3
|
Ngwa W, Addai BW, Adewole I, Ainsworth V, Alaro J, Alatise OI, Ali Z, Anderson BO, Anorlu R, Avery S, Barango P, Bih N, Booth CM, Brawley OW, Dangou JM, Denny L, Dent J, Elmore SNC, Elzawawy A, Gashumba D, Geel J, Graef K, Gupta S, Gueye SM, Hammad N, Hessissen L, Ilbawi AM, Kambugu J, Kozlakidis Z, Manga S, Maree L, Mohammed SI, Msadabwe S, Mutebi M, Nakaganda A, Ndlovu N, Ndoh K, Ndumbalo J, Ngoma M, Ngoma T, Ntizimira C, Rebbeck TR, Renner L, Romanoff A, Rubagumya F, Sayed S, Sud S, Simonds H, Sullivan R, Swanson W, Vanderpuye V, Wiafe B, Kerr D. Cancer in sub-Saharan Africa: a Lancet Oncology Commission. Lancet Oncol 2022; 23:e251-e312. [PMID: 35550267 PMCID: PMC9393090 DOI: 10.1016/s1470-2045(21)00720-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023]
Abstract
In sub-Saharan Africa (SSA), urgent action is needed to curb a growing crisis in cancer incidence and mortality. Without rapid interventions, data estimates show a major increase in cancer mortality from 520 348 in 2020 to about 1 million deaths per year by 2030. Here, we detail the state of cancer in SSA, recommend key actions on the basis of analysis, and highlight case studies and successful models that can be emulated, adapted, or improved across the region to reduce the growing cancer crises. Recommended actions begin with the need to develop or update national cancer control plans in each country. Plans must include childhood cancer plans, managing comorbidities such as HIV and malnutrition, a reliable and predictable supply of medication, and the provision of psychosocial, supportive, and palliative care. Plans should also engage traditional, complementary, and alternative medical practices employed by more than 80% of SSA populations and pathways to reduce missed diagnoses and late referrals. More substantial investment is needed in developing cancer registries and cancer diagnostics for core cancer tests. We show that investments in, and increased adoption of, some approaches used during the COVID-19 pandemic, such as hypofractionated radiotherapy and telehealth, can substantially increase access to cancer care in Africa, accelerate cancer prevention and control efforts, increase survival, and save billions of US dollars over the next decade. The involvement of African First Ladies in cancer prevention efforts represents one practical approach that should be amplified across SSA. Moreover, investments in workforce training are crucial to prevent millions of avoidable deaths by 2030. We present a framework that can be used to strategically plan cancer research enhancement in SSA, with investments in research that can produce a return on investment and help drive policy and effective collaborations. Expansion of universal health coverage to incorporate cancer into essential benefits packages is also vital. Implementation of the recommended actions in this Commission will be crucial for reducing the growing cancer crises in SSA and achieving political commitments to the UN Sustainable Development Goals to reduce premature mortality from non-communicable diseases by a third by 2030.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Information and Sciences, ICT University, Yaoundé, Cameroon.
| | - Beatrice W Addai
- Breast Care International, Peace and Love Hospital, Kumasi, Ghana
| | - Isaac Adewole
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Victoria Ainsworth
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, USA
| | - James Alaro
- National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | | | - Zipporah Ali
- Kenya Hospices and Palliative Care Association, Nairobi, Kenya
| | - Benjamin O Anderson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Non-communicable Diseases, WHO, Geneva, Switzerland
| | - Rose Anorlu
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Stephen Avery
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prebo Barango
- WHO, Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Noella Bih
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christopher M Booth
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Otis W Brawley
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Lynette Denny
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa; South African Medical Research Council, Gynaecological Cancer Research Centre, Tygerberg, South Africa
| | | | - Shekinah N C Elmore
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ahmed Elzawawy
- Department of Clinical Oncology, Suez Canal University, Ismailia, Egypt
| | | | - Jennifer Geel
- Division of Paediatric Haematology and Oncology, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Katy Graef
- BIO Ventures for Global Health, Seattle, WA, USA
| | - Sumit Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Nazik Hammad
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - Laila Hessissen
- Pediatric Oncology Department, Pediatric Teaching Hospital, Rabat, Morocco
| | - Andre M Ilbawi
- Department of Non-communicable Diseases, WHO, Geneva, Switzerland
| | - Joyce Kambugu
- Department of Pediatrics, Uganda Cancer Institute, Kampala, Uganda
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, WHO, Lyon, France
| | - Simon Manga
- Cameroon Baptist Convention Health Services, Bamenda, Cameroon
| | - Lize Maree
- Department of Nursing Education, University of the Witwatersrand, Johannesburg, South Africa
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Susan Msadabwe
- Department of Radiation Therapy, Cancer Diseases Hospital, Lusaka, Zambia
| | - Miriam Mutebi
- Department of Surgery, Aga Khan University Hospital, Nairobi, Kenya
| | | | - Ntokozo Ndlovu
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kingsley Ndoh
- Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Mamsau Ngoma
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Twalib Ngoma
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Lorna Renner
- Department of Paediatrics, University of Ghana School of Medicine and Dentistry, Accra, Ghana
| | - Anya Romanoff
- Department of Health System Design and Global Health, Icahn School of Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Fidel Rubagumya
- Department of Oncology, Rwanda Military Hospital, Kigali, Rwanda; University of Global Health Equity, Kigali, Rwanda
| | - Shahin Sayed
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Shivani Sud
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah Simonds
- Division of Radiation Oncology, Tygerberg Hospital and University of Stellenbosch, Stellenbosch, South Africa
| | | | - William Swanson
- Department of Physics and Applied Physics, Dana-Farber Cancer Institute, University of Massachusetts Lowell, Lowell, MA, USA
| | - Verna Vanderpuye
- National Centre for Radiotherapy, Oncology, and Nuclear Medicine, Korle Bu Teaching Hospital, Accra, Ghana
| | | | - David Kerr
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Asombang AW, Chishinga N, Nkhoma A, Chipaila J, Nsokolo B, Manda-Mapalo M, Montiero JFG, Banda L, Dua KS. Systematic review and meta-analysis of esophageal cancer in Africa: Epidemiology, risk factors, management and outcomes. World J Gastroenterol 2019; 25:4512-4533. [PMID: 31496629 PMCID: PMC6710188 DOI: 10.3748/wjg.v25.i31.4512] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer (EC) is associated with a poor prognosis, particularly so in Africa where an alarmingly high mortality to incidence ratio prevails for this disease. AIM To provide further understanding of EC in the context of the unique cultural and genetic diversity, and socio-economic challenges faced on the African continent. METHODS We performed a systematic review of studies from Africa to obtain data on epidemiology, risk factors, management and outcomes of EC. A non-systematic review was used to obtain incidence data from the International Agency for Research on Cancer, and the Cancer in Sub-Saharan reports. We searched EMBASE, PubMed, Web of Science, and Cochrane Central from inception to March 2019 and reviewed the list of articles retrieved. Random effects meta-analyses were used to assess heterogeneity between studies and to obtain odds ratio (OR) of the associations between EC and risk factors; and incidence rate ratios for EC between sexes with their respective 95% confidence intervals (CI). RESULTS The incidence of EC is higher in males than females, except in North Africa where it is similar for both sexes. The highest age-standardized rate is from Malawi (30.3 and 19.4 cases/year/100000 population for males and females, respectively) followed by Kenya (28.7 cases/year/100000 population for both sexes). The incidence of EC rises sharply after the age of 40 years and reaches a peak at 75 years old. Meta-analysis shows a strong association with tobacco (OR 3.15, 95%CI: 2.83-3.50). There was significant heterogeneity between studies on alcohol consumption (OR 2.28, 95%CI: 1.94-2.65) and on low socioeconomic status (OR 139, 95%CI: 1.25-1.54) as risk factors, but these could also contribute to increasing the incidence of EC. The best treatment outcomes were with esophagectomy with survival rates of 76.6% at 3 years, and chemo-radiotherapy with an overall combined survival time of 267.50 d. CONCLUSION Africa has high incidence and mortality rates of EC, with preventable and non-modifiable risk factors. Men in this setting are at increased risk due to their higher prevalence of tobacco and alcohol consumption. Management requires a multidisciplinary approach, and survival is significantly improved in the setting of esophagectomy and chemoradiation therapy.
Collapse
Affiliation(s)
- Akwi W Asombang
- Division of Gastroenterology/Hepatology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Nathaniel Chishinga
- Department for HIV Elimination, Fulton County Government, Atlanta, GA 30303, United States
| | - Alick Nkhoma
- Department of Gastroenterology, Royal Stoke University Hospital, University Hospitals of North Midlands NHS Trust, Staffordshire ST4 6QG, United Kingdom
| | - Jackson Chipaila
- Department of Surgery, University Teaching Hospital-Adult Hospital, Lusaka 10101, Zambia
| | - Bright Nsokolo
- Department of Medicine, Levy Mwanawasa University Teaching Hospital, Tropical Gastroenterology and Nutrition Group (TROPGAN), Lusaka 10101, Zambia
| | - Martha Manda-Mapalo
- Department of Medicine, The University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Lewis Banda
- Hematology/Oncology, Cancer Disease Hospital, Lusaka 10101, Zambia
| | - Kulwinder S Dua
- Department of Medicine and Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
8
|
Odutola MK, Olukomogbon T, Igbinoba F, Otu TI, Ezeome E, Hassan R, Jedy-Agba E, Adebamowo SN. Cancers Attributable to Overweight and Obesity From 2012 to 2014 in Nigeria: A Population-Based Cancer Registry Study. Front Oncol 2019; 9:460. [PMID: 31245287 PMCID: PMC6579889 DOI: 10.3389/fonc.2019.00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Overweight and obesity are known risk factors for chronic diseases including cancers. In this study, we evaluated the age standardized incidence rates (ASR) and proportion of cancers attributable to overweight and obesity in Nigeria. Methods: We obtained incidence data from the databases of two population-based cancer registries (PBCRs) in Nigeria (Abuja and Enugu cancer registries), on cancer site for which there is established evidence of an association with overweight or obesity based on the International Agency for Research on Cancer (IARC) and the World Cancer Research Fund (WCRF) classification. We analyzed the data using population attributable fraction (PAF) for overweight or obesity associated cancers calculated using prevalence data and relative risk estimates in previous studies. Results: The two PBCRs reported 4,336 new cancer cases (ASR 113.9 per 100,000) from 2012 to 2014. Some 21% of these cancers were associated with overweight and obesity. The ASR for overweight and obesity associated cancers was 24.5 per 100,000; 40.7 per 100,000 in women and 8.2 per 100,000 in men. Overall, only 1.4% of incident cancers were attributable to overweight and obesity. The ASR of cancers attributable to overweight and obesity was 2.0 per 100,000. Postmenopausal breast cancer was the most common cancer attributable to overweight and obesity (n = 25; ASR 1.2 per 100,000). Conclusion: Our results suggest that a small proportion of incident cancer cases in Nigeria are potentially preventable by maintaining normal body weight. The burden of cancer attributed to overweight and obesity in Nigeria is relatively small, but it may increase in future.
Collapse
Affiliation(s)
- Michael K. Odutola
- Office of Strategic Information and Research, Institute of Human Virology, Abuja, Nigeria
| | - Temitope Olukomogbon
- Office of Strategic Information and Research, Institute of Human Virology, Abuja, Nigeria
| | | | - Theresa I. Otu
- Department of Hematology, University of Abuja Teaching Hospital, Gwagwalada, Nigeria
| | - Emmanuel Ezeome
- Department of Surgery, University of Nigeria Teaching Hospital Enugu, Enugu, Nigeria
| | | | - Elima Jedy-Agba
- International Research Center of Excellence, Institute of Human Virology, Abuja, Nigeria
| | - Sally N. Adebamowo
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Research, Center for Research and Bioethics, Ibadan, Nigeria
| |
Collapse
|