlight that, in heavily pretreated patients with gynecologic cancer, even multidrug regimens targeting multiple immunologic pathways, although safe, did not produce significant responses. A DCR of 78% in patients with cervical cancer who received avelumab and utomilumab indicates that further research on this combination in select patients may be warranted.
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jibran Ahmed
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdulrazzak Zarifa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Sanghyun Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anas Alshawa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E. Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yali Yang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Gui L, Wang Z, Lou W, Yekehfallah V, Basiri M, Gao WQ, Wang Y, Ma B. Comparative evaluation of antitumor effects of TNF superfamily costimulatory ligands delivered by mesenchymal stem cells. Int Immunopharmacol 2024; 126:111249. [PMID: 37995568 DOI: 10.1016/j.intimp.2023.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Stimulation of costimulatory receptors serves as an alternative immunotherapeutic strategy other than checkpoint inhibition. However, systemic administration of the agonistic antibodies is associated with severe toxicities, which is one of the major obstacles for their clinical application. This study aimed to develop a mesenchymal stem cell (MSC)-based system for tumor-targeted delivery of TNF superfamily ligands and assess their potential in enhancing antitumor immunity. Here we established an MSC-based system for tumor-targeted delivery of TNF superfamily ligands, including TNFSF4, 9 and 18. The TNFSF receptors (TNFRSFs) were evaluated in mouse models and patient samples for lung and colorectal cancers. TNFRSFs were all expressed at various levels on tumor-infiltrated lymphocytes, with TNFRSF18 being the most prevalent receptor. Human umbilical cord-derived MSCs expressing these costimulatory ligands (MSC-TNFSFs) effectively activated lymphocytes in vitro and elicited antitumor immunity in mice. TNFSF4 showed the least antitumor efficacy in both LLC1 and CT26 tumor models. MSC-TNFSF9 showed the most potent tumor-inhibiting effect in the LLC1 tumor model, while MSCs expressing TNFSF18 in combination with CXCL9 most significantly repressed CT26 tumor growth. Overall, TNFSF9 and TNFSF18 exhibited stronger lymphocyte-stimulating and antitumor activities than TNFSF4. Our study provides evidence that antitumor effects of agonism of different costimulatory receptors may vary in different tumor types and presents a promising approach for targeted delivery of TNF superfamily costimulatory ligands to avoid the systemic toxicities and side effects associated with immune agonist antibodies.
Collapse
Affiliation(s)
- Liming Gui
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixue Wang
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weihua Lou
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Vahid Yekehfallah
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Current address: Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Wei-Qiang Gao
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Ma
- Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Mahasongkram K, Glab-ampai K, Kaewchim K, Saenlom T, Chulanetra M, Sookrung N, Nathalang O, Chaicumpa W. Agonistic Bivalent Human scFvs-Fcγ Fusion Antibodies to OX40 Ectodomain Enhance T Cell Activities against Cancer. Vaccines (Basel) 2023; 11:1826. [PMID: 38140230 PMCID: PMC10747724 DOI: 10.3390/vaccines11121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.
Collapse
Affiliation(s)
- Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kantaphon Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Oytip Nathalang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| |
Collapse
|
14
|
Jiang B, Zhang T, Deng M, Jin W, Hong Y, Chen X, Chen X, Wang J, Hou H, Gao Y, Gong W, Wang X, Li H, Zhou X, Feng Y, Zhang B, Jiang B, Lu X, Zhang L, Li Y, Song W, Sun H, Wang Z, Song X, Shen Z, Liu X, Li K, Wang L, Liu Y. BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models. Front Med 2023; 17:1170-1185. [PMID: 37747585 DOI: 10.1007/s11684-023-0996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/06/2023] [Indexed: 09/26/2023]
Abstract
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Collapse
Affiliation(s)
- Beibei Jiang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Tong Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Minjuan Deng
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Wei Jin
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yuan Hong
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaotong Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Jing Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hongjia Hou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yajuan Gao
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Wenfeng Gong
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xing Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Haiying Li
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaosui Zhou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yingcai Feng
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Bo Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Bin Jiang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xueping Lu
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Lijie Zhang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Yang Li
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Weiwei Song
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Hanzi Sun
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Zuobai Wang
- Department of Clinic Development, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xiaomin Song
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Zhirong Shen
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Xuesong Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Kang Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China
| | - Ye Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, 102206, China.
| |
Collapse
|
15
|
Sun Z, Chu Y, Xiao J, Yang Y, Meng F, Wang X, Dong Y, Zhu J, Wu Y, Qin L, Ke Y, Liu B, Liu Q. Enhanced systemic tumor suppression by in situ vaccine combining radiation and OX40 agonist with CpG therapy. J Transl Med 2023; 21:619. [PMID: 37700338 PMCID: PMC10498626 DOI: 10.1186/s12967-023-04504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND In situ tumor vaccine has been gradually becoming a hot research field for its advantage of achieving personalized tumor therapy without prior antigen identification. Various in situ tumor vaccine regimens have been reported to exert considerable antitumor efficacy in preclinical and clinical studies. However, the design of in situ tumor vaccines still needs further optimization and the underlying immune mechanism also waits for deeper investigation. METHODS A novel triple in situ vaccine strategy that combining local radiation with intratumoral injection of TLR9 agonist CpG and OX40 agonist was established in this sturdy. Local and abscopal antitumor efficacy as well as survival benefit were evaluated in the bilateral tumors and pulmonary metastasis model of B16F10 melanoma. In situ vaccine-induced immune responses and immune-associated variation in tumor environment were further investigated using multiparameter flow cytometry and RNA sequencing. Base on the analysis, the RT + CpG + αOX40 triple in situ vaccine was combined with checkpoint blockade therapy to explore the potential synergistic antitumor efficacy. RESULTS Enhanced tumor suppression was observed with minimal toxicity in both treated and untreated abscopal tumors after receiving RT + CpG + αOX40 triple vaccine. The introduction of local radiation and OX40 agonist benefit more to the inhibition of local and abscopal lesions respectively, which might be partially attributed to the increase of effector memory T cells in the tumor microenvironment. Further analysis implied that the triple in situ vaccine did not only activate the microenvironment of treated tumors, with the upregulation of multiple immune-associated pathways, but also enhanced systemic antitumor responses, thus achieved superior systemic tumor control and survival benefit. Moreover, the triple in situ vaccine synergized with checkpoint blockade therapy, and significantly improved the therapeutic effect of anti-programmed cell death protein (PD)-1 antibody. CONCLUSION This triple combining in situ vaccine induced intensive antitumor responses, mediated effective systemic tumor control and survival benefit, and displayed impressive synergistic antitumor effect with checkpoint blockade therapy. These data preliminary confirmed the efficacy, feasibility and safety of the triple combining in situ vaccine, suggesting its great application potential as both monotherapy and a part of combined immunotherapeutic regimens in clinical scenario.
Collapse
Affiliation(s)
- Zhichen Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jie Xiao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yueling Yang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xinyue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yanbing Dong
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yirong Wu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lanqun Qin
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaohua Ke
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Villaruz LC, Blumenschein GR, Otterson GA, Leal TA. Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death-ligand 1 inhibitors in non-small cell lung cancer. Cancer 2023; 129:1319-1350. [PMID: 36848319 PMCID: PMC11234508 DOI: 10.1002/cncr.34683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 03/01/2023]
Abstract
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Collapse
Affiliation(s)
- Liza C Villaruz
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A Otterson
- The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ticiana A Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Parra ER, Zhang J, Jiang M, Tamegnon A, Pandurengan RK, Behrens C, Solis L, Haymaker C, Heymach JV, Moran C, Lee JJ, Gibbons D, Wistuba II. Immune cellular patterns of distribution affect outcomes of patients with non-small cell lung cancer. Nat Commun 2023; 14:2364. [PMID: 37185575 PMCID: PMC10130161 DOI: 10.1038/s41467-023-37905-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Studying the cellular geographic distribution in non-small cell lung cancer is essential to understand the roles of cell populations in this type of tumor. In this study, we characterize the spatial cellular distribution of immune cell populations using 23 makers placed in five multiplex immunofluorescence panels and their associations with clinicopathologic variables and outcomes. Our results demonstrate two cellular distribution patterns-an unmixed pattern mostly related to immunoprotective cells and a mixed pattern mostly related to immunosuppressive cells. Distance analysis shows that T-cells expressing immune checkpoints are closer to malignant cells than other cells. Combining the cellular distribution patterns with cellular distances, we can identify four groups related to inflamed and not-inflamed tumors. Cellular distribution patterns and distance are associated with survival in univariate and multivariable analyses. Spatial distribution is a tool to better understand the tumor microenvironment, predict outcomes, and may can help select therapeutic interventions.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jiexin Zhang
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei Jiang
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Auriole Tamegnon
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Carmen Behrens
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Solis
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara Haymaker
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Victor Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Moran
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack J Lee
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Ivan Wistuba
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Sadeghirad H, Liu N, Monkman J, Ma N, Cheikh BB, Jhaveri N, Tan CW, Warkiani ME, Adams MN, Nguyen Q, Ladwa R, Braubach O, O’Byrne K, Davis M, Hughes BGM, Kulasinghe A. Compartmentalized spatial profiling of the tumor microenvironment in head and neck squamous cell carcinoma identifies immune checkpoint molecules and tumor necrosis factor receptor superfamily members as biomarkers of response to immunotherapy. Front Immunol 2023; 14:1135489. [PMID: 37153589 PMCID: PMC10154785 DOI: 10.3389/fimmu.2023.1135489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Mucosal head and neck squamous cell carcinoma (HNSCC) are the seventh most common cancer, with approximately 50% of patients living beyond 5 years. Immune checkpoint inhibitors (ICIs) have shown promising results in patients with recurrent or metastatic (R/M) disease, however, only a subset of patients benefit from immunotherapy. Studies have implicated the tumor microenvironment (TME) of HNSCC as a major factor in therapy response, highlighting the need to better understand the TME, particularly by spatially resolved means to determine cellular and molecular components. Here, we employed targeted spatial profiling of proteins on a cohort of pre-treatment tissues from patients with R/M disease to identify novel biomarkers of response within the tumor and stromal margins. By grouping patient outcome categories into response or non-response, we show that immune checkpoint molecules, including PD-L1, B7-H3, and VISTA, were differentially expressed. Patient responders possessed significantly higher tumor expression of PD-L1 and B7-H3, but lower expression of VISTA. Analysis of response subgroups by Response Evaluation Criteria in Solid Tumors (RECIST) criteria indicated that tumor necrosis factor receptor (TNFR) superfamily members including OX40L, CD27, 4-1BB, CD40, and CD95/Fas, were associated with immunotherapy outcome. OX40L expression in tumor regions was higher in patient-responders than those with progressive disease (PD), while other TNFR members, CD27 and CD95/Fas were lower expressed in patients with a partial response (PR) compared to those with PD. Furthermore, we found that high 4-1BB expression in the tumor compartment, but not in the stroma, was associated with better overall survival (OS) (HR= 0.28, p-adjusted= 0.040). Moreover, high CD40 expression in tumor regions (HR= 0.27, p-adjusted= 0.035), and high CD27 expression in the stroma (HR= 0.2, p-adjusted=0.032) were associated with better survival outcomes. Taken together, this study supports the role of immune checkpoint molecules and implicates the TNFR superfamily as key players in immunotherapy response in our cohort of HNSCC. Validation of these findings in a prospective study is required to determine the robustness of these tissue signatures.
Collapse
|
20
|
Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H, Karimi-Shahri M. The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. J Cell Biochem 2023; 124:477-494. [PMID: 36966454 DOI: 10.1002/jcb.30402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The second leading cause of cancer death in women worldwide is breast cancer (BC), and despite significant advances in BC therapies, a significant proportion of patients develop metastasis and disease recurrence. Currently used treatments, like radiotherapy, chemotherapy, and hormone replacement therapy, result in poor responses and high recurrence rates. Alternative therapies are therefore needed for this type of cancer. Cancer patients may benefit from immunotherapy, a novel treatment strategy in cancer treatment. Even though immunotherapy has been successful in many cases, some patients do not respond to the treatment or those who do respond relapse or progress. The purpose of this review is to discuss several different immunotherapy approaches approved for the treatment of BC, as well as different strategies for immunotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Toktam Saadatmand
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
21
|
Gilman KE, Matiatos AP, Cracchiolo MJ, Moon AG, Davini DW, Simpson RJ, Katsanis E. Multiagent Intratumoral Immunotherapy Can Be Effective in A20 Lymphoma Clearance and Generation of Systemic T Cell Immunity. Cancers (Basel) 2023; 15:cancers15071951. [PMID: 37046612 PMCID: PMC10093573 DOI: 10.3390/cancers15071951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The use of immunotherapies has shown promise against selective human cancers. Identifying novel combinations of innate and adaptive immune cell-activating agents that can work synergistically to suppress tumor growth and provide additional protection against resistance or recurrence is critical. The A20 murine lymphoma model was used to evaluate the effect of various combination immunotherapies administered intratumorally. We show that single-modality treatment with Poly(I:C) or GM-CSF-secreting allogeneic cells only modestly controls tumor growth, whereas when given together there is an improved benefit, with 50% of animals clearing tumors and surviving long-term. Neither heat nor irradiation of GM-CSF-secreting cells enhanced the response over use of live cells. The use of a TIM-3 inhibitory antibody and an OX40 agonist in combination with Poly(I:C) allowed for improved tumor control, with 90% of animals clearing tumors with or without a combination of GM-CSF-secreting cells. Across all treatment groups, mice rejecting their primary A20 tumors were immune to subsequent challenge with A20, and this longstanding immunity was T-cell dependent. The results herein support the use of combinations of innate and adaptive immune activating agents for immunotherapy against lymphoma and should be investigated in other cancer types.
Collapse
Affiliation(s)
- Kristy E Gilman
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew P Matiatos
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | | | - Amanda G Moon
- Department of Cell and Molecular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Dan W Davini
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Richard J Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Pathology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Wang R, Baxi V, Li Z, Locke D, Hedvat C, Sun Y, Walsh AM, Shao X, Basavanhally T, Greenawalt DM, Patah P, Novosiadly R. Pharmacodynamic activity of BMS-986156, a glucocorticoid-induced TNF receptor-related protein agonist, alone or in combination with nivolumab in patients with advanced solid tumors. ESMO Open 2023; 8:100784. [PMID: 36863094 PMCID: PMC10163007 DOI: 10.1016/j.esmoop.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The success of immune checkpoint inhibitors has revolutionized cancer treatment options and triggered development of new complementary immunotherapeutic strategies, including T-cell co-stimulatory molecules, such as glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR). BMS-986156 is a fully agonistic human immunoglobulin G subclass 1 monoclonal antibody targeting GITR. We recently presented the clinical data for BMS-986156 with or without nivolumab, which demonstrated no compelling evidence of clinical activity in patients with advanced solid tumors. Here, we further report the pharmacodynamic (PD) biomarker data from this open-label, first-in-human, phase I/IIa study of BMS-986156 ± nivolumab in patients with advanced solid tumors (NCT02598960). MATERIALS AND METHODS We analyzed PD changes of circulating immune cell subsets and cytokines in peripheral blood or serum samples collected from a dataset of 292 patients with solid tumors before and during treatment with BMS-986156 ± nivolumab. PD changes in the tumor immune microenvironment were measured by immunohistochemistry and a targeted gene expression panel. RESULTS BMS-986156 + nivolumab induced a significant increase in peripheral T-cell and natural killer (NK) cell proliferation and activation, accompanied by production of proinflammatory cytokines. However, no significant changes in expression of CD8A, programmed death-ligand 1, tumor necrosis factor receptor superfamily members, or key genes linked with functional parameters of T and NK cells were observed in tumor tissue upon treatment with BMS-986156. CONCLUSIONS Despite the robust evidence of peripheral PD activity of BMS-986156, with or without nivolumab, limited evidence of T- or NK cell activation in the tumor microenvironment was observed. The data therefore explain, at least in part, the lack of clinical activity of BMS-986156 with or without nivolumab in unselected populations of cancer patients.
Collapse
Affiliation(s)
- R Wang
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - V Baxi
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - Z Li
- Lead Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, USA
| | - D Locke
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - C Hedvat
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - Y Sun
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - A M Walsh
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - X Shao
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA
| | - T Basavanhally
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - D M Greenawalt
- Informatics & Predictive Sciences, Bristol Myers Squibb, Lawrenceville, USA
| | - P Patah
- Global Clinical Research, Bristol Myers Squibb, Lawrenceville, USA
| | - R Novosiadly
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, USA.
| |
Collapse
|
23
|
Fu Y, Huang Y, Li P, Wang L, Tang Z, Liu X, Bian X, Wu S, Wang X, Zhu B, Yu Y, Jiang J, Li C. Physical- and Chemical-Dually ROS-Responsive Nano-in-Gel Platforms with Sequential Release of OX40 Agonist and PD-1 Inhibitor for Augmented Combination Immunotherapy. NANO LETTERS 2023; 23:1424-1434. [PMID: 36779813 DOI: 10.1021/acs.nanolett.2c04767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combination immunotherapy synergizing the PD-1 blockade with OX40 agonism has become a research hotspot, due to its enormous potential to overcome the restricted clinical objective response suffered by monotherapy. Questions of timing and sequence have been important aspects of immunotherapies when considering immunologic mechanisms; however, most of the time the straightforward additive approach was taken. Herein, our work is the first to investigate an alternative timing of aOX40 and aPD-1 treatment in melanoma-bearing mice, and it demonstrates that sequential administration (aOX40 first, then aPD-1 following) provided superior antitumor benefits than concurrent treatment. Based on that, to further avoid the limits suffered by solution forms, we adopted pharmaceutical technologies to construct an in situ-formed physical- and chemical-dually ROS-responsive nano-in-gel platform to implement sequential and prolonged release of aPD-1 and aOX40. Equipped with these advantages, the as-prepared (aPD-1NCs&aOX40)@Gels elicited augmented combination immunity and achieved great eradication of both primary and distant melanoma tumors in vivo.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Luyao Wang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, U.K
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyou Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard University, Charlestown, Massachusetts 02138, United States
| | - Yang Yu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing 400038, P.R. China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
25
|
Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol 2022; 13:1018202. [PMID: 36389687 PMCID: PMC9640966 DOI: 10.3389/fimmu.2022.1018202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/22/2023] Open
Abstract
Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections. The first part of this review summarizes the emerging evidence for contributions of checkpoint pathways to the immunopathology of fungal sepsis, opportunistic mold infections, and dimorphic fungal infections. We then review the potential merits of immune checkpoint inhibitors (ICIs) as an antifungal immunotherapy, including the incomplete knowledge of the mechanisms involved in both immuno-protective effects and toxicities. In the second part of this review, we discuss the limitations of the current evidence and the many unknowns about ICIs as an antifungal immune enhancement strategy. Based on these gaps of knowledge and lessons learned from cancer immunology studies, we outline a research agenda to determine a "sweet spot" for ICIs in medical mycology. We specifically discuss the importance of more nuanced animal models, the need to study ICI-based combination therapy, potential ICI resistance, the role of the immune microenvironment, and the impact of ICIs given as part of oncological therapies on the natural immunity to various pathogenic fungi.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Chen YW, Rini BI, Beckermann KE. Emerging Targets in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:4843. [PMID: 36230766 PMCID: PMC9561986 DOI: 10.3390/cancers14194843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dual immune checkpoint blockade targeting CTLA-4 and PD-1 (ipilimumab/nivolumab) or the IO combinations targeting PD-1 and anti-VEGF TKIs (pembrolizumab/axitinib, nivolumab/cabozantinib, pembrolizumab/lenvatinib) have demonstrated an overall survival benefit in advanced clear cell renal cell carcinoma (ccRCC). Despite this significant improvement in clinical outcomes in the frontline setting from IO/IO or the IO/TKI combinations, there is a subset of patients of advanced ccRCC that do not respond to such combinations or will lose the initial efficacy and have disease progression. Therefore, a remarkable unmet need exists to develop new therapeutics to improve outcomes. With an enhanced understanding of ccRCC biology and its interaction with the tumor microenvironment, several new therapies are under development targeting ccRCC metabolism, cytokine-signaling, alternative immune checkpoint proteins, and novel biological pathways. In addition, microbiome products enhancing IO response, antibody-drug conjugates, and targeted radionuclides are also being investigated. This review summarizes selected emerging agents that are under development in ccRCC.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Ave, 777 Preston Research Building, Nashville, TN 37232, USA
| | - Brian I. Rini
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Ave, 777 Preston Research Building, Nashville, TN 37232, USA
| | - Kathryn E. Beckermann
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Ave, 777 Preston Research Building, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer. Diseases 2022; 10:60. [PMID: 36135216 PMCID: PMC9498256 DOI: 10.3390/diseases10030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shubham Dutta
- MassBiologics, UMass Chan Medical School, Boston, MA 02126, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
28
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
29
|
Gulyás D, Kovács G, Jankovics I, Mészáros L, Lőrincz M, Dénes B. Effects of the combination of a monoclonal agonistic mouse anti-OX40 antibody and toll-like receptor agonists: Unmethylated CpG and LPS on an MB49 bladder cancer cell line in a mouse model. PLoS One 2022; 17:e0270802. [PMID: 35802726 PMCID: PMC9269874 DOI: 10.1371/journal.pone.0270802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The basis of the antitumor immunotherapy, of which the purpose is the stimulation of the immune system. We have used two of the Pathogen Associated Molecular Patterns: unmethylated CpG oligonucleotide, a ligand of Toll-like receptor 9 (TLR9), and lipopolysaccharide (LPS) which is recognized by TLR4, combined with an agonistic OX40 receptor-specific monoclonal antibody (anti-OX40), which is expressed by activated regulatory T-cells (and by other activated T-cell populations as well). The objective of this study was to prove the effectiveness of the aforementioned compounds in an animal model, on a bladder cancer cell line. Methods We have instilled MB49 cells subcutaneously, to the left musculus biceps femoris. We have created three observation groups, each containing ten mice. After eleven days, all treated mice bearing the size of 5–8 mm (in diameter) tumor were administered CpG + anti-OX40 or LPS + anti-OX40 three times with a three-day lap between each treatment. Mice in the control group did not receive any treatment. Results All the specimens from the control and LPS + anti-OX40 groups have died by the sixtieth day of the observation period, however, five mice from the CpG + anti-OX40 group were still alive. The experiment lasted until the last surviving mouse died, which occurred on the 357th day after tumor implantation. Discussion The treatment with LPS did not make anti-OX40 more potent and did not increase the survival times. However, CpG + anti-OX40 has shown increased antitumor activity compared to the other two groups.
Collapse
Affiliation(s)
- Dominik Gulyás
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
- * E-mail: (DG); (BD)
| | - Gábor Kovács
- Department of Urology, Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | | | - László Mészáros
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Béla Dénes
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
- * E-mail: (DG); (BD)
| |
Collapse
|
30
|
Goldman JW, Piha-Paul SA, Curti B, Pedersen KS, Bauer TM, Groenland SL, Carvajal RD, Chhaya V, Kirby G, McGlinchey K, Hammond SA, Streicher KL, Townsley D, Chae YK, Voortman J, Marabelle A, Powderly J. Safety and tolerability of MEDI0562, an OX40 agonist monoclonal antibody, in combination with durvalumab or tremelimumab in adult patients with advanced solid tumors. Clin Cancer Res 2022; 28:3709-3719. [PMID: 35699623 DOI: 10.1158/1078-0432.ccr-21-3016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Combination therapies targeting immunological checkpoints have shown promise in treating multiple tumor types. We report safety and tolerability of MEDI0562, a humanized IgG1K OX40 monoclonal antibody, in combination with durvalumab (anti-PD-L1), or tremelimumab (anti-CTLA-4), in adult patients with previously treated advanced solid tumors. EXPERIMENTAL DESIGN In this phase 1, multicenter, open-label study, patients received escalating doses of MEDI0562 (2.25, 7.5, or 22.5 mg) every two weeks (Q2W) in combination with durvalumab (1500 mg) or tremelimumab (75 or 225 mg) Q4W, intravenously, until unacceptable toxicity or progressive disease. Tumor assessments were performed Q8W. The primary objective was to evaluate safety and tolerability. RESULTS Among the 27 and 31 patients who received MEDI0562 + durvalumab or MEDI0562 + tremelimumab, 74.1% and 67.7% reported a treatment-related adverse event (AE), and 22.2% and 19.4% experienced a treatment‑emergent AE that led to discontinuation, respectively. The maximum tolerated dose of MEDI0562 + durvalumab was 7.5 mg MEDI0562 + 1500 mg durvalumab; the maximum administered dose of MEDI0562 + tremelimumab was 22.5 mg MEDI0562 + 225 mg tremelimumab. Three patients in the MEDI0562 + durvalumab arm had a partial response. The mean percentage of Ki67+CD4+ and Ki67+CD8+ memory T cells increased by >100% following the first dose of MEDI0562 + durvalumab or tremelimumab in all dose cohorts. A decrease in OX40+FOXP3 T regulatory cells was observed in a subset of patients with available paired biopsies. CONCLUSIONS Following dose escalation, moderate toxicity was observed in both treatment arms, with no clear efficacy signals demonstrated.
Collapse
Affiliation(s)
| | - Sarina A Piha-Paul
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brendan Curti
- Providence Cancer Center and Earle A. Chiles Research Institute, Portland, OR, United States
| | | | - Todd M Bauer
- Sarah Cannon Research Institute / Tennessee Oncology, PLLC., Nashville, TN, United States
| | | | | | - Vaishali Chhaya
- AstraZeneca (United States), Gaithersburg, MD, United States
| | - Gray Kirby
- AstraZeneca (United States), Gaithersburg, MD, United States
| | - Kelly McGlinchey
- AstraZeneca (United Kingdom), Gaithersburg, Maryland, United States
| | | | | | | | - Young Kwang Chae
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - John Powderly
- Carolina BioOncology Institute, Huntersville, NC, United States
| |
Collapse
|
31
|
Navani V, Graves MC, Mandaliya H, Hong M, van der Westhuizen A, Martin J, Bowden NA. Melanoma: An immunotherapy journey from bench to bedside. Cancer Treat Res 2022; 183:49-89. [PMID: 35551656 DOI: 10.1007/978-3-030-96376-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma gave science a window into the role immune evasion plays in the development of malignancy. The entire spectrum of immune focused anti-cancer therapies has been subjected to clinical trials in this disease, with limited success until the immune checkpoint blockade era. That revolution launched first in melanoma, heralded a landscape change throughout cancer that continues to reverberate today.
Collapse
Affiliation(s)
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| | - Hiren Mandaliya
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Martin Hong
- Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Andre van der Westhuizen
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,Calvary Mater Hospital Newcastle, Edith St, Waratah, NSW, 2298, Australia
| | - Jennifer Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia.,John Hunter Hospital, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, University Dr, Callaghan, NSW, 2308, Australia
| |
Collapse
|
32
|
Huppert LA, Gumusay O, Rugo HS. Emerging treatment strategies for metastatic triple-negative breast cancer. Ther Adv Med Oncol 2022; 14:17588359221086916. [PMID: 35422881 PMCID: PMC9003656 DOI: 10.1177/17588359221086916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that is often associated with an aggressive phenotype and a poor prognosis. Cytotoxic chemotherapy remains the mainstay of treatment for most patients with metastatic TNBC (mTNBC), but duration of response is often short and median overall survival is only 12-18 months. Therefore, it is critical to identify novel treatment strategies to improve outcomes for these patients. In this review article, we discuss recent advances in treatment strategies for patients with mTNBC including the use of immune checkpoint inhibitors, targeted therapies, and antibody-drug conjugates. For each topic, we summarize important preclinical and clinical data, discuss implications for clinical practice, and highlight future research directions.
Collapse
Affiliation(s)
- Laura A. Huppert
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ozge Gumusay
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hope S. Rugo
- Director, Breast Oncology and Clinical Trials Education, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1600 Divisadero St., Box 1710, San Francisco, CA 94115, USA
| |
Collapse
|
33
|
Yadav R, Redmond WL. Current Clinical Trial Landscape of OX40 Agonists. Curr Oncol Rep 2022; 24:951-960. [PMID: 35352295 DOI: 10.1007/s11912-022-01265-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Despite the efficacy of immune checkpoint blockade (ICB) immunotherapy, most cancer patients still develop progressive disease necessitating additional treatment options. One approach is ligation of the OX40 (CD134) costimulatory receptor which promotes T cell activation, effector function, and the generation of long-lived memory cells. RECENT FINDINGS Numerous preclinical studies have demonstrated that OX40 agonists alone or in combination with ICB (e.g., anti-PD-1, anti-PD-L1, and anti-CTLA-4) augment anti-tumor immunity. In this review, we discuss the impact of OX40 agonists on T cell function and the therapeutic potential of OX40 agonists alone or in conjunction with ICB for patients with advanced malignancies.
Collapse
Affiliation(s)
- Rashi Yadav
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213, USA.
| |
Collapse
|
34
|
Enhanced SARS-CoV-2-Specific CD4 + T Cell Activation and Multifunctionality in Late Convalescent COVID-19 Individuals. Viruses 2022; 14:v14030511. [PMID: 35336918 PMCID: PMC8954911 DOI: 10.3390/v14030511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Examination of CD4+ T cell responses during the natural course of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection offers useful information for the improvement of vaccination strategies against this virus and the protective effect of these T cells. Methods: We characterized the SARS-CoV-2-specific CD4+ T cell activation marker, multifunctional cytokine and cytotoxic marker expression in recovered coronavirus disease 2019 (COVID-19) individuals. Results: CD4+ T-cell responses in late convalescent (>6 months of diagnosis) individuals are characterized by elevated frequencies of activated as well as mono, dual- and multi-functional Th1 and Th17 CD4+ T cells in comparison to early convalescent (<1 month of diagnosis) individuals following stimulation with SARS-CoV-2-specific antigens. Similarly, the frequencies of cytotoxic marker expressing CD4+ T cells were also enhanced in late convalescent compared to early convalescent individuals. Conclusion: Our findings from a low-to middle-income country suggest protective adaptive immune responses following natural infection of SARS-CoV-2 are elevated even at six months following initial symptoms, indicating the CD4+ T cell mediated immune protection lasts for six months or more in natural infection.
Collapse
|
35
|
Wang QW, Lin WW, Zhu YJ. Comprehensive analysis of a TNF family based-signature in diffuse gliomas with regard to prognosis and immune significance. Cell Commun Signal 2022; 20:6. [PMID: 35000592 PMCID: PMC8744324 DOI: 10.1186/s12964-021-00814-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several studies have shown that members of the tumor necrosis factor (TNF) family play an important role in cancer immunoregulation, and trials targeting these molecules are already underway. Our study aimed to integrate and analyze the expression patterns and clinical significance of TNF family-related genes in gliomas. METHODS A total of 1749 gliomas from 4 datasets were enrolled in our study, including the Cancer Genome Atlas (TCGA) dataset as the training cohort and the other three datasets (CGGA, GSE16011, and Rembrandt) as validation cohorts. Clinical information, RNA expression data, and genomic profile were collected for analysis. We screened the signature gene set by Cox proportional hazards modelling. We evaluated the prognostic value of the signature by Kaplan-Meier analysis and timeROC curve. Gene Ontology (GO) and Gene set enrichment analysis (GSEA) analysis were performed for functional annotation. CIBERSORT algorithm and inflammatory metagenes were used to reveal immune characteristics. RESULTS In gliomas, the expression of most TNF family members was positively correlated. Univariate analysis showed that most TNF family members were related to the overall survival of patients. Then through the LASSO regression model, we developed a TNF family-based signature, which was related to clinical, molecular, and genetic characteristics of patients with glioma. Moreover, the signature was found to be an independent prognostic marker through survival curve analysis and Cox regression analysis. Furthermore, a nomogram prognostic model was constructed to predict individual survival rates at 1, 3 and 5 years. Functional annotation analysis revealed that the immune and inflammatory response pathways were enriched in the high-risk group. Immunological analysis showed the immunosuppressive status in the high-risk group. CONCLUSIONS We developed a TNF family-based signature to predict the prognosis of patients with glioma. Video abstract.
Collapse
Affiliation(s)
- Qiang-Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, 100070, China
| | - Wei-Wei Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yong-Jian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
36
|
Van Braeckel-Budimir N, Dolina JS, Wei J, Wang X, Chen SH, Santiago P, Tu G, Micci L, Al-Khami AA, Pfister S, Ram S, Sundar P, Thomas G, Long H, Yang W, Potluri S, Salek-Ardakani S. Combinatorial immunotherapy induces tumor-infiltrating CD8 + T cells with distinct functional, migratory, and stem-like properties. J Immunother Cancer 2021; 9:jitc-2021-003614. [PMID: 34903555 PMCID: PMC8672007 DOI: 10.1136/jitc-2021-003614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
Background Programmed death (ligand) 1 (PD-(L)1) blockade and OX40/4-1BB costimulation have been separately evaluated in the clinic to elicit potent antitumor T cell responses. The precise mechanisms underlying single agent activity are incompletely understood. It also remains unclear if combining individual therapies leads to synergism, elicits novel immune mechanisms, or invokes additive effects. Methods We performed high-dimensional flow cytometry and single-cell RNA sequencing-based immunoprofiling of murine tumor-infiltrating lymphocytes (TILs) isolated from hosts bearing B16 or MC38 syngeneic tumors. This baseline infiltrate was compared to TILs after treatment with either anti-PD-(L)1, anti-OX40, or anti-4-1BB as single agents or as double and triple combinatorial therapies. Fingolimod treatment and CXCR3 blockade were used to evaluate the contribution of intratumoral versus peripheral CD8+ T cells to therapeutic efficacy. Results We identified CD8+ T cell subtypes with distinct functional and migratory signatures highly predictive of tumor rejection upon treatment with single agent versus combination therapies. Rather than reinvigorating terminally exhausted CD8+ T cells, OX40/4-1BB agonism expanded a stem-like PD-1loKLRG-1+Ki-67+CD8+ T cell subpopulation, which PD-(L)1 blockade alone did not. However, PD-(L)1 blockade synergized with OX40/4-1BB costimulation by dramatically enhancing stem-like TIL presence via a CXCR3-dependent mechanism. Conclusions Our findings provide new mechanistic insights into the interplay between components of combinatorial immunotherapy, where agonism of select costimulatory pathways seeds a pool of stem-like CD8+ T cells more responsive to immune checkpoint blockade (ICB).
Collapse
Affiliation(s)
| | | | - Jie Wei
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Xiao Wang
- Computational Biology, Pfizer Inc, San Diego, California, USA
| | - Shih-Hsun Chen
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Pamela Santiago
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Guanghuan Tu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Luca Micci
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Amir A Al-Khami
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Sophia Pfister
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Sripad Ram
- Global Pathology, Drug Safety Reserach and Development, Pfizer Inc, San Diego, California, USA
| | - Purnima Sundar
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Graham Thomas
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Hua Long
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Wenjing Yang
- Computational Biology, Pfizer Inc, San Diego, California, USA
| | - Shobha Potluri
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | | |
Collapse
|
37
|
White MG, Szczepaniak Sloane R, Witt RG, Reuben A, Gaudreau PO, Andrews MC, Feng N, Johnson S, Class CA, Bristow C, Wani K, Hudgens C, Nezi L, Manzo T, De Macedo MP, Hu J, Davis R, Jiang H, Prieto P, Burton E, Hwu P, Tawbi H, Gershenwald J, Lazar AJ, Tetzlaff MT, Overwijk W, Woodman SE, Cooper ZA, Marszalek JR, Davies MA, Heffernan TP, Wargo JA. Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma. Oncoimmunology 2021; 10:1992880. [PMID: 34777916 PMCID: PMC8583008 DOI: 10.1080/2162402x.2021.1992880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten−/−). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.
Collapse
Affiliation(s)
- Michael G White
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Russell G Witt
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pierre Olivier Gaudreau
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles C Andrews
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Ningping Feng
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Johnson
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caleb A Class
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney Hudgens
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Nezi
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Manzo
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jianhua Hu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Davis
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Jiang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Prieto
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Burton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Gershenwald
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Tetzlaff
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Willem Overwijk
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Oncology Research, Nektar Therapeutics, San Francisco, CA, USA
| | - Scott E Woodman
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Translational Sciences Oncology, MedImmune, Gaithersburg, MD, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Pieper AA, Zangl LM, Speigelman DV, Feils AS, Hoefges A, Jagodinsky JC, Felder MA, Tsarovsky NW, Arthur IS, Brown RJ, Birstler J, Le T, Carlson PM, Bates AM, Hank JA, Rakhmilevich AL, Erbe AK, Sondel PM, Patel RB, Morris ZS. Radiation Augments the Local Anti-Tumor Effect of In Situ Vaccine With CpG-Oligodeoxynucleotides and Anti-OX40 in Immunologically Cold Tumor Models. Front Immunol 2021; 12:763888. [PMID: 34868010 PMCID: PMC8634717 DOI: 10.3389/fimmu.2021.763888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Combining CpG oligodeoxynucleotides with anti-OX40 agonist antibody (CpG+OX40) is able to generate an effective in situ vaccine in some tumor models, including the A20 lymphoma model. Immunologically "cold" tumors, which are typically less responsive to immunotherapy, are characterized by few tumor infiltrating lymphocytes (TILs), low mutation burden, and limited neoantigen expression. Radiation therapy (RT) can change the tumor microenvironment (TME) of an immunologically "cold" tumor. This study investigated the effect of combining RT with the in situ vaccine CpG+OX40 in immunologically "cold" tumor models. Methods Mice bearing flank tumors (A20 lymphoma, B78 melanoma or 4T1 breast cancer) were treated with combinations of local RT, CpG, and/or OX40, and response to treatment was monitored. Flow cytometry and quantitative polymerase chain reaction (qPCR) experiments were conducted to study differences in the TME, secondary lymphoid organs, and immune activation after treatment. Results An in situ vaccine regimen of CpG+OX40, which was effective in the A20 model, did not significantly improve tumor response or survival in the "cold" B78 and 4T1 models, as tested here. In both models, treatment with RT prior to CpG+OX40 enabled a local response to this in situ vaccine, significantly improving the anti-tumor response and survival compared to RT alone or CpG+OX40 alone. RT increased OX40 expression on tumor infiltrating CD4+ non-regulatory T cells. RT+CpG+OX40 increased the ratio of tumor-infiltrating effector T cells to T regulatory cells and significantly increased CD4+ and CD8+ T cell activation in the tumor draining lymph node (TDLN) and spleen. Conclusion RT significantly improves the local anti-tumor effect of the in situ vaccine CpG+OX40 in immunologically "cold", solid, murine tumor models where RT or CpG+OX40 alone fail to stimulate tumor regression.
Collapse
Affiliation(s)
- Alexander A. Pieper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Luke M. Zangl
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dan V. Speigelman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Arika S. Feils
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mildred A. Felder
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Noah W. Tsarovsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ian S. Arthur
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ryan J. Brown
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter M. Carlson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Amber M. Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ravi B. Patel
- Department of Radiation Oncology and Bioengineering, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
39
|
Huppert LA, Mariotti V, Chien AJ, Soliman HH. Emerging immunotherapeutic strategies for the treatment of breast cancer. Breast Cancer Res Treat 2021; 191:243-255. [PMID: 34716870 DOI: 10.1007/s10549-021-06406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy has resulted in unprecedented gains in long-term outcomes for many cancer types and has revolutionized the treatment landscape of solid tumor oncology. Checkpoint inhibition in combination with chemotherapy has proven to be effective for the treatment of a subset of advanced triple-negative breast cancer in the first-line setting. This initial success is likely just the tip of the iceberg as there is much that remains unknown about how to best harness the immune system as a therapeutic strategy in all breast cancer subtypes. Therefore, numerous ongoing studies are currently underway to evaluate the safety and efficacy of immunotherapy in breast cancer. In this review, we will discuss emerging immunotherapeutic strategies for breast cancer treatment including the following: (1) Intratumoral therapies, (2) Anti-tumor vaccines, (3) B-specific T-cell engagers, and (4) Chimeric antigen receptor T-cell therapy, and (5) Emerging systemic immunotherapy strategies. For each topic, we will review the existing preclinical and clinical literature, discuss ongoing clinical trials, and highlight future directions in the field.
Collapse
Affiliation(s)
- Laura A Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - A Jo Chien
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hatem H Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
40
|
Ceglia V, Zurawski S, Montes M, Bouteau A, Wang Z, Ellis J, Igyártó BZ, Lévy Y, Zurawski G. Anti-CD40 Antibodies Fused to CD40 Ligand Have Superagonist Properties. THE JOURNAL OF IMMUNOLOGY 2021; 207:2060-2076. [PMID: 34551965 DOI: 10.4049/jimmunol.2000704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
CD40 is a potent activating receptor within the TNFR family expressed on APCs of the immune system, and it regulates many aspects of B and T cell immunity via interaction with CD40 ligand (CD40L; CD154) expressed on the surface of activated T cells. Soluble CD40L and agonistic mAbs directed to CD40 are being explored as adjuvants in therapeutic or vaccination settings. Some anti-CD40 Abs can synergize with soluble monomeric CD40L. We show that direct fusion of CD40L to certain agonistic anti-CD40 Abs confers superagonist properties, reducing the dose required for efficacy, notably greatly increasing total cytokine secretion by human dendritic cells. The tetravalent configuration of anti-CD40-CD40L Abs promotes CD40 cell surface clustering and internalization and is the likely mechanism of increased receptor activation. CD40L fused to either the L or H chain C termini, with or without flexible linkers, were all superagonists with greater potency than CD40L trimer. The increased anti-CD40-CD40L Ab potency was independent of higher order aggregation. Moreover, the anti-CD40-CD40L Ab showed higher potency in vivo in human CD40 transgenic mice compared with the parental anti-CD40 Ab. To broaden the concept of fusing agonistic Ab to natural ligand, we fused OX40L to an agonistic OX40 Ab, and this resulted in dramatically increased efficacy for proliferation and cytokine production of activated human CD4+ T cells as well as releasing the Ab from dependency on cross-linking. This work shows that directly fusing antireceptor Abs to ligand is a useful strategy to dramatically increase agonist potency.
Collapse
Affiliation(s)
- Valentina Ceglia
- Baylor Scott & White Immunology Research, Dallas, TX.,Université Paris-Est Créteil, Créteil, France.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Sandra Zurawski
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Monica Montes
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Aurélie Bouteau
- Institute of Biomedical Studies, Baylor University, Waco, TX; and.,Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Zhiqing Wang
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Jerome Ellis
- Baylor Scott & White Immunology Research, Dallas, TX.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Botond Z Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Yves Lévy
- Université Paris-Est Créteil, Créteil, France.,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Gerard Zurawski
- Baylor Scott & White Immunology Research, Dallas, TX; .,Vaccine Research Institute, INSERM, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
41
|
Yokouchi H, Nishihara H, Harada T, Amano T, Ohkuri T, Yamazaki S, Kikuchi H, Oizumi S, Uramoto H, Tanaka F, Harada M, Akie K, Sugaya F, Fujita Y, Takamura K, Kojima T, Higuchi M, Honjo O, Minami Y, Watanabe N, Nishimura M, Suzuki H, Dosaka-Akita H, Isobe H. Prognostic significance of OX40 + lymphocytes in tumor stroma of surgically resected small-cell lung cancer. Oncoimmunology 2021; 10:1971430. [PMID: 34552823 PMCID: PMC8451465 DOI: 10.1080/2162402x.2021.1971430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OX40 (CD134) is a co-stimulatory molecule mostly expressed on activated T lymphocytes. Previous reports have shown that OX40 can be an immuno-oncology target and a clinical biomarker for cancers of various organs. In this study, we collected formalin-fixed paraffin-embedded tumor samples from 124 patients with small-cell lung cancer (SCLC) who had undergone surgery. We analyzed the expression profiles of OX40 and other relevant molecules, such as CD4, CD8, and Foxp3, in tumor stroma and cancer nest using immunohistochemistry and investigated their association with survival. High infiltration of OX40+ lymphocytes (OX40high) in tumor stroma was positively associated with relapse-free survival (RFS) and overall survival (OS) compared with low infiltration of OX40+ lymphocytes (OX40low) (RFS, median, 26.0 months [95% confidence interval (CI), not reached (NR)–NR] vs 13.2 months [9.1–17.2], p = .024; OS, NR [95% CI, NR–NR] vs 29.8 months [21.3–38.2], p = .049). Multivariate analysis revealed that OX40high in tumor stroma was an independent indicator of prolonged RFS. Moreover, RFS of patients with OX40high/CD4high in tumor stroma was significantly longer than that of patients with OX40low/CD4low. The RFS of patients with tumor stroma with OX40high/CD8high was significantly longer than that of patients with tumor stroma with OX40low/CD8high, OX40high/CD8low, or OX40low/CD8low. These findings suggest that OX40+ lymphocytes in tumor stroma play a complementary role in regulating the relapse of early-stage SCLC. Reinforcing immunity by coordinating the recruitment of OX40+ lymphocytes with CD4+ and CD8+ T cells in tumor stroma may constitute a potential immunotherapeutic strategy for patients with SCLC.
Collapse
Affiliation(s)
- Hiroshi Yokouchi
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Toraji Amano
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Shigeo Yamazaki
- Department of Thoracic Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Hajime Kikuchi
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Respiratory Medicine, Obihiro-Kosei General Hospital, Obihiro, Japan
| | - Satoshi Oizumi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Hidetaka Uramoto
- Second Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu, Japan.,Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu, Japan
| | - Masao Harada
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Kenji Akie
- Department of Respiratory Disease, Sapporo City General Hospital, Sapporo, Japan
| | - Fumiko Sugaya
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa, Japan
| | - Kei Takamura
- Department of Respiratory Medicine, Obihiro-Kosei General Hospital, Obihiro, Japan
| | - Tetsuya Kojima
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| | - Mitsunori Higuchi
- Department of Thoracic Surgery, Fukushima Red Cross Hospital, Fukushima, Japan.,Department of Thoracic Surgery, Aizu Medical Center, Aizuwakamatsu, Japan
| | - Osamu Honjo
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan.,Department of Respiratory Medicine, Sapporo Minami Sanjo Hospital, Sapporo, Japan
| | - Yoshinori Minami
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Naomi Watanabe
- Department of Internal Medicine, Sunagawa City Medical Center, Sunagawa, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Isobe
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo, Japan
| |
Collapse
|
42
|
Hosseinzadeh R, Feizisani F, Shomali N, Abdelbasset WK, Hemmatzadeh M, Gholizadeh Navashenaq J, Jadidi-Niaragh F, Bokov DO, Janebifam M, Mohammadi H. PD-1/PD-L1 blockade: Prospectives for immunotherapy in cancer and autoimmunity. IUBMB Life 2021; 73:1293-1306. [PMID: 34538007 DOI: 10.1002/iub.2558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade therapy (ICBT) has become a successful cancer treatment approach in the field of cancer immunotherapy. Blockade of programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) with monoclonal antibodies have been known as successful examples of cancer immunotherapy in recent years. Although ICBT has been shown to be beneficial in cancers, such benefits have only been seen in a portion of cancer patients. In this regard, enhancing the therapeutic effects of inhibiting PD-1 and PD-L1 and reducing the side effects of this approach can be considered as a potential approach in a successful ICBT. In this review, we have highlighted new viewpoints regarding improving the therapeutic effect of PD-1 and PD-L1 blockades in cancer therapy. Besides, their expression levels as a biomarker with prognostic value, their role in intestinal microbiota modulation, combination therapy, and immune-related side effects (irAEs) have been discussed.
Collapse
Affiliation(s)
- Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Feizisani
- Student Research Committee, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Morteza Janebifam
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
43
|
Gamaleldin MA, Imbaby SAE. The role of tumor necrosis factor receptor superfamily member 4 (TNFRSF4) gene expression in diagnosis and prognosis of acute myeloid leukemia. Mol Biol Rep 2021; 48:6831-6843. [PMID: 34453673 DOI: 10.1007/s11033-021-06682-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is still challenging in predicting the prognosis due to its high heterogeneity. Molecular aberrations and abnormalities play a significant prognostic role in AML patients. Our aim of the study was to investigate the prognostic role of TNFRSF4 gene expression in AML patients and its potential effect on treatment protocols. METHODS Bone marrow mononuclear cells were analyzed for TNFRSF4 expression by real-time quantitative PCR as well as of FLT3/ITD and NPM1 mutations in 80 newly diagnosed AML patients and 80 control subjects. RESULTS TNFRSF4 was significantly overexpressed in the AML patients (p < 0.001). TNFRSF4 expression was associated with unfavorable clinical outcomes including treatment response, relapse free survival, and overall survival. On multivariate testing, TNFRSF4 high expression proved to be an independent prognostic marker for clinical remission and relapse free survival but not overall survival. CONCLUSION TNFRSF4 expression was revealed as an unfavorable prognostic marker and might be a target for immunotherapy in the future.
Collapse
Affiliation(s)
- Marwa Ahmed Gamaleldin
- Clinical Pathology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Salma Alaa Eldin Imbaby
- Clinical Pathology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
44
|
Tang XY, Shi AP, Xiong YL, Zheng KF, Liu YJ, Shi XG, Jiang T, Zhao JB. Clinical Research on the Mechanisms Underlying Immune Checkpoints and Tumor Metastasis. Front Oncol 2021; 11:693321. [PMID: 34367975 PMCID: PMC8339928 DOI: 10.3389/fonc.2021.693321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
This study highlights aspects of the latest clinical research conducted on the relationship between immune checkpoints and tumor metastasis. The overview of each immune checkpoint is divided into the following three sections: 1) structure and expression; 2) immune mechanism related to tumor metastasis; and 3) clinical research related to tumor metastasis. This review expands on the immunological mechanisms of 17 immune checkpoints, including TIM-3, CD47, and OX-40L, that mediate tumor metastasis; evidence shows that most of these immune checkpoints are expressed on the surface of T cells, which mainly exert immunomodulatory effects. Additionally, we have summarized the roles of these immune checkpoints in the diagnosis and treatment of metastatic tumors, as these checkpoints are considered common predictors of metastasis in various cancers such as prostate cancer, non-Hodgkin lymphoma, and melanoma. Moreover, certain immune checkpoints can be used in synergy with PD-1 and CTLA-4, along with the implementation of combination therapies such as LIGHT-VTR and anti-PD-1 antibodies. Presently, most monoclonal antibodies generated against immune checkpoints are under investigation as part of ongoing preclinical or clinical trials conducted to evaluate their efficacy and safety to establish a better combination treatment strategy; however, no significant progress has been made regarding monoclonal antibody targeting of CD28, VISTA, or VTCN1. The application of immune checkpoint inhibitors in early stage tumors to prevent tumor metastasis warrants further evidence; the immune-related adverse events should be considered before combination therapy. This review aims to elucidate the mechanisms of immune checkpoint and the clinical progress on their use in metastatic tumors reported over the last 5 years, which may provide insights into the development of novel therapeutic strategies that will assist with the utilization of various immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
45
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
46
|
Rossi M, Carboni S, Di Berardino-Besson W, Riva E, Santiago-Raber ML, Belnoue E, Derouazi M. STING Agonist Combined to a Protein-Based Cancer Vaccine Potentiates Peripheral and Intra-Tumoral T Cell Immunity. Front Immunol 2021; 12:695056. [PMID: 34276686 PMCID: PMC8283310 DOI: 10.3389/fimmu.2021.695056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Combining different immunotherapy approaches is currently building the future of immunotherapy, with the view to maximize anti-tumoral efficacy for larger patient population. The KISIMA™ platform allows the development of protein-based cancer vaccines able to induce tumor-specific T cell response resulting in anti-tumoral efficacy in various mouse models. Intra-tumoral administration of stimulator of interferon gene agonists (STINGa) was shown to induce a potent inflammatory response leading to the development of tumor-specific immunity. Here, we explored the efficacy and mechanisms of action of subcutaneous STINGa treatment combined with therapeutic vaccination in various mouse tumor models. This combinatory treatment highly enhanced frequency and effector function of both peripheral and intra-tumoral antigen-specific CD8 T cells, promoting potent IFNγ and TNFα production along with increased cytotoxicity. Moreover, combination therapy favorably modulated the tumor microenvironment by dampening immune-suppressive cells and increasing CD4 T cell infiltration together with their polarization toward Th1 phenotype. Combination with STINGa treatment improved the effect of therapeutic vaccination, resulting in a prolonged control and slower growth of B16-OVA and TC-1 tumors. Altogether, the results presented here highlight the potential of combining STINGa with a therapeutic protein vaccine for cancer treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/pharmacology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Female
- Interferon-gamma/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Membrane Proteins/agonists
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Phenotype
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Tumor Burden/drug effects
- Tumor Microenvironment
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Subunit/pharmacology
- Mice
Collapse
Affiliation(s)
- Matteo Rossi
- AMAL Therapeutics, Geneva, Switzerland
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Susanna Carboni
- AMAL Therapeutics, Geneva, Switzerland
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | | | - Erika Riva
- AMAL Therapeutics, Geneva, Switzerland
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | | | - Elodie Belnoue
- AMAL Therapeutics, Geneva, Switzerland
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Madiha Derouazi
- AMAL Therapeutics, Geneva, Switzerland
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| |
Collapse
|
47
|
Guo H, Diao L, Zhou X, Chen JN, Zhou Y, Fang Q, He Y, Dziadziuszko R, Zhou C, Hirsch FR. Artificial intelligence-based analysis for immunohistochemistry staining of immune checkpoints to predict resected non-small cell lung cancer survival and relapse. Transl Lung Cancer Res 2021; 10:2452-2474. [PMID: 34295654 PMCID: PMC8264317 DOI: 10.21037/tlcr-21-96] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Background Conventional analysis of single-plex chromogenic immunohistochemistry (IHC) focused on quantitative but spatial analysis. How immune checkpoints localization related to non-small cell lung cancer (NSCLC) prognosis remained unclear. Methods Here, we analyzed ten immune checkpoints on 1,859 tumor microarrays (TMAs) from 121 NSCLC patients and recruited an external cohort of 30 NSCLC patients with 214 whole-slide IHC. EfficientUnet was applied to segment tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs), while ResNet was performed to extract prognostic features from IHC images. Results The features of galectin-9, OX40, OX40L, KIR2D, and KIR3D played an un-negatable contribution to overall survival (OS) and relapse-free survival (RFS) in the internal cohort, validated in public databases (GEPIA, HPA, and STRING). The IC-Score and Res-Score were two predictive models established by EfficientUnet and ResNet. Based on the IC-Score, Res-Score, and clinical features, the integrated score presented the highest AUC for OS and RFS, which could achieve 0.9 and 0.85 in the internal testing cohort. The robustness of Res-Score was validated in the external cohort (AUC: 0.80–0.87 for OS, and 0.83–0.94 for RFS). Additionally, the neutrophil-to-lymphocyte ratio (NLR) combined with the PD-1/PD-L1 signature established by EfficientUnet can be a predictor for RFS in the external cohort. Conclusions Overall, we established a reliable model to risk-stratify relapse and death in NSCLC with a generalization ability, which provided a convenient approach to spatial analysis of single-plex chromogenic IHC.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Li Diao
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Zhou
- School of Information Management & Engineering, Shanghai University of Finance and Economics, Shanghai, China
| | - Jie-Neng Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yue Zhou
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdansk, ul. M. Sklodowskiej-Curie 3A, Gdańsk 80-210, Województwo pomorskie, Poland
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fred R Hirsch
- Center for Thoracic Oncology, Mount Sinai Cancer, New York, NY, USA
| |
Collapse
|
48
|
Unsinger J, Walton AH, Blood T, Tenney DJ, Quigley M, Drewry AM, Hotchkiss RS. Frontline Science: OX40 agonistic antibody reverses immune suppression and improves survival in sepsis. J Leukoc Biol 2021; 109:697-708. [PMID: 33264454 PMCID: PMC7887130 DOI: 10.1002/jlb.5hi0720-043r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
A defining feature of protracted sepsis is development of immunosuppression that is thought to be a major driving force in the morbidity and mortality associated with the syndrome. The immunosuppression that occurs in sepsis is characterized by profound apoptosis-induced depletion of CD4 and CD8 T cells and severely impaired T cell function. OX40, a member of the TNF receptor superfamily, is a positive co-stimulatory molecule expressed on activated T cells. When engaged by OX40 ligand, OX40 stimulates T cell proliferation and shifts the cellular immune phenotype toward TH1 with increased production of cytokines that are essential for control of invading pathogens. The purpose of the present study was to determine if administration of agonistic Ab to OX40 could reverse sepsis-induced immunosuppression, restore T cell function, and improve survival in a clinically relevant animal model of sepsis. The present study demonstrates that OX40 agonistic Ab reversed sepsis-induced impairment of T cell function, increased T cell IFN-γ production, increased the number of immune effector cells, and improved survival in the mouse cecal ligation and puncture model of sepsis. Importantly, OX40 agonistic Ab was not only effective in murine sepsis but also improved T effector cell function in PBMCs from patients with sepsis. The present results provide support for the use of immune adjuvants that target T cell depletion and T cell dysfunction in the therapy of sepsis-induced immunosuppression. In addition to the checkpoint inhibitors anti-PD-1 and anti-PD-L1, OX40 agonistic Ab may be a new therapeutic approach to the treatment of this highly lethal disorder.
Collapse
Affiliation(s)
- Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew H Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Teresa Blood
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel J Tenney
- Bristol Myers Squibb, Leads Discovery & Optimization, Lawrenceville, New Jersey, USA
| | - Michael Quigley
- Bristol Myers Squibb, Oncology Discovery Biology, Redwood City, California, USA
- Current affiliation, Gilead Sciences, Inc., Foster City, California, USA
| | - Anne M Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Zou Y, Chen Z, Han H, Ruan S, Jin L, Zhang Y, Chen Z, Ma Z, Lou Q, Shi N, Jin H. Risk Signature Related to Immunotherapy Reaction of Hepatocellular Carcinoma Based on the Immune-Related Genes Associated With CD8 + T Cell Infiltration. Front Mol Biosci 2021; 8:602227. [PMID: 33816550 PMCID: PMC8017194 DOI: 10.3389/fmolb.2021.602227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common histological type of liver cancer, with an unsatisfactory long-term survival rate. Despite immune checkpoint inhibitors for HCC have got glories in recent clinical trials, the relatively low response rate is still a thorny problem. Therefore, there is an urgent need to screen biomarkers of HCC to predict the prognosis and efficacy of immunotherapy. Methods: Gene expression profiles of HCC were retrieved from TCGA, GEO, and ICGC databases while the immune-related genes (IRGs) were retrieved from the ImmPort database. CIBERSORT and WGCNA algorithms were combined to identify the gene module most related to CD8+ T cells in the GEO cohort. Subsequently, the genes in hub modules were subjected to univariate, LASSO, and multivariate Cox regression analyses in the TCGA cohort to develop a risk signature. Afterward, the accuracy of the risk signature was validated by the ICGC cohort, and its relationships with CD8+ T cell infiltration and PDL1 expression were explored. Results: Nine IRGs were finally incorporated into a risk signature. Patients in the high-risk group had a poorer prognosis than those in the low-risk group. Confirmed by TCGA and ICGC cohorts, the risk signature possessed a relatively high accuracy. Additionally, the risk signature was demonstrated as an independent prognostic factor and closely related to the CD8+ T cell infiltration and PDL1 expression. Conclusion: A risk signature was constructed to predict the prognosis of HCC patients and detect patients who may have a higher positive response rate to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yiping Zou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medicine, Shantou University, Shantou, China
| | - Zhihong Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medicine, Shantou University, Shantou, China
| | - Hongwei Han
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Jin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanpeng Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhengrong Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medicine, Shantou University, Shantou, China
| | - Qi Lou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ning Shi
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
50
|
Nooka AK, Weisel K, van de Donk NW, Routledge D, Otero PR, Song K, Quach H, Callander N, Minnema MC, Trudel S, Jackson NA, Ahlers CM, Im E, Cheng S, Smith L, Hareth N, Ferron-Brady G, Brouch M, Montes de Oca R, Paul S, Holkova B, Gupta I, Kremer BE, Richardson P. Belantamab mafodotin in combination with novel agents in relapsed/refractory multiple myeloma: DREAMM-5 study design. Future Oncol 2021; 17:1987-2003. [PMID: 33682447 DOI: 10.2217/fon-2020-1269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Belantamab mafodotin (belamaf) is a BCMA-targeted antibody-drug conjugate recently approved as monotherapy for adults with relapsed/refractory multiple myeloma who have received ≥4 prior therapies. Belamaf binds to BCMA and eliminates myeloma cells by multimodal mechanisms of action. The cytotoxic and potential immunomodulatory properties of belamaf have led to novel combination studies with other anticancer therapies. Here, we describe the rationale and design of DREAMM-5, an ongoing Phase I/II platform study evaluating the safety and efficacy of belamaf combined with novel agents, including GSK3174998 (OX40 agonist), feladilimab (an ICOS; GSK3359609), nirogacestat (a gamma-secretase inhibitor; PF-03084014) and dostarlimab (a PD-1 blocker) versus belamaf monotherapy for patients with relapsed/refractory multiple myeloma. Clinical trial registration: NCT04126200 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Ajay K Nooka
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Katja Weisel
- Department of Oncology, Hematology & Bone Marrow Transplantation, University Medical Center of Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Niels Wcj van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - David Routledge
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Paula Rodriguez Otero
- Centro de Investigación Médica Aplicada, Clínica Universidad de Navarra-Pamplona, Navarra, 31008, Spain
| | - Kevin Song
- Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Hang Quach
- Department of Haematology, University of Melbourne, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia
| | - Natalie Callander
- Carbone Cancer Center, University of Wisconsin, Madison, WI WI 53705, USA
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Suzanne Trudel
- Department of Medicine, Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | | | - Ellie Im
- GlaxoSmithKline, Waltham, MA 02451, USA
| | - Shinta Cheng
- SpringWorks Therapeutics, Stamford, CT 06902, USA
| | - L Smith
- SpringWorks Therapeutics, Stamford, CT 06902, USA
| | - Nahi Hareth
- Department of Medicine, Karolinska University Hospital, Stockholm, SE 171 76, Sweden
| | | | - Maria Brouch
- GlaxoSmithKline, Upper Providence, PA 19426, USA
| | | | - Sofia Paul
- GlaxoSmithKline, Upper Providence, PA 19426, USA
| | | | - Ira Gupta
- GlaxoSmithKline, Upper Providence, PA 19426, USA
| | | | - Paul Richardson
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|