1
|
Frassanito P, Thomale UW, Obersnel M, Romano A, Leblond P, Knerlich-Lukoschus F, Due-Tønnessen BJ, Thompson D, Di Rocco F. The state of targeted therapeutic pharmacological approaches in pediatric neurosurgery: report from the European Society for Pediatric Neurosurgery (ESPN) Consensus Conference 2024. Childs Nerv Syst 2025; 41:149. [PMID: 40175630 PMCID: PMC11965156 DOI: 10.1007/s00381-025-06799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE The development of novel targeted therapies is opening new perspectives in the treatment of pediatric brain tumors. Their precise role in therapeutic protocols still needs still to be defined. Thus, these novel pharmacological approaches in pediatric neurosurgery were the topic of the European Society for Pediatric Neurosurgery (ESPN) Consensus Conference held in Lyon (France) in January 25-27, 2024. METHOD The paper reviews the current knowledge about targeted therapy as well as the current literature published on the topic. The conference aimed for an interdisciplinary consensus debate among pediatric oncologists and pediatric neurosurgeons on the following questions. Question 1: What is the current role for targeted therapies as neoadjuvant treatments before pediatric brain tumor removal? Question 2: What are the benefits, cost/efficiency, and long-term side effects of targeted therapies in the treatment of pediatric brain tumors? Question 3: Based on contemporary data, at which stage and in which pathologies do targeted therapies play a significant role? RESULTS Ninety-two participants answered consensus polls on the state of the art of targeted therapies, the ethical issues related to their use, and the evolving change in the role of pediatric neurosurgeons. The neoadjuvant role of targeted therapies is difficult to define as there are many different entities to consider. Despite the recently reported potential benefits, questions regarding the use of targeted therapies are manifold, in particular regarding sustainable benefits and long-term side effects. Additionally, challenging cost issues is a limiting factor for the broader availability of these drugs. Studies have demonstrated superiority of targeted therapy compared to chemotherapy both in randomized trials and compared to historical cohorts in the management of a subset of low-grade gliomas. The same drug combinations, BRAFi and MEKi, may be effective in HGG that have relapsed, progressed, or failed to respond to first-line therapy. Similar conclusions on efficacy may be drawn for mTORi in TSC and selumetinib in plexiform neurofibromas. For other tumors, the picture is still obscure due to the lack of data or even the lack of suitable targets. In conclusion, targeted treatment may not always be the best option even when a target has been identified. Safe surgery remains to be a favorable option in the majority of cases. CONCLUSION The constantly evolving drug technology and the absence of long-term safety and efficacy studies made it difficult to reach a consensus on the predefined questions. However, a report of the conference is summarizing the present debate and it might serve as a guideline for future perspectives and ongoing research.
Collapse
Affiliation(s)
- P Frassanito
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy.
| | - U W Thomale
- Pediatric Neurosurgery, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Obersnel
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
- Catholic University Medical School, Rome, Italy
| | - A Romano
- Pediatric Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - P Leblond
- Department of Pediatric Oncology, Institute of Pediatric Hematology and Oncology, Leon Berard Comprehensive Cancer Center, Lyon, France
| | - F Knerlich-Lukoschus
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - B J Due-Tønnessen
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - D Thompson
- Pediatric Neurosurgery, Great Ormond Street Hospital, London, UK
| | - F Di Rocco
- Departement of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Lyon, France
- University of Medicine, Université Claude, Bernard 1, Lyon, France
| |
Collapse
|
2
|
Gianneschi G, Hublikar R, Sherman J, Rao H. Whole-tissue and autologous dendritic cell vaccines in pediatric brain tumors: A focused review of current evidence and future directions. Semin Pediatr Neurol 2025; 53:101183. [PMID: 40216487 DOI: 10.1016/j.spen.2025.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Cancer immunotherapy is becoming increasingly personalized, and autologous therapeutic vaccines (ATVs) represent a promising strategy by leveraging patient-derived tumor antigens. Two main types, whole-tissue autologous therapeutic vaccines (WATVs) and autologous dendritic cell vaccines (ADCVs), have demonstrated safety and efficacy in adult oncology. However, their application in pediatric neuro-oncology remains underexplored. OBJECTIVE To review recent clinical advancements in the use of WATVs and ADCVs for pediatric brain tumors, focusing on safety, feasibility, and preliminary outcomes. METHODS A systematic search of studies (2004-2025) was conducted using PubMed, Scopus, EMBASE, Cochrane, and clinical trial registries. Inclusion criteria were pediatric brain tumor studies involving WATVs or ADCVs. Studies were assessed per PRISMA guidelines, biases were addressed and outcome data were synthesized narratively using pooled patient data. RESULTS WATVs had no dedicated pediatric brain tumor studies. However, a subgroup analysis in a mixed ADCV-WATV trial for pediatric brain tumors (n = 26) was performed showing safety and feasibility. For ADCVs, seven clinical trials with (n = 85) met inclusion criteria. ADCVs demonstrated a strong safety profile, with no treatment-related deaths and only one severe adverse event. Progression-free survival ranged from 1.4 to 85.6 months, and overall survival ranged from 1.4 to 143 months. Factors improving outcomes included gross total resection and newly diagnosed high-grade gliomas. Production time for vaccines posed a feasibility challenge. CONCLUSION WATVs and ADCVs are safe but underutilized in pediatric neuro-oncology. ADCVs, in particular, have shown potential for high-grade gliomas and atypical teratoid rhabdoid tumors. Future studies should optimize vaccine production timelines and evaluate the efficacy of various antigenic materials. Phase III trials are needed to establish clinical benefit.
Collapse
Affiliation(s)
- Garrett Gianneschi
- Division of Pediatric Neurology, Department of Neurology, Rutgers University-New Jersey Medical School 185 South Orange Avenue,Newark, NJ 07103, USA.
| | | | | | - Harini Rao
- Division of Hematology/Oncology, Department of Pediatrics, Robert Wood Johnson-Barnabas Health System Children's Hospital of New Jersey at Newark Beth Israel Medical Center.
| |
Collapse
|
3
|
Shah S, Nag A, Lucke-Wold B. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma patients: a systematic review of literature. Clin Transl Oncol 2024:10.1007/s12094-024-03830-9. [PMID: 39714754 DOI: 10.1007/s12094-024-03830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much. Novel medications have been investigated recently for the management of newly diagnosed and recurring instances of GBM. For GBM, surgery, radiation therapy, and alkylating chemotherapy are often used therapies. Immunotherapies, which use the patient's immune reaction against tumors, have long been seen as a potential cancer treatment. One such treatment is the dendritic cell (DC) vaccine. This cell-based vaccination works by stimulating the patient's own dendritic cells' antigenic repertoire, therefore inducing a polyclonal T-cell response. Systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used to search, and the articles published in peer-reviewed scientific journals were associated with brain GBM, cancer, and Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination. Selected 90 articles were used in this manuscript, of which 30 articles were clinical trials. Compared to shared tumor antigen peptide vaccines, autologous cancer DCs have a greater ability to stimulate the immune system, which is why dendritic cell fusion vaccines have shown early promise in several clinical studies. Survival rates for vaccinated patients were notably better compared to matched or historical controls. For newly diagnosed patients, the median overall survival (mOS) ranged from 15 to 41.4 months, while the progression-free survival (PFS) ranged from 6 to 25.3 months. We discovered through this analysis that autologous multiomics analysis of DC vaccines showed enhanced antitumor immunity with a focus on using activated, antigen-loaded donor DCs to trigger T-cell responses against cancer, particularly in glioblastoma. It also showed improved patient survival, especially when combined with standard chemoradiotherapy. DC vaccines show promise in treating GBM by enhancing survival and reducing tumor recurrence. However, challenges in vaccine production, antigen selection, and tumor heterogeneity highlight the need for continued research and optimization to improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
| | - Aiswarya Nag
- Sri Ramachandra University Medical College: Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
4
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Lin C, Smith C, Rutka J. Current immunotherapeutic approaches to diffuse intrinsic pontine glioma. Front Genet 2024; 15:1349612. [PMID: 38774284 PMCID: PMC11106442 DOI: 10.3389/fgene.2024.1349612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumour that occurs in the pons of the brainstem and accounts for over 80% of all brainstem gliomas. The median age at diagnosis is 6-7 years old, with less than 10% overall survival 2 years after diagnosis and less than 1% after 5 years. DIPGs are surgically inaccessible, and radiation therapy provides only transient benefit, with death ensuing from relentless local tumour infiltration. DIPGs are now the leading cause of brain tumour deaths in children, with a societal cancer burden in years of life lost (YLL) of more than 67 per individual, versus approximately 14 and 16 YLL for lung and breast cancer respectively. More than 95 clinical drug trials have been conducted on children with DIPGs, and all have failed to improve survival. No single or combination chemotherapeutic strategy has been successful to date because of our inability to identify targeted drugs for this disease and to deliver these drugs across an intact blood-brain barrier (BBB). Accordingly, there has been an increased focus on immunotherapy research in DIPG, with explorations into treatments such as chimeric antigen receptor T (CAR-T) cells, immune checkpoint blockades, cancer vaccines, and autologous cell transfer therapy. Here, we review the most recent advances in identifying genetic factors influencing the development of immunotherapy for DIPG. Additionally, we explore emerging technologies such as Magnetic Resonance-guided Focused Ultrasound (MRgFUS) in potential combinatorial approaches to treat DIPG.
Collapse
Affiliation(s)
- Catherine Lin
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Qian D, Liu Y, Zheng J, Cai J. Dendritic cell therapy for neurospoagioma: Immunomodulation mediated by tumor vaccine. Cell Death Discov 2024; 10:11. [PMID: 38184649 PMCID: PMC10771477 DOI: 10.1038/s41420-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Neurospagioma, arising from different glial cells such as astrocytes, oligodendrocytes, and ependymal cells, stands as the prevalent intracranial tumor within the central nervous system. Among its variants, glioblastoma (GBM) represents the most aggressive form, characterized by a notably high occurrence rate and a discouragingly low survival prognosis. The formidable challenge posed by glioblastoma underscores its critical importance as a life-threatening ailment. Currently, clinical approaches often involve surgical excision along with a combination of radiotherapy and chemotherapy. However, these treatments frequently result in a notable recurrence rate, accompanied by substantial adverse effects that significantly compromise the overall prognosis. Hence, there is a crucial need to investigate novel and dependable treatment strategies. Dendritic cells (DCs), being specialized antigen-presenting cells (APCs), hold a significant position in both innate and adaptive immune responses. Presently, DC vaccines have gained widespread application in the treatment of various tumors, including neurospoagioma. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccines in neurospoagioma as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China.
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Jie Zheng
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
7
|
Chou SC, Chen YN, Huang HY, Kuo MF, Wong TT, Kuo SH, Yang SH. Contemporary Management of Pediatric Brainstem Tumors. Adv Tech Stand Neurosurg 2024; 49:231-254. [PMID: 38700687 DOI: 10.1007/978-3-031-42398-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Brain tumors are the second most common malignancy in childhood. Around 15-20% of pediatric brain tumors occur in the brainstem. The most common type of brainstem tumor are diffuse tumors in the ventral pons, whereas focal tumors tend to arise from the midbrain, medulla, and dorsal pons. Glioma is the most common pathological entity. Contemporary management consists of surgery, radiotherapy, chemotherapy, and other adjuvant treatment. Surgical options range from biopsy to radical excision. Biopsy can be performed for diagnostic and prognostic purposes, or in the setting of clinical trials, mainly for diffuse intrinsic pontine gliomas. For focal tumors, surgeons need to carefully balance clinical outcomes against possible neurological sequelae in order to achieve maximal safe resection. Radiotherapy is essential for control of high-grade tumors and may be applied to residual or recurrent low-grade tumors. Proton therapy may provide similar efficacy and less neurotoxicity in comparison to conventional photon therapy. Oncological treatment continues to evolve from conventional chemotherapy to targeted therapy, immunotherapy, and other novel treatment methods and holds great potential as adjuvant therapy for pediatric brainstem tumors.
Collapse
Affiliation(s)
- Sheng-Che Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Traumatology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ning Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
8
|
Cacciotti C, Wright KD. Advances in Treatment of Diffuse Midline Gliomas. Curr Neurol Neurosci Rep 2023; 23:849-856. [PMID: 37921944 DOI: 10.1007/s11910-023-01317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE OF REVIEW Diffuse midline gliomas (DMGs) generally carry a poor prognosis, occur during childhood, and involve midline structures of the central nervous system, including the thalamus, pons, and spinal cord. RECENT FINDINGS To date, irradiation has been shown to be the only beneficial treatment for DMG. Various genetic modifications have been shown to play a role in the pathogenesis of this disease. Current treatment strategies span targeting epigenetic dysregulation, cell cycle, specific genetic alterations, and the immune microenvironment. Herein, we review the complex features of this disease as it relates to current and past therapeutic approaches.
Collapse
Affiliation(s)
- Chantel Cacciotti
- Children's Hospital London Health Sciences/Western University, London, ON, Canada.
| | - Karen D Wright
- Dana Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| |
Collapse
|
9
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
10
|
Noon A, Galban S. Therapeutic avenues for targeting treatment challenges of diffuse midline gliomas. Neoplasia 2023; 40:100899. [PMID: 37030112 PMCID: PMC10119952 DOI: 10.1016/j.neo.2023.100899] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Diffuse midline glioma (DMG) is the leading cause of brain tumor-related deaths in children. DMG typically presents with variable neurologic symptoms between ages 3 and 10. Currently, radiation remains the standard therapy for DMG to halt progression and reduce tumor bulk to minimize symptoms. However, tumors recur in almost 100% of patients and thus, DMG is still considered an incurable cancer with a median survival of 9-12 months. Surgery is generally contraindicated due to the delicate organization of the brainstem, where DMG is located. Despite extensive research efforts, no chemotherapeutic agents, immune therapies, or molecularly targeted therapies have been approved to provide survival benefit. Furthermore, the efficacy of therapies is limited by poor blood-brain barrier penetration and inherent resistance mechanisms of the tumor. However, novel drug delivery approaches, along with recent advances in molecularly targeted therapies and immunotherapies, have advanced to clinical trials and may provide viable future treatment options for DMG patients. This review seeks to evaluate current therapeutics at the preclinical stage and those that have advanced to clinical trials and to discuss the challenges of drug delivery and inherent resistance to these therapies.
Collapse
Affiliation(s)
- Aleeha Noon
- College of Medicine, California Northstate University, 9700 W Taron Drive, Elk Grove, CA 95757, USA
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Radiology, The University of Michigan Medical School, BSRB A502, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Rogel Cancer Center, The University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Chen Y, Zhao C, Li S, Wang J, Zhang H. Immune Microenvironment and Immunotherapies for Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2023; 15:cancers15030602. [PMID: 36765560 PMCID: PMC9913210 DOI: 10.3390/cancers15030602] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary glial glioma that occurs in all age groups but predominates in children and is the main cause of solid tumor-related childhood mortality. Due to its rapid progression, the inability to operate and insensitivity to most chemotherapies, there is a lack of effective treatment methods in clinical practice for DIPG patients. The prognosis of DIPG patients is extremely poor, with a median survival time of no more than 12 months. In recent years, there have been continuous breakthroughs for immunotherapies in various hematological tumors and malignant solid tumors with extremely poor prognoses, which provides new insights into tumors without effective treatment strategies. Meanwhile, with the gradual development of stereotactic biopsy techniques, it is gradually becoming easier and safer to obtain live DIPG tissue, and the understanding of the immune properties of DIPG has also increased. On this basis, a series of immunotherapy studies of DIPG are under way, some of which have shown encouraging results. Herein, we review the current understanding of the immune characteristics of DIPG and critically reveal the limitations of current immune research, as well as the opportunities and challenges for immunological therapies in DIPG, hoping to clarify the development of novel immunotherapies for DIPG treatment.
Collapse
|
12
|
Shalita C, Hanzlik E, Kaplan S, Thompson EM. Immunotherapy for the treatment of pediatric brain tumors: a narrative review. Transl Pediatr 2022; 11:2040-2056. [PMID: 36643672 PMCID: PMC9834947 DOI: 10.21037/tp-22-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The goal of this narrative review is to report and summarize the completed pediatric immunotherapy clinical trials for primary CNS tumors. Pediatric central nervous system (CNS) tumors are the most common cause of pediatric solid cancer in children aged 0 to 14 years and the leading cause of cancer mortality. Survival rates for some pediatric brain tumors have improved, however, there remains a large portion of pediatric brain tumors with poor survival outcomes despite advances in treatment. Cancer immunotherapy is a growing field that has shown promise in the treatment of pediatric brain tumors that have historically shown a poor response to treatment. This narrative review provides a summary and discussion of the published literature focused on treating pediatric brain tumors with immunotherapy. METHODS MEDLINE via PubMed, Embase and Scopus via Elsevier were searched. The search utilized a combination of keywords and subject headings to include pediatrics, brain tumors, and immunotherapies. Manuscripts included in the analysis included completed clinical studies using any immunotherapy intervention with a patient population that consisted of at least half pediatric patients (<18 years) with primary CNS tumors. Conference abstracts were excluded as well as studies that did not include completed safety or primary outcome results. KEY CONTENT AND FINDINGS Search results returned 1,494 articles. Screening titles and abstracts resulted in 180 articles for full text review. Of the 180 articles, 18 were included for analysis. Another two articles were ultimately included after review of references and inclusion of newly published articles, for a total of 20 included articles. Immunotherapies included dendritic cell vaccines, oncolytic virotherapy/viral immunotherapy, chimeric antigen receptor (CAR) T-cell therapy, peptide vaccines, immunomodulatory agents, and others. CONCLUSIONS In this review, 20 published articles were highlighted which use immunotherapy in the treatment of primary pediatric brain tumors. To date, most of the studies published utilizing immunotherapy were phase I and pilot studies focused primarily on establishing safety and maximum dose-tolerance and toxicity while monitoring survival endpoints. With established efficacy and toxicity profiles, future trials may progress to further understanding the overall survival and quality of life benefits to pediatric patients with primary brain tumors.
Collapse
Affiliation(s)
| | - Emily Hanzlik
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Samantha Kaplan
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, USA.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics (Basel) 2022; 12:2064. [PMID: 36140466 PMCID: PMC9497626 DOI: 10.3390/diagnostics12092064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Fabozzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, 00165 Rome, Italy
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emmanuel de Billy
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
14
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
15
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Bartolini S, Brandes AA. Tumor-Associated Microenvironment of Adult Gliomas: A Review. Front Oncol 2022; 12:891543. [PMID: 35875065 PMCID: PMC9301282 DOI: 10.3389/fonc.2022.891543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The glioma-associated tumor microenvironment involves a multitude of different cells ranging from immune cells to endothelial, glial, and neuronal cells surrounding the primary tumor. The interactions between these cells and glioblastoma (GBM) have been deeply investigated while very little data are available on patients with lower-grade gliomas. In these tumors, it has been demonstrated that the composition of the microenvironment differs according to the isocitrate dehydrogenase status (mutated/wild type), the presence/absence of codeletion, and the expression of specific alterations including H3K27 and/or other gene mutations. In addition, mechanisms by which the tumor microenvironment sustains the growth and proliferation of glioma cells are still partially unknown. Nonetheless, a better knowledge of the tumor-associated microenvironment can be a key issue in the optic of novel therapeutic drug development.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Enrico Franceschi,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Persson ML, Douglas AM, Alvaro F, Faridi P, Larsen MR, Alonso MM, Vitanza NA, Dun MD. The intrinsic and microenvironmental features of diffuse midline glioma; implications for the development of effective immunotherapeutic treatment strategies. Neuro Oncol 2022; 24:1408-1422. [PMID: 35481923 PMCID: PMC9435509 DOI: 10.1093/neuonc/noac117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse midline glioma (DMG), including those of the brainstem (diffuse intrinsic pontine glioma), are pediatric tumors of the central nervous system (CNS). Recognized as the most lethal of all childhood cancers, palliative radiotherapy remains the only proven treatment option, however, even for those that respond, survival is only temporarily extended. DMG harbor an immunologically “cold” tumor microenvironment (TME) with few infiltrating immune cells. The mechanisms underpinning the cold TME are not well understood. Low expression levels of immune checkpoint proteins, including PD-1, PD-L1, and CTLA-4, are recurring features of DMG and likely contribute to the lack of response to immune checkpoint inhibitors (ICIs). The unique epigenetic signatures (including stem cell-like methylation patterns), a low tumor mutational burden, and recurring somatic mutations (H3K27M, TP53, ACVR1, MYC, and PIK3CA), possibly play a role in the reduced efficacy of traditional immunotherapies. Therefore, to circumvent the lack of efficacy thus far seen for the use of ICIs, adoptive cell transfer (including chimeric antigen receptor T cells) and the use of oncolytic viruses, are currently being evaluated for the treatment of DMG. It remains an absolute imperative that we improve our understanding of DMG’s intrinsic and TME features if patients are to realize the potential benefits offered by these sophisticated treatments. Herein, we summarize the limitations of immunotherapeutic approaches, highlight the emerging safety and clinical efficacy shown for sophisticated cell-based therapies, as well as the evolving knowledge underpinning the DMG-immune axis, to guide the development of immunotherapies that we hope will improve outcomes.
Collapse
Affiliation(s)
- Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research (CIMA), Pamplona, Spain
| | - Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
17
|
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and Treatment of H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel) 2021; 13:cancers13215280. [PMID: 34771443 PMCID: PMC8582453 DOI: 10.3390/cancers13215280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) are rare childhood central nervous system tumors that carry a dismal prognosis. Thus, innovative treatment approaches are greatly needed to improve clinical outcomes for these patients. Here, we discuss current trends in research of H3K27M-mutant diffuse midline glioma. This review highlights new developments of molecular pathophysiology for these tumors, as they relate to epigenetics and therapeutic targeting. We focus our discussion on combinatorial therapies addressing the inherent complexity of treating H3K27M-mutant diffuse midline gliomas and incorporating recent advances in immunotherapy, molecular biology, genetics, radiation, and stereotaxic surgical diagnostics.
Collapse
|
18
|
Ross JL, Vega JV, Plant A, MacDonald TJ, Becher OJ, Hambardzumyan D. Tumor immune landscape of paediatric high-grade gliomas. Brain 2021; 144:2594-2609. [PMID: 33856022 DOI: 10.1093/brain/awab155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, remarkable progress has been made towards elucidating the origin and genomic landscape of childhood high-grade brain tumors. It has become evident that pediatric high-grade gliomas (pHGGs) differ from adult HGGs with respect to multiple defining aspects including: DNA copy number, gene expression profiles, tumor locations within the central nervous system, and genetic alterations such as somatic histone mutations. Despite these advances, clinical trials for children with glioma have historically been based on ineffective adult regimens that fail to take into consideration the fundamental biological differences between the two. Additionally, although our knowledge of the intrinsic cellular mechanisms driving tumor progression has considerably expanded, little is known concerning the dynamic tumor immune microenvironment (TIME) in pHGGs. In this review, we explore the genetic and epigenetic landscape of pHGGs and how this drives the creation of specific tumor sub-groups with meaningful survival outcomes. Further, we provide a comprehensive analysis of the pHGG TIME and discuss emerging therapeutic efforts aimed at exploiting the immune functions of these tumors.
Collapse
Affiliation(s)
- James L Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose Velazquez Vega
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ashley Plant
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Oren J Becher
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA.,Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
19
|
Zeng Y, Chen X. 90K predicts the prognosis of glioma patients and enhances tumor lysate-pulsed DC vaccine for immunotherapy of GBM in vitro. Aging (Albany NY) 2021; 13:8355-8368. [PMID: 33686953 PMCID: PMC8034892 DOI: 10.18632/aging.202645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/16/2020] [Indexed: 04/26/2023]
Abstract
OBJECTIVES This study aimed to investigate the relationship between 90K expression with glioma malignancy and prognosis. Additionally, the enhancement effect of 90K in the Dendritic cell (DC) vaccine for Immunotherapy of glioblastoma (GBM) was evaluated in vitro. METHODS The expression of 90K protein in glioma tissues was detected by western blot. The relationship between the 90K expression and the tumor grade as well as the prognosis of patients was further analyzed by mining TCGA and CGGA database. The concentration of IL-12p70 and IL-10 was detected by ELISA. T lymphocyte proliferation and lethal effect of cytotoxic T cell (CTL) were detected by CCK-8. RESULTS The expression of 90K was significantly higher in glioma than normal tissue and increased with tumor grade (P< 0.05). Higher 90K expression was observed in IDH wildtype glioma than IDH mutant and predicted worse overall survival for glioma patients. The concentration of IL-12p70 and IFN-γ was the highest in the Apoptosis U251-90K-DC group, in which group the ability to kill U251 cells by CTL was also the strongest. CONCLUSION 90K was a useful biomarker for glioma malignancy and patient prognosis. The appearance of 90K enhanced the effect of Apoptosis U251-DC vaccine for immunotherapy of GBM.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
20
|
Olsen HE, Lynn GM, Valdes PA, Cerecedo Lopez CD, Ishizuka AS, Arnaout O, Bi WL, Peruzzi PP, Chiocca EA, Friedman GK, Bernstock JD. Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neurooncol Adv 2021; 3:vdab027. [PMID: 33860227 PMCID: PMC8034661 DOI: 10.1093/noajnl/vdab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Though outcomes for pediatric cancer patients have significantly improved over the past several decades, too many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after conventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of immunotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition of tumor antigens, thereby minimizing off-target toxicity. As such, cancer vaccines are orthogonal to conventional cancer treatments and can therefore be used alone or in combination with other therapeutic modalities to maximize efficacy. To date, cancer vaccination has remained largely understudied in the pediatric population. In this review, we discuss the different types of tumor antigens and vaccine technologies (dendritic cells, peptides, nucleic acids, and viral vectors) evaluated in clinical trials, with a focus on those used in children. We conclude with perspectives on how advances in combination therapies, tumor antigen (eg, neoantigen) selection, and vaccine platform optimization can be translated into clinical practice to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Hannah E Olsen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian D Cerecedo Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Avidea Technologies, Inc., Baltimore, Maryland, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers (Basel) 2020; 13:cancers13010032. [PMID: 33374196 PMCID: PMC7796083 DOI: 10.3390/cancers13010032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Although multiple meta-analyses on active specific immunotherapy treatment for glioblastoma multiforme (GBM) have demonstrated a significant prolongation of overall survival, no single research group has succeeded in demonstrating the efficacy of this type of treatment in a prospective, double-blind, placebo-controlled, randomized clinical trial. In this paper, we explain how the complexity of the tumor biology and tumor–host interactions make proper stratification of a control group impossible. The individualized characteristics of advanced therapy medicinal products for immunotherapy contribute to heterogeneity within an experimental group. The dynamics of each tumor and in each patient aggravate comparative stable patient groups. Finally, combinations of immunotherapy strategies should be integrated with first-line treatment. We illustrate the complexity of a combined first-line treatment with individualized multimodal immunotherapy in a group of 70 adults with GBM and demonstrate that the integration of immunogenic cell death treatment within maintenance chemotherapy followed by dendritic cell vaccines and maintenance immunotherapy might provide a step towards improving the overall survival rate of GBM patients. Abstract Immunotherapies represent a promising strategy for glioblastoma multiforme (GBM) treatment. Different immunotherapies include the use of checkpoint inhibitors, adoptive cell therapies such as chimeric antigen receptor (CAR) T cells, and vaccines such as dendritic cell vaccines. Antibodies have also been used as toxin or radioactive particle delivery vehicles to eliminate target cells in the treatment of GBM. Oncolytic viral therapy and other immunogenic cell death-inducing treatments bridge the antitumor strategy with immunization and installation of immune control over the disease. These strategies should be included in the standard treatment protocol for GBM. Some immunotherapies are individualized in terms of the medicinal product, the immune target, and the immune tumor–host contact. Current individualized immunotherapy strategies focus on combinations of approaches. Standardization appears to be impossible in the face of complex controlled trial designs. To define appropriate control groups, stratification according to the Recursive Partitioning Analysis classification, MGMT promotor methylation, epigenetic GBM sub-typing, tumor microenvironment, systemic immune functioning before and after radiochemotherapy, and the need for/type of symptom-relieving drugs is required. Moreover, maintenance of a fixed treatment protocol for a dynamic, deadly cancer disease in a permanently changing tumor–host immune context might be inappropriate. This complexity is illustrated using our own data on individualized multimodal immunotherapies for GBM. Individualized medicines, including multimodal immunotherapies, are a rational and optimal yet also flexible approach to induce long-term tumor control. However, innovative methods are needed to assess the efficacy of complex individualized treatments and implement them more quickly into the general health system.
Collapse
|
22
|
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 2020; 19:635-652. [PMID: 32764681 DOI: 10.1038/s41573-020-0074-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Mobilizing antitumour immunity through vaccination potentially constitutes a powerful anticancer strategy but has not yet provided robust clinical benefits in large patient populations. Although major hurdles still exist, we believe that currently available strategies for vaccines that target dendritic cells or use them to present antitumour antigens could be integrated into existing clinical practice using prime-boost approaches. In the priming phase, these approaches capitalize on either standard treatment modalities to trigger in situ vaccination and release tumour antigens or vaccination with dendritic cells loaded with tumour lysates or patient-specific neoantigens. In a second boost phase, personalized synthetic vaccines specifically boost T cells that were triggered during the priming phase. This immunotherapy approach has been enabled by the substantial recent improvements in dendritic cell vaccines. In this Perspective, we discuss these improvements, highlight how the prime-boost approach can be translated into clinical practice and provide solutions for various anticipated hurdles.
Collapse
Affiliation(s)
- Alexandre Harari
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Hashii Y, Oka Y, Kagawa N, Hashimoto N, Saitou H, Fukuya S, Kanegae M, Ikejima S, Oji Y, Ozono K, Tsuboi A, Sugiyama H. Encouraging Clinical Evolution of a Pediatric Patient With Relapsed Diffuse Midline Glioma Who Underwent WT1-Targeting Immunotherapy: A Case Report and Literature Review. Front Oncol 2020; 10:1188. [PMID: 32793489 PMCID: PMC7393264 DOI: 10.3389/fonc.2020.01188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
Diffuse midline glioma (DMG) in children is a highly aggressive, malignant brain tumor that is fatal when relapsed. Wilms tumor 1 (WT1) is a high-priority antigen target for cancer immunotherapy. We hereby report on a pediatric patient who had DMG that regrew after chemoradiotherapy and underwent WT1 peptide vaccination. A 13-year-old Japanese boy presented with vertigo, diplopia, and right hemiplegia at the initial visit to another hospital, where he was diagnosed with DMG by magnetic resonance imaging (MRI); DMG was categorized to histological grade IV glioma. The patient underwent radiotherapy and chemotherapy with temozolomide. After three cycles of chemotherapy, MRI revealed tumor regrowth that translated into deteriorated clinical manifestations. Immunohistochemically, the H3.3K27M mutation in the biopsy specimen was confirmed and the specimen was positive for WT1 protein. The patient underwent WT1-targeting immunotherapy with the WT1-specific peptide vaccine because of having HLA-A*24:02. Consequently, his quality of life drastically improved so much as to the extent that the patient became capable of conducting nearly normal daily activities at weeks 8 to 12 of vaccination. MRI at week 8 of vaccination revealed an obvious reduction in the signal intensity of the tumor. Furthermore, betamethasone dose could be reduced successively (4, 1, and 0.5 mg/day at weeks 4, 5, and 7, respectively) without deteriorating clinical manifestations. Best response among responses assessed according to the Response Assessment in Neuro-Oncology criteria was stable disease. Overall survival was 6.5 months after vaccination onset and was 8.3 months after relapse; the latter was markedly longer than the reported median OS of 3.2 months for pediatric patients with relapsed DMG in the literature. Modified WT1 tetramer staining revealed the WT1 peptide vaccine-induced production of WT1-specific cytotoxic T cells, and the interferon-γ (IFN-γ) ELISpot assay of peripheral blood mononuclear cells disclosed the production of IFN-γ. Delayed-type hypersensitivity test became positive. Any treatment-emergent adverse events did not occur except injection site erythema. Our pediatric patient exhibited an encouraging clinical evolution as manifested by stable disease, improved clinical manifestations, steroid dose reductions, a WT1-specific immune response, and a good safety profile. Therefore, WT1-targeting immunotherapy warrants further investigation in pediatric patients with relapsed DMG.
Collapse
Affiliation(s)
- Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Saitou
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Syogo Fukuya
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mizuki Kanegae
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sayaka Ikejima
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
24
|
Georgescu MM, Islam MZ, Li Y, Circu ML, Traylor J, Notarianni CM, Kline CN, Burns DK. Global activation of oncogenic pathways underlies therapy resistance in diffuse midline glioma. Acta Neuropathol Commun 2020; 8:111. [PMID: 32680567 PMCID: PMC7367358 DOI: 10.1186/s40478-020-00992-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive pediatric brain tumors with dismal prognosis due to therapy-resistant tumor growth and invasion. We performed the first integrated histologic/genomic/proteomic analysis of 21 foci from three pontine DMG cases with supratentorial dissemination. Histone H3.3-K27M was the driver mutation, usually at high variant allele fraction due to recurrent chromosome 1q copy number gain, in combination with germline variants in ATM, FANCM and MYCN genes. Both previously reported and novel recurrent copy number variations and somatic pathogenic mutations in chromatin remodeling, DNA damage response and PI3K/MAPK growth pathways were variably detected, either in multiple or isolated foci. Proteomic analysis showed global upregulation of histone H3, lack of H3-K27 trimethylation, and further impairment of polycomb repressive complex 2 by ASXL1 downregulation. Activation of oncogenic pathways resulted from combined upregulation of N-MYC, SOX2, p65/p50 NF-κB and STAT3 transcription factors, EGFR, FGFR2, PDGFRα/β receptor tyrosine kinases, and downregulation of PHLPP1/2, PTEN and p16/INK4A tumor suppressors. Upregulation of SMAD4, PAI-1, CD44, and c-SRC in multiple foci most likely contributed to invasiveness. This integrated comprehensive analysis revealed a complex spatiotemporal evolution in diffuse intrisic pontine glioma, recommending pontine and cerebellar biopsies for accurate populational genetic characterization, and delineated common signaling pathways and potential therapeutic targets. It also revealed an unsuspected activation of a multitude of oncogenic pathways, including cancer cell reprogramming, explaining the resistance of DMG to current therapies.
Collapse
|
25
|
Felker J, Broniscer A. Improving long-term survival in diffuse intrinsic pontine glioma. Expert Rev Neurother 2020; 20:647-658. [PMID: 32543245 DOI: 10.1080/14737175.2020.1775584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is an almost universally fatal pediatric brain cancer. There has been no improvement in event-free survival (EFS) or overall survival (OS) despite immense effort through a multitude of clinical trials to find a cure. Recently, there has been a surge in the knowledge of DIPG biology, including the discovery of a recurrent H3F3A mutation in over 80% of these tumors. AREAS COVERED The authors review the most recent approaches to diagnosis and treatment of DIPG including chemotherapy, biologics, surgical approaches, and immunotherapy. EXPERT OPINION The authors propose four main opportunities to improve long-term survival. First, patients should be enrolled in scientifically sound clinical trials that include molecularly profiling either via stereotactic biopsy or liquid biopsy. Second, clinical trials should include more innovative endpoints other than traditional EFS and OS such as MRI/PET imaging findings combined with surrogates of activity (e.g. serial liquid biopsies) to better ascertain biologically active treatments. Third, innovative clinical trial approaches are needed to help allow for the rapid development of combination therapies to be tested. Finally, effort should be concentrated on reversing the effects of the histone mutation, as this malfunctioning development program seems to be key to DIPG relentlessness.
Collapse
Affiliation(s)
- James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Alberto Broniscer
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
26
|
Garcia-Fabiani MB, Ventosa M, Comba A, Candolfi M, Nicola Candia AJ, Alghamri MS, Kadiyala P, Carney S, Faisal SM, Schwendeman A, Moon JJ, Scheetz L, Lahann J, Mauser A, Lowenstein PR, Castro MG. Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opin Investig Drugs 2020; 29:659-684. [PMID: 32400216 DOI: 10.1080/13543784.2020.1768528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Gliomas are infiltrating brain tumors associated with high morbidity and mortality. Current standard of care includes radiation, chemotherapy, and surgical resection. Today, survival rates for malignant glioma patients remain dismal and unchanged for decades. The glioma microenvironment is highly immunosuppressive and consequently this has motivated the development of immunotherapies for counteracting this condition, enabling the immune cells within the tumor microenvironment to react against this tumor. AREAS COVERED The authors discuss immunotherapeutic strategies for glioma in phase-I/II clinical trials and illuminate their mechanisms of action, limitations, and key challenges. They also examine promising approaches under preclinical development. EXPERT OPINION In the last decade there has been an expansion in immune-mediated anti-cancer therapies. In the glioma field, sophisticated strategies have been successfully implemented in preclinical models. Unfortunately, clinical trials have not yet yielded consistent results for glioma patients. This could be attributed to our limited understanding of the complex immune cell infiltration and its interaction with the tumor cells, the selected time for treatment, the combination with other therapies and the route of administration of the agent. Applying these modalities to treat malignant glioma is challenging, but many new alternatives are emerging to by-pass these hurdles.
Collapse
Affiliation(s)
- Maria B Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Maria Ventosa
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Cancer Biology Graduate Program, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan , Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan , Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan , Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Ava Mauser
- Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School , Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
27
|
Van Gool SW, Makalowski J, Bonner ER, Feyen O, Domogalla MP, Prix L, Schirrmacher V, Nazarian J, Stuecker W. Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. MEDICINES 2020; 7:medicines7050029. [PMID: 32438648 PMCID: PMC7281768 DOI: 10.3390/medicines7050029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/29/2023]
Abstract
Background: The prognosis of children with diffuse intrinsic pontine glioma (DIPG) remains dismal despite radio- and chemotherapy or molecular-targeted therapy. Immunotherapy is a powerful and promising approach for improving the overall survival (OS) of children with DIPG. Methods: A retrospective analysis for feasibility, immune responsiveness, and OS was performed on 41 children treated in compassionate use with multimodal therapy consisting of Newcastle disease virus, hyperthermia, and autologous dendritic cell vaccines as part of an individualized combinatorial treatment approach for DIPG patients. Results: Patients were treated at diagnosis (n = 28) or at the time of progression (n = 13). In the case of 16 patients, histone H3K27M mutation was confirmed by analysis of biopsy (n = 9) or liquid biopsy (n = 9) specimens. PDL1 mRNA expression was detected in circulating tumor cells of ten patients at diagnosis. Multimodal immunotherapy was feasible as scheduled, until progression, in all patients without major toxicity. When immunotherapy was part of primary treatment, median PFS and OS were 8.4 m and 14.4 m from the time of diagnosis, respectively, with a 2-year OS of 10.7%. When immunotherapy was given at the time of progression, median PFS and OS were 6.5 m and 9.1 m, respectively. A longer OS was associated with a Th1 shift and rise in PanTum Detect test scores. Conclusions: Multimodal immunotherapy is feasible without major toxicity, and warrants further investigation as part of a combinatorial treatment approach for children diagnosed with DIPG.
Collapse
Affiliation(s)
- Stefaan W. Van Gool
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
- Correspondence: ; Tel.: +49-221-420-39925
| | - Jennifer Makalowski
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Erin R. Bonner
- Center for Genetic Medicine, Children’s National Health System, Washington, DC 20010, USA;
- Institute for Biomedical Sciences, The George Washington University School of Medicine and health Sciences, Washington, DC 20052, USA
| | - Oliver Feyen
- Zyagnum, Reißstrasse 1, 64319 Pfungstadt, Germany;
| | - Matthias P. Domogalla
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Lothar Prix
- Biofocus, Berghäuser Strasse 295, 45659 Recklinghausen, Germany;
| | - Volker Schirrmacher
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Javad Nazarian
- DIPG Research Institute, Universitäts-Kinderspital Zürich; Steinwiesstrasse 75, Ch-8032 Zürich, Switzerland;
| | - Wilfried Stuecker
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| |
Collapse
|
28
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
29
|
Chekhonin IV, Kobyakov GL, Gurina OI. [Dendritic cell vaccines in neurological oncology]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:76-85. [PMID: 32207746 DOI: 10.17116/neiro20208401176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dendritic cell-based vaccines are an intensively studied active immunotherapy technology. Aim of this article is to review the results of the key clinical studies of such vaccines in the treatment of neuro-oncological diseases. Their effectiveness was studied most widely in the treatment of malignant glial tumors, the study went from experimental work to phase III clinical studies, preliminary results of which indicate some positive results of this immunotherapy method in adults. Currently, emphasis is also being placed on the identification of clinical and immunological correlates of the patient's response to therapy and on the search for new antigens for sensitization of dendritic cells Studies of dendritic cell vaccines also include a number of other neuro-oncological diseases. A separate part of this article is devoted to the treatment of intracerebral tumors in children, for example, medulloblastomas and gliomas of the pons. In addition, the potential use of dendritic cell vaccines for intracerebral metastases is considered.
Collapse
Affiliation(s)
- I V Chekhonin
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Moscow, Russia; N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G L Kobyakov
- N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - O I Gurina
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
30
|
|
31
|
de Bruijn S, Anguille S, Verlooy J, Smits EL, van Tendeloo VF, de Laere M, Norga K, Berneman ZN, Lion E. Dendritic Cell-Based and Other Vaccination Strategies for Pediatric Cancer. Cancers (Basel) 2019; 11:cancers11091396. [PMID: 31546858 PMCID: PMC6770385 DOI: 10.3390/cancers11091396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Dendritic cell-based and other vaccination strategies that use the patient’s own immune system for the treatment of cancer are gaining momentum. Most studies of therapeutic cancer vaccination have been performed in adults. However, since cancer is one of the leading causes of death among children past infancy in the Western world, the hope is that this form of active specific immunotherapy can play an important role in the pediatric population as well. Since children have more vigorous and adaptable immune systems than adults, therapeutic cancer vaccines are expected to have a better chance of creating protective immunity and preventing cancer recurrence in pediatric patients. Moreover, in contrast to conventional cancer treatments such as chemotherapy, therapeutic cancer vaccines are designed to specifically target tumor cells and not healthy cells or tissues. This reduces the likelihood of side effects, which is an important asset in this vulnerable patient population. In this review, we present an overview of the different therapeutic cancer vaccines that have been studied in the pediatric population, with a main focus on dendritic cell-based strategies. In addition, new approaches that are currently being investigated in clinical trials are discussed to provide guidance for further improvement and optimization of pediatric cancer vaccines.
Collapse
Affiliation(s)
- Sévérine de Bruijn
- Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Sébastien Anguille
- Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Joris Verlooy
- Division of Pediatric Hemato-Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Evelien L Smits
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Center for Oncological Research, Faculty of Medicine & Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - Viggo F van Tendeloo
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Maxime de Laere
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Koenraad Norga
- Division of Pediatric Hemato-Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | - Zwi N Berneman
- Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Eva Lion
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
- Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
32
|
Schuelke MR, Wongthida P, Thompson J, Kottke T, Driscoll CB, Huff AL, Shim KG, Coffey M, Pulido J, Evgin L, Vile RG. Diverse immunotherapies can effectively treat syngeneic brainstem tumors in the absence of overt toxicity. J Immunother Cancer 2019; 7:188. [PMID: 31315671 PMCID: PMC6637625 DOI: 10.1186/s40425-019-0673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immunotherapy has shown remarkable clinical promise in the treatment of various types of cancers. However, clinical benefits derive from a highly inflammatory mechanism of action. This presents unique challenges for use in pediatric brainstem tumors including diffuse intrinsic pontine glioma (DIPG), since treatment-related inflammation could cause catastrophic toxicity. Therefore, the goal of this study was to investigate whether inflammatory, immune-based therapies are likely to be too dangerous to pursue for the treatment of pediatric brainstem tumors. METHODS To complement previous immunotherapy studies using patient-derived xenografts in immunodeficient mice, we developed fully immunocompetent models of immunotherapy using transplantable, syngeneic tumors. These four models - HSVtk/GCV suicide gene immunotherapy, oncolytic viroimmunotherapy, adoptive T cell transfer, and CAR T cell therapy - have been optimized to treat tumors outside of the CNS and induce a broad spectrum of inflammatory profiles, maximizing the chances of observing brainstem toxicity. RESULTS All four models achieved anti-tumor efficacy in the absence of toxicity, with the exception of recombinant vaccinia virus expressing GMCSF, which demonstrated inflammatory toxicity. Histology, imaging, and flow cytometry confirmed the presence of brainstem inflammation in all models. Where used, the addition of immune checkpoint blockade did not introduce toxicity. CONCLUSIONS It remains imperative to regard the brainstem with caution for immunotherapeutic intervention. Nonetheless, we show that further careful development of immunotherapies for pediatric brainstem tumors is warranted to harness the potential potency of anti-tumor immune responses, despite their possible toxicity within this anatomically sensitive location.
Collapse
Affiliation(s)
- Matthew R Schuelke
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Amanda L Huff
- Virology and Gene Therapy Track, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin G Shim
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matt Coffey
- Oncolytics Biotech, Inc., Calgary, AB, T2N 1X7, Canada
| | - Jose Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK.
| |
Collapse
|
33
|
Garcia-Garijo A, Fajardo CA, Gros A. Determinants for Neoantigen Identification. Front Immunol 2019; 10:1392. [PMID: 31293573 PMCID: PMC6601353 DOI: 10.3389/fimmu.2019.01392] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022] Open
Abstract
All tumors accumulate genetic alterations, some of which can give rise to mutated, non-self peptides presented by human leukocyte antigen (HLA) molecules and elicit T-cell responses. These immunogenic mutated peptides, or neoantigens, are foreign in nature and display exquisite tumor specificity. The correlative evidence suggesting they play an important role in the effectiveness of various cancer immunotherapies has triggered the development of vaccines and adoptive T-cell therapies targeting them. However, the systematic identification of personalized neoantigens in cancer patients, a critical requisite for the success of these therapies, remains challenging. A growing amount of evidence supports that only a small fraction of all tumor somatic non-synonymous mutations (NSM) identified represent bona fide neoantigens; mutated peptides that are processed, presented on the cell surface HLA molecules of cancer cells and are capable of triggering immune responses in patients. Here, we provide an overview of the existing strategies to identify candidate neoantigens and to evaluate their immunogenicity, two factors that impact on neoantigen identification. We will focus on their strengths and limitations to allow readers to rationally select and apply the most suitable method for their specific laboratory setting.
Collapse
Affiliation(s)
| | | | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|