1
|
Mudambi S, Fitzgerald ME, Washington DL, Pera PJ, Huss WJ, Paragh G. Dual targeting of KDM1A and antioxidants is an effective anticancer strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.597953. [PMID: 38915482 PMCID: PMC11195178 DOI: 10.1101/2024.06.12.597953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Lysine Specific Demethylase 1 (KDM1A / LSD1) regulates mitochondrial respiration and stabilizes HIF-1A (hypoxia-inducible factor 1A). HIF-1A modulates reactive oxygen species (ROS) levels by increasing cellular glucose uptake, glycolysis, and endogenous antioxidants. The role of KDM1A in cellular ROS response has not previously been described. We determined the role of KDM1A in regulating the ROS response and the utility of KDM1A inhibitors in combination with ROS-inducing cancer therapies. Our results show that KDM1A inhibition sensitized cells to oxidative stress and increased total cellular ROS, which was mitigated by treatment with the antioxidant N-acetyl cysteine. KDM1A inhibition decreased basal mitochondrial respiration and impaired induction of HIF-1A after ROS exposure. Overexpression of HIF-1A salvaged cells from KDM1A inhibition enhanced sensitivity to ROS. Thus we found that increased sensitivity of ROS after KDM1A inhibition was mediated by HIF-1A and depletion of endogenous glutathione. We also show that KDM1A-specific inhibitor bizine synergized with antioxidant-depleting therapies, buthionine sulfoximine, and auranofin in rhabdomyosarcoma cell lines (Rh28 and Rh30). In this study, we describe a novel role for KDM1A in regulating HIF-1A functions under oxidative stress and found that dual targeting of KDM1A and antioxidant systems may serve as an effective combination anticancer strategy.
Collapse
Affiliation(s)
- Shaila Mudambi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Megan E Fitzgerald
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Deschana L Washington
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Paula J Pera
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Wendy J Huss
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, United States 14263
| |
Collapse
|
2
|
Pominova D, Ryabova A, Skobeltsin A, Markova I, Linkov K, Romanishkin I. The use of methylene blue to control the tumor oxygenation level. Photodiagnosis Photodyn Ther 2024; 46:104047. [PMID: 38503388 DOI: 10.1016/j.pdpdt.2024.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Hypoxia is a characteristic feature of many tumors. It promotes tumor proliferation, metastasis, and invasion and can reduce the effectiveness of many types of cancer treatment. OBJECTIVE The aim of this study was to investigate the pharmacokinetics of methylene blue (MB) and its impact on the tumor oxygenation level at mouse Lewis lung carcinoma (LLC) model using spectroscopic methods. APPROACH The pharmacokinetics of MB were studied qualitatively and quantitatively using video fluorescence imaging and fluorescence spectroscopy. The degree of hemoglobin oxygenation in vivo was examined by calculating hemoglobin optical absorption from the measured diffuse reflectance spectra. The distribution of MB fluorescence and the lifetime of NADH were analyzed using laser scanning microscopy and fluorescence lifetime imaging microscopy (FLIM) to assess cellular metabolism. RESULTS After intravenous administration of MB at 10-20 mg/kg, it quickly transitioned in the tumor to a colorless leucomethylene blue, with maximum accumulation in the tumor occurring after 5-10 min. A concentration of 10 mg/kg resulted in a relative increase of the tumor oxygenation level for small tumors (volume 50-75 mm3) and normal tissue 120 min after the introduction of MB. A shift in tumor metabolism towards oxidative phosphorylation (according to the lifetime of the NADH coenzyme) was measured using FLIM method after intravenous administration of 10 mg/kg of MB. Intravenous administration of MB at 20 mg/kg results in a long-term decrease in oxygenation, which persisted for at least 120 min after the administration and did not return to its initial level. CONCLUSIONS Administration of MB at 10 mg/kg shown to increase tumor oxygenation level, potentially leading to more effective antitumor therapy. However, at higher doses (20 mg/kg), MB may cause long-term decrease in oxygenation.
Collapse
Affiliation(s)
- Daria Pominova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI, Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI, Moscow, Russia
| | - Alexey Skobeltsin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI, Moscow, Russia
| | - Inessa Markova
- National Research Nuclear University MEPhI, Moscow, Russia
| | - Kirill Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Igor Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
5
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
6
|
Lee SE, Park S, Yi S, Choi NR, Lim MA, Chang JW, Won HR, Kim JR, Ko HM, Chung EJ, Park YJ, Cho SW, Yu HW, Choi JY, Yeo MK, Yi B, Yi K, Lim J, Koh JY, Lee MJ, Heo JY, Yoon SJ, Kwon SW, Park JL, Chu IS, Kim JM, Kim SY, Shan Y, Liu L, Hong SA, Choi DW, Park JO, Ju YS, Shong M, Kim SK, Koo BS, Kang YE. Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses. Nat Commun 2024; 15:1163. [PMID: 38331894 PMCID: PMC10853200 DOI: 10.1038/s41467-024-45366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seongyeol Park
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Na Rae Choi
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Mi Ae Lim
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Je Ryong Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hye Mi Ko
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jae Chung
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Won Yu
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - June Young Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Boram Yi
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Kijong Yi
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Joonoh Lim
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Jun-Young Koh
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Min Jeong Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Young Heo
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jong-Lyul Park
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
| | - In Sun Chu
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Deajeon, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Deajeon, Republic of Korea
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yujuan Shan
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lihua Liu
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sung-A Hong
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Wook Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, USA
| | - Young Seok Ju
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea.
| | - Bon Seok Koo
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Wang WH, Kao YC, Hsieh CH, Tsai SY, Cheung CHY, Huang HC, Juan HF. Multiomics Reveals Induction of Neuroblastoma SK-N-BE(2)C Cell Death by Mitochondrial Division Inhibitor 1 through Multiple Effects. J Proteome Res 2024; 23:301-315. [PMID: 38064546 DOI: 10.1021/acs.jproteome.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondrial dynamics. However, its specific effects beyond Drp1 inhibition remain to be confirmed. In this study, we employed integrative proteomics and phosphoproteomics to delve into the molecular responses induced by Mdivi-1 in SK-N-BE(2)C cells. A total of 3070 proteins and 1945 phosphorylation sites were identified, with 880 of them represented as phosphoproteins. Among these, 266 proteins and 97 phosphorylation sites were found to be sensitive to the Mdivi-1 treatment. Functional enrichment analysis unveiled their involvement in serine biosynthesis and extrinsic apoptotic signaling pathways. Through targeted metabolomics, we observed that Mdivi-1 enhanced intracellular serine biosynthesis while reducing the production of C24:1-ceramide. Within these regulated phosphoproteins, dynamic dephosphorylation of proteasome subunit alpha type 3 serine 250 (PSMA3-S250) occurred after Mdivi-1 treatment. Further site-directed mutagenesis experiments revealed that the dephosphorylation-deficient mutant PSMA3-S250A exhibited a decreased cell survival. This research confirms that Mdivi-1's inhibition of mitochondrial division leads to various side effects, ultimately influencing cell survival, rather than solely targeting Drp1 inhibition.
Collapse
Affiliation(s)
- Wei-Hsuan Wang
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Kao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chiao-Hui Hsieh
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
| | - Shin-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
8
|
Dutta SD, Moniruzzaman M, Hexiu J, Sarkar S, Ganguly K, Patel DK, Mondal J, Lee YK, Acharya R, Kim J, Lim KT. Polyphenolic Carbon Quantum Dots with Intrinsic Reactive Oxygen Species Amplification for Two-Photon Bioimaging and In Vivo Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905899 DOI: 10.1021/acsami.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 μg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient •OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, Fengtai, Beijing 100069, China
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk 37673, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Rumi Acharya
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
9
|
Li Y, Li C, Luo T, Yue T, Xiao W, Yang L, Zhang Z, Han F, Long P, Hu Y. Progress in the Treatment of High Altitude Cerebral Edema: Targeting REDOX Homeostasis. J Inflamm Res 2023; 16:2645-2660. [PMID: 37383357 PMCID: PMC10296571 DOI: 10.2147/jir.s415695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
With the increasing of altitude activities from low-altitude people, the study of high altitude cerebral edema (HACE) has been revived. HACE is a severe acute mountain sickness associated with exposure to hypobaric hypoxia at high altitude, often characterized by disturbance of consciousness and ataxia. As for the pathogenesis of HACE, previous studies suggested that it might be related to the disorder of cerebral blood flow, the destruction of blood-brain barrier and the injury of brain parenchyma cells caused by inflammatory factors. In recent years, studies have confirmed that the imbalance of REDOX homeostasis is also involved in the pathogenesis of HACE, which mainly leads to abnormal activation of microglia and destruction of tight junction of vascular endothelial cells through the excessive production of mitochondrial-related reactive oxygen species. Therefore, this review summarizes the role of REDOX homeostasis and the potential of the treatment of REDOX homeostasis in HACE, which is of great significance to expand the understanding of the pathogenesis of HACE. Moreover, it will also be helpful to further study the possible therapy of HACE related to the key link of REDOX homeostasis.
Collapse
Affiliation(s)
- Yubo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Chengming Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Zaiyuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Fei Han
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Yonghe Hu
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants (Basel) 2023; 12:antiox12010131. [PMID: 36670993 PMCID: PMC9854433 DOI: 10.3390/antiox12010131] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species (ROS) have been described to induce a broad range of redox-dependent signaling reactions in physiological conditions. Nevertheless, an excessive accumulation of ROS leads to oxidative stress, which was traditionally considered as detrimental for cells and organisms, due to the oxidative damage they cause to biomolecules. During ageing, elevated ROS levels result in the accumulation of damaged proteins, which may exhibit altered enzymatic function or physical properties (e.g., aggregation propensity). Emerging evidence also highlights the relationship between oxidative stress and age-related pathologies, such as protein misfolding-based neurodegenerative diseases (e.g., Parkinson's (PD), Alzheimer's (AD) and Huntington's (HD) diseases). In this review we aim to introduce the role of oxidative stress in physiology and pathology and then focus on the state-of-the-art techniques available to detect and quantify ROS and oxidized proteins in live cells and in vivo, providing a guide to those aiming to characterize the role of oxidative stress in ageing and neurodegenerative diseases. Lastly, we discuss recently published data on the role of oxidative stress in neurological disorders.
Collapse
|
12
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
13
|
The Combination of Niacinamide, Vitamin C, and PDRN Mitigates Melanogenesis by Modulating Nicotinamide Nucleotide Transhydrogenase. Molecules 2022; 27:molecules27154923. [PMID: 35956878 PMCID: PMC9370691 DOI: 10.3390/molecules27154923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.
Collapse
|
14
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Raimondi V, Ciotti G, Gottardi M, Ciccarese F. 2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines 2022; 10:biomedicines10061359. [PMID: 35740380 PMCID: PMC9220225 DOI: 10.3390/biomedicines10061359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
The oncometabolite 2-hydroxyglutarate (2-HG) plays a key role in differentiation blockade and metabolic reprogramming of cancer cells. Approximatively 20–30% of acute myeloid leukemia (AML) cases carry mutations in the isocitrate dehydrogenase (IDH) enzymes, leading to a reduction in the Krebs cycle intermediate α-ketoglutarate (α-KG) to 2-HG. Relapse and chemoresistance of AML blasts following initial good response to standard therapy account for the very poor outcome of this pathology, which represents a great challenge for hematologists. The decrease of 2-HG levels through pharmacological inhibition of mutated IDH enzymes induces the differentiation of AML blasts and sensitizes leukemic cells to several anticancer drugs. In this review, we provide an overview of the main genetic mutations in AML, with a focus on IDH mutants and the role of 2-HG in AML pathogenesis. Moreover, we discuss the impact of high levels of 2-HG on the response of AML cells to antileukemic therapies and recent evidence for highly efficient combinations of mutant IDH inhibitors with other drugs for the management of relapsed/refractory (R/R) AML.
Collapse
Affiliation(s)
- Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
- Correspondence:
| | - Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Francesco Ciccarese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| |
Collapse
|
16
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
17
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
18
|
Jung M, Lee K, Im Y, Seok SH, Chung H, Kim DY, Han D, Lee CH, Hwang EH, Park SY, Koh J, Kim B, Nikas IP, Lee H, Hwang D, Ryu HS. Nicotinamide (niacin) supplement increases lipid metabolism and ROS‐induced energy disruption in triple‐negative breast cancer: potential for drug repositioning as an anti‐tumor agent. Mol Oncol 2022; 16:1795-1815. [PMID: 35278276 PMCID: PMC9067146 DOI: 10.1002/1878-0261.13209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolic dysregulation is an important hallmark of cancer. Nicotinamide (NAM), a water‐soluble amide form of niacin (vitamin B3), is currently available as a supplement for maintaining general physiologic functions. NAM is a crucial regulator of mitochondrial metabolism and redox reactions. In this study, we aimed to identify the mechanistic link between NAM‐induced metabolic regulation and the therapeutic efficacy of NAM in triple‐negative breast cancer (TNBC). The combined analysis using multiomics systems biology showed that NAM decreased mitochondrial membrane potential and ATP production, but increased the activities of reverse electron transport (RET), fatty acid β‐oxidation and glycerophospholipid/sphingolipid metabolic pathways in TNBC, collectively leading to an increase in the levels of reactive oxygen species (ROS). The increased ROS levels triggered apoptosis and suppressed tumour growth and metastasis of TNBC in both human organoids and xenograft mouse models. Our results showed that NAM treatment leads to cancer cell death in TNBC via mitochondrial dysfunction and activation of ROS by bifurcating metabolic pathways (RET and lipid metabolism); this provides insights into the repositioning of NAM supplement as a next‐generation anti‐metabolic agent for TNBC treatment.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Kyung‐Min Lee
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
| | - Yebin Im
- School of Biological Sciences Seoul National University Seoul Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Da Young Kim
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
| | - Cheng Hyun Lee
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Eun Hye Hwang
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Soo Young Park
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Jiwon Koh
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Bohyun Kim
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Ilias P Nikas
- School of Medicine European University Cyprus 2404 Nicosia Cyprus
| | - Hyebin Lee
- Department of Radiation Oncology Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences Seoul National University Seoul Republic of Korea
| | - Han Suk Ryu
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| |
Collapse
|
19
|
Bharath LP, Regan T, Conway R. Regulation of Immune Cell Function by Nicotinamide Nucleotide Transhydrogenase. Am J Physiol Cell Physiol 2022; 322:C666-C673. [PMID: 35138175 PMCID: PMC8977145 DOI: 10.1152/ajpcell.00607.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox homeostasis is elemental for the normal physiology of all cell types. Cells use multiple mechanisms to regulate the redox balance tightly. The onset and progression of many metabolic and aging-associated diseases occur due to the dysregulation of redox homeostasis. Thus, it is critical to identify and therapeutically target mechanisms that precipitate abnormalities in redox balance. Reactive oxygen species (ROS) produced within the immune cells regulate homeostasis, hyperimmune and hypoimmune cell responsiveness, apoptosis, immune response to pathogens, and tumor immunity. Immune cells have both cytosolic and organelle-specific redox regulatory systems to maintain appropriate levels of ROS. Nicotinamide nucleotide transhydrogenase (NNT) is an essential mitochondrial redox regulatory protein. Dysregulation of NNT function prevents immune cells from mounting an adequate immune response to pathogens, promotes a chronic inflammatory state associated with aging and metabolic diseases, and initiates conditions related to a dysregulated immune system such as autoimmunity. While many studies have reported on NNT in different cell types, including cancer cells, relatively few studies have explored NNT in immune cells. This review provides an overview of NNT and focuses on the current knowledge of NNT in the immune cells.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts, United States
| | - Thomas Regan
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts, United States
| | - Rachel Conway
- Department of Nutrition and Public Health, Merrimack College, North Andover, Massachusetts, United States
| |
Collapse
|
20
|
Silic-Benussi M, Sharova E, Ciccarese F, Cavallari I, Raimondi V, Urso L, Corradin A, Kotler H, Scattolin G, Buldini B, Francescato S, Basso G, Minuzzo SA, Indraccolo S, D'Agostino DM, Ciminale V. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells. Redox Biol 2022; 51:102268. [PMID: 35248829 PMCID: PMC8899410 DOI: 10.1016/j.redox.2022.102268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | | | - Vittoria Raimondi
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Loredana Urso
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Alberto Corradin
- Istituto Tecnico Industriale Statale "Alessandro Rossi", Vicenza, Italy
| | - Harel Kotler
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Barbara Buldini
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Samuela Francescato
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Sonia A Minuzzo
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Stefano Indraccolo
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Donna M D'Agostino
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
da Silveira LM, Pedra NS, Bona NP, Spohr L, da Silva Dos Santos F, Saraiva JT, Alvez FL, de Moraes Meine B, Spanevello RM, Stefanello FM, Soares MSP. Selective in vitro anticancer effect of blueberry extract (Vaccinium virgatum) against C6 rat glioma: exploring their redox status. Metab Brain Dis 2022; 37:439-449. [PMID: 34748129 DOI: 10.1007/s11011-021-00867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the anticancer potential of blueberry extract (Vaccinium virgatum) against a C6 rat glioma lineage. Cultures of the C6 cells were exposed to blueberry extract at concentrations of 50 to 600 µg/mL for 12, 24, 48, or 72 h and then evaluated for cell viability, proliferation, migration, colony formation and oxidative stress. We also evaluated the effects of blueberry extract on primary rat cortical astrocytes. Our results show that treatment with blueberry extract did not alter the viability or proliferation of normal primary astrocytes but it did significantly reduce the viability in 21.54 % after 48 h and proliferation in 8.59 % after 24 h of C6 cells at 200 µg/mL. We also observed a reduction in the size of the colonies of 29.99 % at 100 µg/mL when compared to the control cells and cell migration was also reduced at 50 µg/mL. After 72 h, there was a reduction in the reactive oxygen species levels ranging from 46.26 to 34.73 %, in addition to a 380.2 % increase in total thiol content. Superoxide dismutase, catalase, and glutathione S-transferase activities were also enhanced when compared to the control. Taken together this data suggests that blueberry extract exerts some selective anticancer activity in C6 glioma cells.
Collapse
Affiliation(s)
- Larissa Menezes da Silveira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Nathalia Stark Pedra
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Francieli da Silva Dos Santos
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliane Torchelsen Saraiva
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fernando Lopez Alvez
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Bernardo de Moraes Meine
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil.
| |
Collapse
|
22
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Colapietro A, Rossetti A, Mancini A, Martellucci S, Ocone G, Pulcini F, Biordi L, Cristiano L, Mattei V, Delle Monache S, Marampon F, Gravina GL, Festuccia C. Multiple Antitumor Molecular Mechanisms Are Activated by a Fully Synthetic and Stabilized Pharmaceutical Product Delivering the Active Compound Sulforaphane (SFX-01) in Preclinical Model of Human Glioblastoma. Pharmaceuticals (Basel) 2021; 14:1082. [PMID: 34832864 PMCID: PMC8626029 DOI: 10.3390/ph14111082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Giuseppe Ocone
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Fanny Pulcini
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Leda Biordi
- Laboratory of Medical Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Division of Human Anatomy, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
| | - Simona Delle Monache
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy;
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L’Aquila, 67100 L’Aquila, Italy
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| |
Collapse
|
24
|
Bourgeais V, Zehraoui F, Ben Hamdoune M, Hanczar B. Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data. BMC Bioinformatics 2021; 22:455. [PMID: 34551707 PMCID: PMC8456586 DOI: 10.1186/s12859-021-04370-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With the rapid advancement of genomic sequencing techniques, massive production of gene expression data is becoming possible, which prompts the development of precision medicine. Deep learning is a promising approach for phenotype prediction (clinical diagnosis, prognosis, and drug response) based on gene expression profile. Existing deep learning models are usually considered as black-boxes that provide accurate predictions but are not interpretable. However, accuracy and interpretation are both essential for precision medicine. In addition, most models do not integrate the knowledge of the domain. Hence, making deep learning models interpretable for medical applications using prior biological knowledge is the main focus of this paper. RESULTS In this paper, we propose a new self-explainable deep learning model, called Deep GONet, integrating the Gene Ontology into the hierarchical architecture of the neural network. This model is based on a fully-connected architecture constrained by the Gene Ontology annotations, such that each neuron represents a biological function. The experiments on cancer diagnosis datasets demonstrate that Deep GONet is both easily interpretable and highly performant to discriminate cancer and non-cancer samples. CONCLUSIONS Our model provides an explanation to its predictions by identifying the most important neurons and associating them with biological functions, making the model understandable for biologists and physicians.
Collapse
Affiliation(s)
- Victoria Bourgeais
- IBISC, Univ Evry, Université Paris-Saclay, 91020 Évry-Courcouronnes, France
| | - Farida Zehraoui
- IBISC, Univ Evry, Université Paris-Saclay, 91020 Évry-Courcouronnes, France
| | | | - Blaise Hanczar
- IBISC, Univ Evry, Université Paris-Saclay, 91020 Évry-Courcouronnes, France
| |
Collapse
|
25
|
Rombouts C, De Spiegeleer M, Van Meulebroek L, Vanhaecke L, De Vos WH. Comprehensive polar metabolomics and lipidomics profiling discriminates the transformed from the non-transformed state in colon tissue and cell lines. Sci Rep 2021; 11:17249. [PMID: 34446738 PMCID: PMC8390467 DOI: 10.1038/s41598-021-96252-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most lethal disease worldwide. Despite an urgent need for therapeutic advance, selective target identification in a preclinical phase is hampered by molecular and metabolic variations between cellular models. To foster optimal model selection from a translational perspective, we performed untargeted ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry-based polar metabolomics and lipidomics to non-transformed (CCD841-CON and FHC) and transformed (HCT116, HT29, Caco2, SW480 and SW948) colon cell lines as well as tissue samples from ten colorectal cancer patients. This unveiled metabolic signatures discriminating the transformed from the non-transformed state. Metabolites involved in glutaminolysis, tryptophan catabolism, pyrimidine, lipid and carnitine synthesis were elevated in transformed cells and cancerous tissue, whereas those involved in the glycerol-3-phosphate shuttle, urea cycle and redox reactions were lowered. The degree of glutaminolysis and lipid synthesis was specific to the colon cancer cell line at hand. Thus, our study exposed pathways that are specifically associated with the transformation state and revealed differences between colon cancer cell lines that should be considered when targeting cancer-associated pathways.
Collapse
Affiliation(s)
- Caroline Rombouts
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.,Department of Molecular Biotechnology, Cell Systems and Imaging, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Antwerp University, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Margot De Spiegeleer
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, BT7 1NN, Northern Ireland, UK.
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Antwerp University, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
26
|
Mo J, Mai Le NP, Priefer R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. Eur J Med Chem 2021; 225:113770. [PMID: 34403979 DOI: 10.1016/j.ejmech.2021.113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023]
Abstract
The identification of ruthenium(II) polypyridyl complexes as photosensitizers in photodynamic therapy (PDT) for the treatment of cancer is progressing rapidly. Due to their favorable photophysical and photochemical properties, Ru(II)-based photosensitizers have absorption in the visible spectrum, can be irradiated via one- and two-photon excitation within the PDT window, and yield potent oxygen-dependent and/or oxygen-independent photobiological activities. Herein, we present a current overview of the mechanisms of action and subcellular localization of Ru(II)-based photosensitizers in the treatment of cancer. These photosensitizers are highlighted from a medicinal chemistry and chemical biology perspective. However, although this field is burgeoning, challenges and limitations remain in the photosensitization strategies and clinical translation.
Collapse
Affiliation(s)
- Jiancheng Mo
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ngoc Phuong Mai Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
27
|
Abstract
Oxidative stress and reactive oxygen species (ROS) are central to many physiological and pathophysiological processes. However, due to multiple technical challenges, it is hard to capture a comprehensive readout of the cell, involving both biochemical and functional status. We addressed this problem by developing a fully parallelized workflow for metabolomics (providing absolute quantities for > 100 metabolites including TCA cycle, pentose phosphate pathway, purine metabolism, glutathione metabolism, cysteine and methionine metabolism, glycolysis and gluconeogenesis) and live cell imaging microscopy. The correlative imaging strategy was applied to study morphological and metabolic adaptation of cancer cells upon short-term hydrogen peroxide (H2O2) exposure in vitro. The combination provided rich metabolic information at the endpoint of exposure together with imaging of mitochondrial effects. As a response, superoxide concentrations were elevated with a strong mitochondrial localization, and multi-parametric image analysis revealed a shift towards fragmentation. In line with this, metabolism reflected both the impaired mitochondrial function and shifts to support the first-line cellular defense and compensate for energy loss. The presented workflow combining high-end technologies demonstrates the applicability for the study of short-term oxidative stress, but it can be suitable for the in-depth study of various short-term oxidative and other cellular stress-related phenomena.
Collapse
|
28
|
Galeaz C, Totis C, Bisio A. Radiation Resistance: A Matter of Transcription Factors. Front Oncol 2021; 11:662840. [PMID: 34141616 PMCID: PMC8204019 DOI: 10.3389/fonc.2021.662840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, radiation therapy is one of the standard therapies for cancer treatment. Since the first applications, the field of radiotherapy has constantly improved, both in imaging technologies and from a dose-painting point of view. Despite this, the mechanisms of resistance are still a great problem to overcome. Therefore, a more detailed understanding of these molecular mechanisms will allow researchers to develop new therapeutic strategies to eradicate cancer effectively. This review focuses on different transcription factors activated in response to radiotherapy and, unfortunately, involved in cancer cells’ survival. In particular, ionizing radiations trigger the activation of the immune modulators STAT3 and NF-κB, which contribute to the development of radiation resistance through the up-regulation of anti-apoptotic genes, the promotion of proliferation, the alteration of the cell cycle, and the induction of genes responsible for the Epithelial to Mesenchymal Transition (EMT). Moreover, the ROS-dependent damaging effects of radiation therapy are hampered by the induction of antioxidant enzymes by NF-κB, NRF2, and HIF-1. This protective process results in a reduced effectiveness of the treatment, whose mechanism of action relies mainly on the generation of free oxygen radicals. Furthermore, the previously mentioned transcription factors are also involved in the maintenance of stemness in Cancer Stem Cells (CSCs), a subset of tumor cells that are intrinsically resistant to anti-cancer therapies. Therefore, combining standard treatments with new therapeutic strategies targeted against these transcription factors may be a promising opportunity to avoid resistance and thus tumor relapse.
Collapse
Affiliation(s)
- Chiara Galeaz
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Cristina Totis
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
29
|
Sobiepanek A, Paone A, Cutruzzolà F, Kobiela T. Biophysical characterization of melanoma cell phenotype markers during metastatic progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:523-542. [PMID: 33730175 PMCID: PMC8190004 DOI: 10.1007/s00249-021-01514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Melanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Tomasz Kobiela
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
30
|
Nuclear factor-κB signaling inhibitors revert multidrug-resistance in breast cancer cells. Chem Biol Interact 2021; 340:109450. [PMID: 33775688 DOI: 10.1016/j.cbi.2021.109450] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 01/07/2023]
Abstract
The emergence of multidrug resistance (MDR) is among the crucial obstacles to breast cancer therapy success. The transcription factor nuclear factor (NF)-κB is correlated to the pathogenesis of breast cancer and resistance to therapy. NF-κB augments the expression of MDR1 gene, which encodes for the membrane transporter P-glycoprotein (P-gp) in cancer cells. Since NF-κB activity is considered to be relatively high in particular when it comes to breast cancer, in the present work, we proposed that the inhibition of NF-κB activity can augment and enhance the sensitivity of breast cancer cells to chemotherapy such as doxorubicin (DOX) by virtue of MDR modulation. Our results demonstrated that the DOX-resistant MCF-7 and MDA-MB-231 clones exhibit higher NF-κB (p65) activity, which is linked to the upregulated expression of ABCB1 and ABCC1 transporter proteins. Combined treatment with NF-kB inhibitors (pentoxifylline and bortezomib) sensitized the resistant breast cancer cells to DOX. Such synergy was compromised by forced overexpression of p65. The DOX/NF-κB inhibitor combinations hampered NF-κB (p65) activation and downregulated MDR efflux transporters' level. Breast cancer cell migration was sharply suppressed in cells co-treated with DOX/NF-κB inhibitors. The same treatments successfully enhanced DOX-mediated induction of apoptosis, which is reflected by the elevated ratio of annexin-V/PI positively stained cells, along with the activation of other apoptotic markers. In conclusion, the data generated from this study provide insights for future translational investigations introducing the use of the clinically approved NF-κB inhibitors as an adjuvant in the treatment protocols of resistant breast cancer to overcome the multidrug resistance and enhance the therapeutic outcomes.
Collapse
|
31
|
Outcomes in hepatocellular carcinoma patients undergoing sorafenib treatment: toxicities, cellular oxidative stress, treatment adherence, and quality of life. Anticancer Drugs 2021; 31:523-527. [PMID: 32107349 DOI: 10.1097/cad.0000000000000902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The study of toxicities induced by sorafenib, as well as the identification of possible mechanisms and biomarkers of these toxicities, is important to improve the treatment and quality of life of hepatocellular carcinoma (HCC) patients. This study focused on toxicities, cellular oxidative stress, adherence, and quality of life of 11 patients with HCC treated with sorafenib. Dermatotoxicity, myelotoxicity, gastro toxicity, nephrotoxicity, pain, and fatigue were investigated. For oxidative stress analysis, the peripheral blood mononuclear cells were isolated and mitochondrial superoxide anion production was measured using MitoSOX Red test. Medication adherence was evaluated based on Morisky-Green and MedTake tests. Quality of life assessment was performed using EORTC QLQ C-30 and QLQ HCC18 questionnaires. The results showed that hand-foot syndrome (45.5%), thrombocytopenia (45.5%), diarrhea (54.5%), pain (54.5%), and fatigue (36.4%) were the most prevalent toxicities. A non-statistically significant change in the levels of superoxide anion was observed after the sorafenib treatment (Wilcoxon test, P = 0.4131). Moreover, 81.8% of patients had high adherence, 100% knew the correct indication of sorafenib, 81.8% knew the correct intake and drug regimen, and 36.4% knew the correct dose of antineoplastic. There was a significant worsening in the emotional and pain domains of quality of life after the sorafenib (Wilcoxon test, P = 0.0313 and P = 0.0313, respectively). A production of superoxide anion was not correlated with toxicities (Spearman's correlation and Mann-Whitney U tests, P > 0.05). This study suggests that oxidative stress might not be the mechanism of sorafenib toxicities.
Collapse
|
32
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|
33
|
Ding Z, Ericksen RE, Lee QY, Han W. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Amino Acids 2021; 53:1807-1815. [PMID: 33646427 DOI: 10.1007/s00726-021-02961-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.
Collapse
Affiliation(s)
- Zhaobing Ding
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Russell E Ericksen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Qian Yi Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore.
| |
Collapse
|
34
|
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors. Cell Syst 2021; 12:68-81.e11. [PMID: 33476554 PMCID: PMC7905848 DOI: 10.1016/j.cels.2020.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
Collapse
Affiliation(s)
- Joshua E. Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Tom E. Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David A. Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA,Corresponding Author: Correspondence:
| |
Collapse
|
35
|
Deshmukh S, Saini S. Phenotypic Heterogeneity in Tumor Progression, and Its Possible Role in the Onset of Cancer. Front Genet 2020; 11:604528. [PMID: 33329751 PMCID: PMC7734151 DOI: 10.3389/fgene.2020.604528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity among isogenic cells/individuals has been known for at least 150 years. Even Mendel, working on pea plants, realized that not all tall plants were identical. However, Mendel was more interested in the discontinuous variation between genetically distinct individuals. The concept of environment dictating distinct phenotypes among isogenic individuals has since been shown to impact the evolution of populations in numerous examples at different scales of life. In this review, we discuss how phenotypic heterogeneity and its evolutionary implications exist at all levels of life, from viruses to mammals. In particular, we discuss how a particular disease condition (cancer) is impacted by heterogeneity among isogenic cells, and propose a potential role that phenotypic heterogeneity might play toward the onset of the disease.
Collapse
Affiliation(s)
- Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
36
|
Depleting deubiquitinating enzymes promotes apoptosis in glioma cell line via RNA binding proteins SF2/ASF1. Biochem Biophys Rep 2020; 24:100846. [PMID: 33319070 PMCID: PMC7726668 DOI: 10.1016/j.bbrep.2020.100846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
USP5 and USP8 (Deubiquitinating enzyme) are highly overexpressed and more recognized as poor prognosis marker in various cancers. Depleting USP5 or USP8 to assess the synergism with proteasome inhibitor (Bortezomib) were measured. Furthermore, in present finding USP5 cooperates hnRNPA1 & USP8 cooperate SF2/ASF1, therefore gain in expression of either hnRNPA1 or SF2/ASF1 is sufficient to promote cell survival. On the other side, apoptosis markers were more pronounced in U87 or T98G cells devoid of either USP5 or USP8. However, apparent increase in SF2/ASF1 in absence of USP5, providing resistant factor is new. Antiapoptotic activity due to rise in SF2/ASF1 was validated after co-knock down of SF2/ASF1 in addition to USP5 induces more apoptosis comparing to individual knock down of USP5 or SF2/ASF1. This reveals SF2/ASF1 (RNA binding protein) delayed the apoptotic effect due to loss of USP5, lends ubiquitination of hnRNPA1. In presence of USP5, PI3 kinase inhibition promotes even more interaction between USP5 and hnRNPA1, thereby stabilizes hnRNPA1 in U87MG. In that way hnRNPA1 and SF2/ASF1 impart oncogenic activity. In conclusion, siRNA based strategy against USP5 is not enough to inhibit glioma, moreover targeting additionally SF2/ASF1 by knocking down USP8 is suitably more effective to deal with glioma tumour reoccurrence by indirectly targeting both SF2/ASF1 and hnRNPA1 oncogene. Deubiquitinating enzyme USP5 interact with hnRNPA1 and promotes hnRNPA1 ubiquitination is PI3 Kinase dependent. USP5 knock down in glioma cell, stabilizes SF2/ASF1 expression act as resistance factor. Depleting SF2/ASF1 and USP5 synergistically promotes apoptosis in glioma cell.
Collapse
|
37
|
De Oliveira MP, Liesa M. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival. Cells 2020; 9:E2600. [PMID: 33291682 PMCID: PMC7761891 DOI: 10.3390/cells9122600] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tumors remodel their metabolism to support anabolic processes needed for replication, as well as to survive nutrient scarcity and oxidative stress imposed by their changing environment. In most healthy tissues, the shift from anabolism to catabolism results in decreased glycolysis and elevated fatty acid oxidation (FAO). This change in the nutrient selected for oxidation is regulated by the glucose-fatty acid cycle, also known as the Randle cycle. Briefly, this cycle consists of a decrease in glycolysis caused by increased mitochondrial FAO in muscle as a result of elevated extracellular fatty acid availability. Closing the cycle, increased glycolysis in response to elevated extracellular glucose availability causes a decrease in mitochondrial FAO. This competition between glycolysis and FAO and its relationship with anabolism and catabolism is conserved in some cancers. Accordingly, decreasing glycolysis to lactate, even by diverting pyruvate to mitochondria, can stop proliferation. Moreover, colorectal cancer cells can effectively shift to FAO to survive both glucose restriction and increases in oxidative stress at the expense of decreasing anabolism. However, a subset of B-cell lymphomas and other cancers require a concurrent increase in mitochondrial FAO and glycolysis to support anabolism and proliferation, thus escaping the competing nature of the Randle cycle. How mitochondria are remodeled in these FAO-dependent lymphomas to preferably oxidize fat, while concurrently sustaining high glycolysis and increasing de novo fatty acid synthesis is unclear. Here, we review studies focusing on the role of mitochondrial FAO and mitochondrial-driven lipid synthesis in cancer proliferation and survival, specifically in colorectal cancer and lymphomas. We conclude that a specific metabolic liability of these FAO-dependent cancers could be a unique remodeling of mitochondrial function that licenses elevated FAO concurrent to high glycolysis and fatty acid synthesis. In addition, blocking this mitochondrial remodeling could selectively stop growth of tumors that shifted to mitochondrial FAO to survive oxidative stress and nutrient scarcity.
Collapse
Affiliation(s)
- Matheus Pinto De Oliveira
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute at UCLA, Los Angeles, CA 90095, USA
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Mokhlesi A, Talkhabi M. Comprehensive transcriptomic analysis identifies novel regulators of lung adenocarcinoma. J Cell Commun Signal 2020; 14:453-465. [PMID: 32415511 PMCID: PMC7642016 DOI: 10.1007/s12079-020-00565-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Lung adenocarcinoma (LA) is a subtype of lung cancer that accounts for about 40% of all lung cancers. Analysis of molecular mechanisms controlling this cancer can help scientists to detect, control and treat LA. Here, a microarray dataset (GSE118370) containing six normal lung (NL) and six LA samples was screened using GEO2R to find differentially expressed genes (DEGs). Then, DAVID, KEGG and ChEA were used to analyze DEGs-related gene ontology, pathways and transcription factors (TFs), respectively. The Protein-protein interaction network for DEGs and TFs was constructed by STRING and Cytoscape. To find microRNAs and metabolites associated with DEGs, miRTarBase and HMDB were used, respectively. It was found that 350 genes were upregulated and 608 genes were downregulated in LA. The upregulated genes or LA-related gens were enriched in biological process and pathways such as extracellular matrix disassembly and p53 signaling pathway, whereas the downregulated genes or NL-related genes were enriched in cell adhesion and cell-surface receptor signaling pathway. ESR1, KIF18B, BIRC5, CHEK1, CCNB1 and AURKA were determined as hub genes for LA. FOXA1 and TFAP2A had the highest number of connectivity in LA-related TFs. hsa-miR-192-5p and hsa-miR-215-5p could target the highest number of LA-related genes. Metabolite analysis showed that Estrone and NADPH were among the top ten metabolites associated with LA-related genes. Taken together, LA-related genes, especially the hub genes, TFs, and metabolites might be used as novel markers for LA, as well as for diagnosis and guiding therapeutic strategies of LA.
Collapse
Affiliation(s)
- Amir Mokhlesi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
39
|
Shen L, Zhou L, Xia M, Lin N, Ma J, Dong D, Sun L. PGC1α regulates mitochondrial oxidative phosphorylation involved in cisplatin resistance in ovarian cancer cells via nucleo-mitochondrial transcriptional feedback. Exp Cell Res 2020; 398:112369. [PMID: 33220258 DOI: 10.1016/j.yexcr.2020.112369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023]
Abstract
Mitochondria play an important role in effective cell energy production and cell survival under stress conditions, such as treatment with chemotherapeutic drugs. Mitochondrial biogenesis is increased in ovarian cancer tissues, which is accompanied by alteration of mitochondrial energy metabolism, structure, and dynamics. These factors are involved in tumorigenesis and apoptosis resistance, highlighting the role of mitochondria in resisting cisplatin toxicity. Cisplatin-resistant ovarian cancer cells are dependent on mitochondrial OXPHOS for energy supply, and intracellular PGC1α-mediated mitochondrial biogenesis levels are increased in this cell line, indicating the important role of mitochondrial oxidative phosphorylation in cisplatin resistance. As PGC1α is a key molecule for integrating and coordinating nuclear DNA and mitochondrial DNA transcriptional machinery, an investigation into the regulatory mechanism PGC1α in mitochondrial energy metabolism via transcription may provide new clues for solving chemotherapy resistance. In the present study, it was demonstrated that inhibiting the expression of PGC1α decreased nuclear and mitochondrial DNA transcription factor expression, leading to increased lactic acid production and decreased cellular oxygen consumption and mitochondrial oxidative phosphorylation. Furthermore, mitochondrial stress-induced ROS production, as a feedback signal from mitochondria to the cell nucleus, increased PGC1α expression in SKOV3/DDP cells, which was involved in mitochondrial oxidative phosphorylation regulation. Collectively, the present study provides evidence that PGC1α-mediated nuclear and mitochondrial transcription feedback regulates energy metabolism and is involved in ovarian cancer cells escaping apoptosis during cisplatin treatment.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Li Zhou
- Department of Obstetrics and Gynecology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Meihui Xia
- Department of Obstetrics, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
40
|
Sonavane M, Hayat F, Makarov M, Migaud ME, Gassman NR. Dihydronicotinamide riboside promotes cell-specific cytotoxicity by tipping the balance between metabolic regulation and oxidative stress. PLoS One 2020; 15:e0242174. [PMID: 33166357 PMCID: PMC7652347 DOI: 10.1371/journal.pone.0242174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100–1000 μM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 μM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Faisal Hayat
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Mikhail Makarov
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Marie E. Migaud
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
41
|
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020; 5:231. [PMID: 33028807 PMCID: PMC7542157 DOI: 10.1038/s41392-020-00326-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy.
Collapse
|
42
|
Novel combination therapy for melanoma induces apoptosis via a gap junction positive feedback mechanism. Oncotarget 2020; 11:3443-3458. [PMID: 32973969 PMCID: PMC7500108 DOI: 10.18632/oncotarget.27732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic melanoma cells overexpressing gap junctions were assayed for their ability to propagate cell death by a novel combination therapy that generates reactive oxygen species (ROS) by both 1) non-thermal plasma (NTP) and 2) tirapazamine (TPZ) under hypoxic conditions. Results demonstrate additive-to-synergistic effects of combination therapy compared to each agent individually. NTP induces highly localized cell death in target areas whereas TPZ partially reduces viability over the total surface area. However, when high gap junction expression was induced in melanoma cells, effects of combination NTP+TPZ therapy was augmented, spreading cell death across the entire plate. Similarly, in vivo studies of human metastatic melanoma in a mouse tumor model demonstrate that the combined effect of NTP+TPZ causes a 90% reduction in tumor volume, specifically in the model expressing gap junctions. Treatment with NTP+TPZ increases gene expression in the apoptotic pathway and oxidative stress while decreasing genes related to cell migration. Immune response was also elicited through differential regulation of cytokines and chemokines, suggesting potential for this therapy to induce a cytotoxic immune response with fewer side effects than current therapies. Interestingly, the gap junction protein, Cx26 was upregulated following treatment with NTP+TPZ and these gap junctions were shown to maintain functionality during the onset of treatment. Therefore, we propose that gap junctions both increase the efficacy of NTP+TPZ and perpetuate a positive feedback mechanism of gap junction expression and tumoricidal activity. Our unique approach to ROS induction in tumor cells with NTP+TPZ shows potential as a novel cancer treatment.
Collapse
|
43
|
Elbehairi SEI, Alfaifi MY, Shati AA, Alshehri MA, Elshaarawy RF, Hafez HS. Role of Pd(II)–chitooligosaccharides–Gboxin analog in oxidative phosphorylation inhibition and energy depletion: Targeting mitochondrial dynamics. Chem Biol Drug Des 2020; 96:1148-1161. [DOI: 10.1111/cbdd.13703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Serag Eldin I. Elbehairi
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
- Cell Culture Lab Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) Giza Egypt
| | - Mohammad Y. Alfaifi
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
| | - Ali A. Shati
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
| | | | - Reda F.M. Elshaarawy
- Chemistry Department Faculty of Science Suez University Suez Egypt
- Institut für Anorganische Chemie und Strukturchemie Heinriche‐Heine‐Universität Düsseldorf DÜSSELDORF Germany
| | - Hani S. Hafez
- Zoology Department Faculty of Science Suez University Suez Egypt
| |
Collapse
|
44
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 DOI: 10.1016/jxcell.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
45
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 PMCID: PMC7439808 DOI: 10.1016/j.ccell.2020.06.001] [Citation(s) in RCA: 1308] [Impact Index Per Article: 261.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
46
|
Ruiz MC, Kljun J, Turel I, Di Virgilio AL, León IE. Comparative antitumor studies of organoruthenium complexes with 8-hydroxyquinolines on 2D and 3D cell models of bone, lung and breast cancer. Metallomics 2020; 11:666-675. [PMID: 30839008 DOI: 10.1039/c8mt00369f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this work was to screen the antitumor actions of two metal organoruthenium-8-hydroxyquinolinato (Ru-hq) complexes to find a potential novel agent for bone, lung and breast chemotherapies. We showed that ruthenium compounds (1 and 2) impaired the cell viability of human bone (MG-63), lung (A549) and breast (MCF7) cancer cells with greater selectivity and specificity than cisplatin. Besides, complexes 1 and 2 decreased proliferation, migration and invasion on cell monolayers at lower concentrations (2.5-10 μM). In addition, both compounds induced genotoxicity revealed by the micronucleus test, which led to G2/M cell cycle arrest and induced the tumor cells to undergo apoptosis. On the other hand, in multicellular 3D models (multicellular spheroids; MCS), 1 and 2 overcame CDDP presenting lower IC50 values only in MCS of lung origin. Moreover, 1 outperformed 2 in MCS of bone and breast origin. Finally, our findings revealed that both compounds inhibited the cell invasion of multicellular spheroids, showing that complex 1 exhibited the most important antimetastatic action. Taken together, these results indicate that compound 1 is an interesting candidate to be tested on in vivo models as a novel strategy for anticancer therapy.
Collapse
Affiliation(s)
- Maria C Ruiz
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
47
|
Lippmann J, Petri K, Fulda S, Liese J. Redox Modulation and Induction of Ferroptosis as a New Therapeutic Strategy in Hepatocellular Carcinoma. Transl Oncol 2020; 13:100785. [PMID: 32416440 PMCID: PMC7283515 DOI: 10.1016/j.tranon.2020.100785] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/20/2023] Open
Abstract
Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation, has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell survival, thus increased levels may trigger ferroptosis in HCC. In our study, we investigated the effect of different ROS modulators and ferroptosis inducers on a human HCC cell line and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments affected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2 and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC.
Collapse
Affiliation(s)
- Jana Lippmann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528, Frankfurt, Germany; Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kathrin Petri
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen Germany; Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen University, Giessen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Juliane Liese
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528, Frankfurt, Germany; Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen Germany; Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen University, Giessen, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
48
|
Yamamoto S, Lee S, Matsuzaki H, Kumagai-Takei N, Yoshitome K, Sada N, Shimizu Y, Ito T, Nishimura Y, Otsuki T. Enhanced expression of nicotinamide nucleotide transhydrogenase (NNT) and its role in a human T cell line continuously exposed to asbestos. ENVIRONMENT INTERNATIONAL 2020; 138:105654. [PMID: 32187573 DOI: 10.1016/j.envint.2020.105654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
The effects of asbestos fibers on human immune cells have not been well documented. We have developed a continuously exposed cell line model using the human T-lymphotropic virus 1 (HTLV-1)-immortalized human T cell line MT-2. Sublines continuously exposed to chrysotile (CH) or crocidolite (CR) showed acquired resistance to asbestos-induced apoptosis following transient and high-dose re-exposure with fibers. These sublines in addition to other immune cells such as natural killer cells or cytotoxic T lymphocytes exposed to asbestos showed a reduction in anti-tumor immunity. In this study, the expression of genes and molecules related to antioxidative stress was examined. Furthermore, complexes related to oxidative phosphorylation were investigated since the production of reactive oxygen species (ROS) is important when considering the effects of asbestos in carcinogenesis and the mechanisms involved in resistance to asbestos-induced apoptosis. In sublines continuously exposed to CH or CR, the expression of thioredoxin decreased. Interestingly, nicotinamide nucleotide transhydrogenase (NNT) expression was markedly enhanced. Thus, knockdown of NNT was then performed. Although the knockdown clones did not show any changes in proliferation or occurrence of apoptosis, these clones showed recovery of ROS production with returning NADPH/NADP+ ratio that increased with decreased production of ROS in continuously exposed sublines. These results indicated that NNT is a key factor in preventing ROS-induced cytotoxicity in T cells continuously exposed to asbestos. Considering that these sublines showed a reduction in anti-tumor immunity, modification of NNT may contribute to recovery of the anti-tumor effects in asbestos-exposed T cells.
Collapse
Affiliation(s)
- Shoko Yamamoto
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan
| | - Suni Lee
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan
| | - Hidenori Matsuzaki
- Department of Life Science, Faculty of Life and Environmental Science, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Naoko Kumagai-Takei
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan
| | - Kei Yoshitome
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan
| | - Nagisa Sada
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan; Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yurika Shimizu
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tastsuo Ito
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan
| | - Yasumitsu Nishimura
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 7010192 Okayama, Japan.
| |
Collapse
|
49
|
Petragnano F, Pietrantoni I, Di Nisio V, Fasciani I, Del Fattore A, Capalbo C, Cheleschi S, Tini P, Orelli S, Codenotti S, Mazzei MA, D'Ermo G, Pannitteri G, Tombolini M, De Cesaris P, Riccioli A, Filippini A, Milazzo L, Vulcano F, Fanzani A, Maggio R, Marampon F, Tombolini V. Modulating the dose-rate differently affects the responsiveness of human epithelial prostate- and mesenchymal rhabdomyosarcoma-cancer cell line to radiation. Int J Radiat Biol 2020; 96:823-835. [PMID: 32149569 DOI: 10.1080/09553002.2020.1739774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Radiation therapy (RT), by using ionizing radiation (IR), destroys cancer cells inducing DNA damage. Despite several studies are continuously performed to identify the best curative dose of IR, the role of dose-rate, IR delivered per unit of time, on tumor control is still largely unknown.Materials and methods: Rhabdomyosarcoma (RMS) and prostate cancer (PCa) cell lines were irradiated with 2 or 10 Gy delivered at dose-rates of 1.5, 2.5, 5.5 and 10.1 Gy/min. Cell-survival rate and cell cycle distribution were evaluated by clonogenic assays and flow cytometry, respectively. The production of reactive oxygen species (ROS) was detected by cytometry. Quantitative polymerase chain reaction assessed the expression of anti-oxidant-related factors including NRF2, SODs, CAT and GPx4 and miRNAs (miR-22, -126, -210, -375, -146a, -34a). Annexin V and caspase-8, -9 and -3 activity were assessed to characterize cell death. Senescence was determined by assessing β-galactosidase (SA-β-gal) activity. Immunoblotting was performed to assess the expression/activation of: i) phosphorylated H2AX (γ-H2AX), markers of DNA double strand breaks (DSBs); ii) p19Kip1/Cip1, p21Waf1/Cip1 and p27Kip1/Cip1, senescence-related-markers; iii) p62, LC3-I and LC3-II, regulators of autophagy; iv) ATM, RAD51, DNA-PKcs, Ku70 and Ku80, mediators of DSBs repair.Results: Low dose-rate (LDR) more efficiently induced apoptosis and senescence in RMS while high dose-rate (HDR) necrosis in PCa. This paralleled with a lower ability of LDR-RMS and HDR-PCa irradiated cells to activate DSBs repair. Modulating the dose rate did not differently affect the anti-oxidant ability of cancer cells.Conclusion: The present results indicate that a stronger cytotoxic effect was induced by modulating the dose-rate in a cancer cell-dependent manner, this suggesting that choose the dose-rate based on the individual patient's tumor characteristics could be strategic for effective RT exposures.
Collapse
Affiliation(s)
- Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Unit Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Sara Cheleschi
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Paolo Tini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Simone Orelli
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | | | - Giuseppe D'Ermo
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Gaetano Pannitteri
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University, Rome, Italy
| | - Mario Tombolini
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Paola De Cesaris
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
50
|
The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int J Mol Sci 2020; 21:ijms21062173. [PMID: 32245255 PMCID: PMC7139706 DOI: 10.3390/ijms21062173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, it is known that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. It is also known that mitochondria, because of their capacity to produce free radicals, play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including the stimulation of permeability transition pore opening. This process leads to mitoptosis and mitophagy, two sequential processes that are a universal route of elimination of dysfunctional mitochondria and is essential to protect cells from the harm due to mitochondrial disordered metabolism. To date, there is significant evidence not only that the above processes are induced by enhanced reactive oxygen species (ROS) production, but also that such production is involved in the other phases of the mitochondrial life cycle. Accumulating evidence also suggests that these effects are mediated through the regulation of the expression and the activity of proteins that are engaged in processes such as genesis, fission, fusion, and removal of mitochondria. This review provides an account of the developments of the knowledge on the dynamics of the mitochondrial population, examining the mechanisms governing their genesis, life, and death, and elucidating the role played by free radicals in such processes.
Collapse
|