1
|
Wang X, Li Z, Shen J, Liu L. Targeting protein tyrosine phosphatase non-receptor type 6 (PTPN6) as a therapeutic strategy in acute myeloid leukemia. Cell Biol Toxicol 2024; 41:11. [PMID: 39707066 PMCID: PMC11662038 DOI: 10.1007/s10565-024-09965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by the clonal expansion of myeloid progenitor cells. Despite advancements in treatment, the prognosis for AML patients remains poor, highlighting the need for novel therapeutic targets. Protein Tyrosine Phosphatase Non-Receptor Type 6 (PTPN6), also known as SHP-1, is a critical regulator of hematopoietic cell signaling and has been implicated in various leukemias. This study investigates the therapeutic potential of targeting PTPN6 in AML. We employed both in vitro and in vivo models to evaluate the effects of PTPN6 inhibition on AML cell proliferation, apoptosis, and differentiation. Our results demonstrate that PTPN6 inhibition leads to a significant reduction in AML cell viability, induces apoptosis, and promotes differentiation of leukemic cells into mature myeloid cells. Mechanistic studies revealed that PTPN6 inhibition disrupts key signaling pathways involved in AML pathogenesis, including the JAK/STAT and PI3K/AKT pathways. Furthermore, the combination of PTPN6 inhibitors with standard chemotherapeutic agents exhibited a synergistic effect, enhancing the overall therapeutic efficacy. These findings suggest that PTPN6 is a promising therapeutic target in AML and warrants further investigation into the development of PTPN6 inhibitors for clinical application in AML treatment.
Collapse
Affiliation(s)
- Xiaoou Wang
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China
| | - Zhenggang Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jing Shen
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Lin Liu
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
| |
Collapse
|
2
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A. Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K. Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C. Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
3
|
Wang W, An J, Zhao R, Geng X, Jiang W, Yan X, Jiang B. Nanozymes: a new approach for leukemia therapy. J Mater Chem B 2024; 12:2459-2470. [PMID: 38345341 DOI: 10.1039/d3tb02819d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Leukemia is a type of clonal disorder of hematopoietic stem and progenitor cells characterized by bone marrow failure, differentiation arrest, and lineage skewing. Despite leukemia being a complex disease and it being difficult to identify a single driving force, redox homeostasis, the balance between reactive oxygen species (ROS) producers and cellular antioxidant systems, is normally impaired during leukemogenesis. In this context, the modulation of ROS in leukemia cells can be harnessed for therapeutic purposes. Nanozymes are functional nanomaterials with enzyme-like characteristics, which address the intrinsic limitations of natural enzymes and exhibit great potential in synergistic antitumor therapy. Nanozymes possess catalytic activities (e.g., peroxidase-like activity, catalase-like activity, superoxide dismutase-like activity, and oxidase-like activity) to regulate ROS levels in vitro and in vivo, making them promising for leukemia therapy. On account of the rapid development of nanozymes recently, their application potentials in leukemia therapy are gradually being explored. To highlight the achievements of nanozymes in the leukemia field, this review summarizes the recent studies of nanozymes with anti-leukemia efficacy and the underlying mechanism. In addition, the challenges and prospects of nanozyme research in leukemia therapy are discussed.
Collapse
Affiliation(s)
- Wei Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jingyi An
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin Geng
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| |
Collapse
|
4
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
5
|
Wang W, Li H, Huang M, Wang X, Li W, Qian X, Jing L. Hoxa9/ meis1-transgenic zebrafish develops acute myeloid leukaemia-like disease with rapid onset and high penetrance. Open Biol 2022; 12:220172. [PMID: 36285442 PMCID: PMC9597180 DOI: 10.1098/rsob.220172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
HOXA9 and MEIS1 are co-expressed in over 50% of acute myeloid leukaemia (AML) and play essential roles in leukaemogenesis, but the mechanisms involved are poorly understood. Diverse animal models offer valuable tools to recapitulate different aspects of AML and link in vitro studies to clinical trials. We generated a double transgenic zebrafish that enables hoxa9 overexpression in blood cells under the draculin (drl) regulatory element and an inducible expression of meis1 through a heat shock promoter. After induction, Tg(drl:hoxa9;hsp70:meis1) embryos developed a preleukaemic state with reduced myeloid and erythroid differentiation coupled with the poor production of haematopoietic stem cells and myeloid progenitors. Importantly, most adult Tg(drl:hoxa9;hsp70:meis1) fish at 3 months old showed abundant accumulations of immature myeloid precursors, interrupted differentiation and anaemia in the kidney marrow, and infiltration of myeloid precursors in peripheral blood, resembling human AML. Genome-wide transcriptional analysis also confirmed AML transformation by the transgene. Moreover, the dihydroorotate dehydrogenase (DHODH) inhibitor that reduces leukaemogenesis in mammals effectively restored haematopoiesis in Tg(drl:hoxa9;hsp70:meis1) embryos and improved their late survival. Thus, Tg(drl:hoxa9;hsp70:meis1) zebrafish is a rapid-onset high-penetrance AML-like disease model, which provides a novel tool to harness the unique advantages of zebrafish for mechanistic studies and drug screening against HOXA9/MEIS1 overexpressed high-risk AML.
Collapse
Affiliation(s)
- Wei Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongji Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Mengling Huang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xue Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Li
- Core facility and technical service center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lili Jing
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Hason M, Jovicic J, Vonkova I, Bojic M, Simon-Vermot T, White RM, Bartunek P. Bioluminescent Zebrafish Transplantation Model for Drug Discovery. Front Pharmacol 2022; 13:893655. [PMID: 35559262 PMCID: PMC9086674 DOI: 10.3389/fphar.2022.893655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jovana Jovicic
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vonkova
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Bojic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Theresa Simon-Vermot
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard M. White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
9
|
Sundarraj S, Sujitha MV, Alphonse CRW, Kalaiarasan R, Kannan RR. Bisphenol-A alters hematopoiesis through EGFR/ERK signaling to induce myeloblastic condition in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147530. [PMID: 34004533 DOI: 10.1016/j.scitotenv.2021.147530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Experimental evidence from the etiology of cancer studies suggests that a correlation between Bisphenol-A (BPA) exposure and alterations in hematopoiesis leads to blood cancer. In our study zebrafish were used to assess the lethality, developmental effect, embryonic apoptosis and changes in transcription factor of hematopoiesis through EGFR/ERK signaling pathways in response to BPA. The in silico interaction of EGFR and BPA was analysed by molecular dynamic simulation. According to our results, BPA induced a significant lethal effect in hatching retardation, reduction in heart rate and teratogenic effects on zebrafish embryos and larvae at three different concentrations 100, 500 and 2500 μg/L. The mortality of adult zebrafish exposed to the acute toxicity of BPA from 5 to 30 mg/L concentrations was determined for 96 h. The peripheral blood cells and vital organs such as kidney, liver and spleen from BPA exposed fish showed predominantly abnormal myeloid blast cells along with severe morphological changes in erythrocytes at sublethal concentration 245 μg/L. The BPA showed the highest binding affinity to zebrafish EGFR with a docking score of -7.5 kcal/mol with an RMSD of 3.0 nm during MD simulation. We found that EGFR/ERK overexpression leads to induce hematopoietic cell proliferation and impaired differentiation, which enhances the myeloid repopulating activity and the accumulation of immature myeloblast cells. BPA also caused a corresponding increase in expression of hematopoietic transcription factor c-MYB and RUNX-1 leading to polychromasia, poikilocytosis, acanthocytes and anisocytosis and promoted myeloblastosis by inhibiting GATA-1 expression. These morphological changes often resulted in the prior condition of acute myeloid leukemia (AML). Comprehensively, our data suggest that BPA can trigger the malignancy of AML cells by alteration of respective hematopoietic transcription factors via EGFR/ERK signaling in the zebrafish model.
Collapse
Affiliation(s)
- Shenbagamoorthy Sundarraj
- PG and Research Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi 626124, Tamil Nadu, India; Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Mohanan V Sujitha
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Carlton Ranjith Wilson Alphonse
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Retnamony Kalaiarasan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajaretinam Rajesh Kannan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
10
|
Mandujano-Tinoco EA, Sultan E, Ottolenghi A, Gershoni-Yahalom O, Rosental B. Evolution of Cellular Immunity Effector Cells; Perspective on Cytotoxic and Phagocytic Cellular Lineages. Cells 2021; 10:1853. [PMID: 34440622 PMCID: PMC8394812 DOI: 10.3390/cells10081853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system has evolved to protect organisms from infections caused by bacteria, viruses, and parasitic pathogens. In addition, it provides regenerative capacities, tissue maintenance, and self/non-self recognition of foreign tissues. Phagocytosis and cytotoxicity are two prominent cellular immune activities positioned at the base of immune effector function in mammals. Although these immune mechanisms have diversified into a wide heterogeneous repertoire of effector cells, it appears that they share some common cellular and molecular features in all animals, but also some interesting convergent mechanisms. In this review, we will explore the current knowledge about the evolution of phagocytic and cytotoxic immune lineages against pathogens, in the clearance of damaged cells, for regeneration, for histocompatibility recognition, and in killing virally infected cells. To this end, we give different immune examples of multicellular organism models, ranging from the roots of bilateral organisms to chordate invertebrates, comparing to vertebrates' lineages. In this review, we compare cellular lineage homologies at the cellular and molecular levels. We aim to highlight and discuss the diverse function plasticity within the evolved immune effector cells, and even suggest the costs and benefits that it may imply for organisms with the meaning of greater defense against pathogens but less ability to regenerate damaged tissues and organs.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada Mexico-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
| | - Eliya Sultan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, and Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (E.S.); (A.O.); (O.G.-Y.)
| |
Collapse
|
11
|
A novel conditioning-free hematopoietic stem cell transplantation model in zebrafish. Blood Adv 2021; 4:6189-6198. [PMID: 33351115 DOI: 10.1182/bloodadvances.2020002424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Transplantation is the most common assay for measuring the in vivo functionality of hematopoietic stem cells (HSCs). Although various HSC transplantation strategies have been developed in zebrafish, they are underutilized because of challenges related to immune matching and preconditioning toxicity. To circumvent these limitations, we developed a simple and robust transplantation model using HSC-deficient hosts. Homozygous runx1W84X mutants are devoid of definitive hematopoietic cells, including HSCs and adaptive immune cells; thus, they require no preconditioning regimen for transplantation. Marrow cell transplantation into runx1-mutant zebrafish 2 days after fertilization significantly improved their survival to adulthood and resulted in robust, multilineage, long-lasting, serially repopulating engraftment. Furthermore, we demonstrated that engraftment into runx1 homozygous mutants was significantly higher than into runx1 heterozygotes, demonstrating that the improved transplantation success is attributable to the empty HSC niche in mutants and not just the embryonic environment. Competitive transplantation of marrow cells into runx1 mutants revealed a stem cell frequency similar to that of murine marrow cells, which demonstrates the utility of this model for quantifying HSC function. The streamlined approach and robustness of this assay will help broaden its feasibility for future high-throughput transplantation experiments in zebrafish and will enable further novel discoveries in the biology of HSCs.
Collapse
|
12
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
13
|
Hason M, Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes (Basel) 2019; 10:genes10110935. [PMID: 31731811 PMCID: PMC6896156 DOI: 10.3390/genes10110935] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.
Collapse
|
14
|
Tackling Acute Lymphoblastic Leukemia-One Fish at a Time. Int J Mol Sci 2019; 20:ijms20215313. [PMID: 31731471 PMCID: PMC6862667 DOI: 10.3390/ijms20215313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Despite advancements in the diagnosis and treatment of acute lymphoblastic leukemia (ALL), a need for improved strategies to decrease morbidity and improve cure rates in relapsed/refractory ALL still exists. Such approaches include the identification and implementation of novel targeted combination regimens, and more precise upfront patient risk stratification to guide therapy. New curative strategies rely on an understanding of the pathobiology that derives from systematically dissecting each cancer’s genetic and molecular landscape. Zebrafish models provide a powerful system to simulate human diseases, including leukemias and ALL specifically. They are also an invaluable tool for genetic manipulation, in vivo studies, and drug discovery. Here, we highlight and summarize contributions made by several zebrafish T-ALL models and newer zebrafish B-ALL models in translating the underlying genetic and molecular mechanisms operative in ALL, and also highlight their potential utility for drug discovery. These models have laid the groundwork for increasing our understanding of the molecular basis of ALL to further translational and clinical research endeavors that seek to improve outcomes in this important cancer.
Collapse
|
15
|
Rosental B, Kowarsky M, Seita J, Corey DM, Ishizuka KJ, Palmeri KJ, Chen SY, Sinha R, Okamoto J, Mantalas G, Manni L, Raveh T, Clarke DN, Tsai JM, Newman AM, Neff NF, Nolan GP, Quake SR, Weissman IL, Voskoboynik A. Complex mammalian-like haematopoietic system found in a colonial chordate. Nature 2018; 564:425-429. [PMID: 30518860 PMCID: PMC6347970 DOI: 10.1038/s41586-018-0783-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Haematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are haematopoietic stem cells (HSCs), which are multipotent and self-renewing, and generate the entire repertoire of blood and immune cells throughout an animal's life1. Although there have been comprehensive studies on self-renewal, differentiation, physiological regulation and niche occupation in vertebrate HSCs, relatively little is known about the evolutionary origin and niches of these cells. Here we describe the haematopoietic system of Botryllus schlosseri, a colonial tunicate that has a vasculature and circulating blood cells, and interesting stem-cell biology and immunity characteristics2-8. Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other3,4,7. Using flow cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identify HSCs, progenitors, immune effector cells and an HSC niche, and demonstrate that self-recognition inhibits allospecific cytotoxic reactions. Our results show that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and also suggest that haematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin.
Collapse
Affiliation(s)
- Benyamin Rosental
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
| | - Mark Kowarsky
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- AI based Healthcare and Medical Data Analysis Standardization Unit, Medical Sciences Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Daniel M Corey
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine J Ishizuka
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA
| | - Karla J Palmeri
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA
| | - Shih-Yu Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gary Mantalas
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D Nathaniel Clarke
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA
| | - Jonathan M Tsai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.
| |
Collapse
|
16
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Panagal M, S. R. SK, P. S, M. B, M. K, Gopinathe V, Sivakumare P, Sekar D. MicroRNA21 and the various types of myeloid leukemia. Cancer Gene Ther 2018; 25:161-166. [PMID: 29795410 DOI: 10.1038/s41417-018-0025-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 02/08/2023]
|