1
|
Renata S, Verma N, Peddinti RK. Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125631. [PMID: 39736186 DOI: 10.1016/j.saa.2024.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate. The detection of sialic acid has been done by many tools including surface-enhanced Raman spectroscopy (SERS) which gained incredible attention due to its high selectivity and sensitivity. However, currently, comprehensive reviews of sialic acid detection and imaging as a cancer biomarker using SERS are still lacking. Here, we present the significant breakthroughs in SERS-based detection of sialic acid levels on cells, tissues, and body fluids due to the presence of cancer, different cancer metastasis stages, and in response to the external stimuli. This review covers the SERS substrate and novel SERS strategies, using lectin, boronic acid, metabolic glycan labelling and label-free methods, for sialic acid detection as cancer biomarker. The remaining challenges to detect sialic acid and prospect of future development of SERS for other carbohydrate-based cancer biomarker, for instance fucose, are also discussed.
Collapse
Affiliation(s)
- Septila Renata
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Nitish Verma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Procházková J, Fedr R, Hradilová B, Kvokačková B, Slavík J, Kováč O, Machala M, Fabian P, Navrátil J, Kráčalíková S, Levková M, Ovesná P, Bouchal J, Souček K. Single-cell profiling of surface glycosphingolipids opens a new dimension for deconvolution of breast cancer intratumoral heterogeneity and phenotypic plasticity. J Lipid Res 2024; 65:100609. [PMID: 39084491 PMCID: PMC11405820 DOI: 10.1016/j.jlr.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Glycosylated sphingolipids (GSLs) are a diverse group of cellular lipids typically reported as being rare in normal mammary tissue. In breast cancer (BCa), GSLs have emerged as noteworthy markers associated with breast cancer stem cells, mediators of phenotypic plasticity, and contributors to cancer cell chemoresistance. GSLs are potential surface markers that can uniquely characterize the heterogeneity of the tumor microenvironment, including cancer cell subpopulations and epithelial-mesenchymal plasticity (EMP). In this study, mass spectrometry analyses of the total sphingolipidome in breast epithelial cells and their mesenchymal counterparts revealed increased levels of Gb3 in epithelial cells and significantly elevated GD2 levels in the mesenchymal phenotype. To elucidate if GSL-related epitopes on BCa cell surfaces reflect EMP and cancer status, we developed and rigorously validated a 12-color spectral flow cytometry panel. This panel enables the simultaneous detection of native GSL epitopes (Gb3, SSEA1, SSEA3, SSEA4, and GD2), epithelial-mesenchymal transition markers (EpCAM, TROP2, and CD9), and lineage markers (CD45, CD31, and CD90) at the single-cell level. Next, the established panel was used for the analysis of BCa primary tumors and revealed surface heterogeneity in SSEA1, SSEA3, SSEA4, GD2, and Gb3, indicative of native epitope presence also on non-tumor cells. These findings further highlighted the phenotype-dependent alterations in GSL surface profiles, with differences between epithelial and stromal cells in the tumor. This study provides novel insights into BCa heterogeneity, shedding light on the potential of native GSL-related epitopes as markers for EMP and cancer status in fresh clinical samples. The developed single-cell approach offers promising avenues for further exploration.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Barbora Hradilová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Josef Slavík
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Ondrej Kováč
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Fabian
- Breast Cancer Centre, Masaryk Memorial Cancer Institute, Brno, Czech Republic; Prostate Cancer Centre, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jiří Navrátil
- Prostate Cancer Centre, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Simona Kráčalíková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Monika Levková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, University Hospital, Olomouc, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Kamra M, Chen YI, Delgado P, Seeley E, Seidlits S, Yeh HC, Brock A, Parekh SH. Ketomimetic Nutrients Trigger a Dual Metabolic Defense in Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601966. [PMID: 39005423 PMCID: PMC11244981 DOI: 10.1101/2024.07.03.601966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
While the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown, recent evidence suggests that intrinsic cellular metabolism could be a crucial driver of migratory disposition and chemoresistance. Aiming to decode the molecular mechanisms involved in BC cell metabolic maneuvering, we study how a ketomimetic (ketone body rich, low glucose) medium affects Doxorubicin (DOX) susceptibility and invasive disposition of BC cells. We quantified glycocalyx sialylation and found an inverse correlation with DOX-induced cytotoxicity and DOX internalization. These measurements were coupled with single-cell metabolic imaging, bulk migration studies, along with transcriptomic and metabolomic analyses. Our findings revealed that a ketomimetic medium enhances chemoresistance and invasive disposition of BC cells via two main oncogenic pathways: hypersialylation and lipid synthesis. We propose that the crosstalk between these pathways, juxtaposed at the synthesis of the glycan precursor UDP-GlcNAc, furthers advancement of a metastatic phenotype in BC cells under ketomimetic conditions.
Collapse
|
4
|
Krieg S, Fernandes SI, Kolliopoulos C, Liu M, Fendt SM. Metabolic Signaling in Cancer Metastasis. Cancer Discov 2024; 14:934-952. [PMID: 38592405 PMCID: PMC7616057 DOI: 10.1158/2159-8290.cd-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
Collapse
Affiliation(s)
- Sarah Krieg
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sara Isabel Fernandes
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Constantinos Kolliopoulos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ming Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Filipsky F, Läubli H. Regulation of sialic acid metabolism in cancer. Carbohydr Res 2024; 539:109123. [PMID: 38669826 DOI: 10.1016/j.carres.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.
Collapse
Affiliation(s)
- Filip Filipsky
- Department of Biomedicine, University Hospital and University of Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
6
|
Ostojic J, Kozic D, Panjkovic M, Georgievski-Brkic B, Dragicevic D, Lovrenski A, Boban J. Peak Resembling N-acetylaspartate (NAA) on Magnetic Resonance Spectroscopy of Brain Metastases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:662. [PMID: 38674308 PMCID: PMC11052432 DOI: 10.3390/medicina60040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an amino acid found uniquely in the central nervous system and in high concentrations in neurons, typically suggests HGG over metastatic lesions in spectra from ring-enhancing lesions. This study investigates exceptions to this norm. Materials and Methods: We conducted an MRS study on 49 histologically confirmed and previously untreated patients with brain metastases, employing single-voxel (SVS) techniques with short and long echo times, as well as magnetic resonance spectroscopic imaging (MRSI). Results: In our cohort, 44 out of 49 (90%) patients demonstrated a typical MR spectroscopic profile consistent with secondary deposits: a Cho peak, very low or absent Cr, absence of NAA, and the presence of lipids. A peak at approximately 2 ppm, termed the "NAA-like peak", was present in spectra obtained with both short and long echo times. Among the MRS data from 49 individuals, we observed a peak at 2.0 ppm in five brain metastases from mucinous carcinoma of the breast, mucinous non-small-cell lung adenocarcinoma, two metastatic melanomas, and one metastatic non-small-cell lung cancer. Pathohistological verification of mucin in two of these five cases suggested this peak likely represents N-acetyl glycoproteins, indicative of mucin expression in cancer cells. Conclusions: The identification of a prominent peak at 2.0 ppm could be a valuable diagnostic marker for distinguishing single ring-enhancing lesions, potentially associated with mucin-expressing metastases, offering a new avenue for diagnostic specificity in challenging cases.
Collapse
Affiliation(s)
- Jelena Ostojic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Dusko Kozic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Milana Panjkovic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | | | - Dusan Dragicevic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Aleksandra Lovrenski
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Jasmina Boban
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| |
Collapse
|
7
|
Daniels P, Cassoday S, Gupta K, Giurini E, Leifheit ME, Zloza A, Marzo AL. Intratumoral Influenza Vaccine Administration Attenuates Breast Cancer Growth and Restructures the Tumor Microenvironment through Sialic Acid Binding of Vaccine Hemagglutinin. Int J Mol Sci 2023; 25:225. [PMID: 38203396 PMCID: PMC10779129 DOI: 10.3390/ijms25010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer continues to have a high disease burden worldwide and presents an urgent need for novel therapeutic strategies to improve outcomes. The influenza vaccine offers a unique approach to enhance the anti-tumor immune response in patients with breast cancer. Our study explores the intratumoral use of the influenza vaccine in a triple-negative 4T1 mouse model of breast cancer. We show that the influenza vaccine attenuated tumor growth using a three-dose intratumoral regimen. More importantly, prior vaccination did not alter this improved anti-tumor response. Furthermore, we characterized the effect that the influenza vaccine has on the tumor microenvironment and the underlying mechanisms of action. We established that the vaccine facilitated favorable shifts in restructuring the tumor microenvironment. Additionally, we show that the vaccine's ability to bind sialic acid residues, which have been implicated in having oncogenic functions, emerged as a key mechanism of action. Influenza hemagglutinin demonstrated binding ability to breast cancer cells through sialic acid expression. When administered intratumorally, the influenza vaccine offers a promising therapeutic strategy for breast cancer patients by reshaping the tumor microenvironment and modestly suppressing tumor growth. Its interaction with sialic acids has implications for effective therapeutic application and future research.
Collapse
Affiliation(s)
- Preston Daniels
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| | - Stefanie Cassoday
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.G.); (E.G.)
| | - Eileena Giurini
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.G.); (E.G.)
| | - Malia E. Leifheit
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| | - Andrew Zloza
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| | - Amanda L. Marzo
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| |
Collapse
|
8
|
Bouti P, Blans C, Klein BJAM, Shome D, Nadafi R, Van Houdt M, Schornagel K, Verkuijlen PJJH, Roos V, Reijmers RM, Van Bruggen R, Kuijpers TW, Matlung HL. SIGLEC-5/14 Inhibits CD11b/CD18 Integrin Activation and Neutrophil-Mediated Tumor Cell Cytotoxicity. Int J Mol Sci 2023; 24:17141. [PMID: 38138970 PMCID: PMC10742634 DOI: 10.3390/ijms242417141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.
Collapse
Affiliation(s)
- Panagiota Bouti
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Colin Blans
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Bart J. A. M. Klein
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Debarati Shome
- LUMICKS, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Reza Nadafi
- LUMICKS, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Michel Van Houdt
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Karin Schornagel
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Paul J. J. H. Verkuijlen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Virginie Roos
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | - Robin Van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
9
|
Barnieh FM, Galuska SP, Loadman PM, Ward S, Falconer RA, El-Khamisy SF. Cancer-specific glycosylation of CD13 impacts its detection and activity in preclinical cancer tissues. iScience 2023; 26:108219. [PMID: 37942010 PMCID: PMC10628746 DOI: 10.1016/j.isci.2023.108219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Harnessing the differences between cancer and non-cancer tissues presents new opportunities for selective targeting by anti-cancer drugs. CD13, a heavily glycosylated protein, is one example with significant unmet clinical potential in cancer drug discovery. Despite its high expression and activity in cancers, CD13 is also expressed in many normal tissues. Here, we report differential tissue glycosylation of CD13 across tissues and demonstrate for the first time that the nature and pattern of glycosylation of CD13 in preclinical cancer tissues are distinct compared to normal tissues. We identify cancer-specific O-glycosylation of CD13, which selectively blocks its detection in cancer models but not in normal tissues. In addition, the metabolism activity of cancer-expressed CD13 was observed to be critically dependent on its unique glycosylation. Thus, our data demonstrate the existence of discrete cancer-specific CD13 glycoforms and propose cancer-specific CD13 glycoforms as a clinically useful target for effective cancer-targeted therapy.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Sebastian P. Galuska
- Institute for Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | - Robert A. Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Sherif F. El-Khamisy
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
10
|
Scheper AF, Schofield J, Bohara R, Ritter T, Pandit A. Understanding glycosylation: Regulation through the metabolic flux of precursor pathways. Biotechnol Adv 2023; 67:108184. [PMID: 37290585 DOI: 10.1016/j.biotechadv.2023.108184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Glycosylation is how proteins and lipids are modified with complex carbohydrates known as glycans. The post-translational modification of proteins with glycans is not a template-driven process in the same way as genetic transcription or protein translation. Glycosylation is instead dynamically regulated by metabolic flux. This metabolic flux is determined by the concentrations and activities of the glycotransferase enzymes, which synthesise glycans, the metabolites that act as their precursors and transporter proteins. This review provides an overview of the metabolic pathways underlying glycan synthesis. Pathological dysregulation of glycosylation, particularly increased glycosylation occurring during inflammation, is also elucidated. The resulting inflammatory hyperglycosylation acts as a glycosignature of disease, and we report on the changes in the metabolic pathways which feed into glycan synthesis, revealing alterations to key enzymes. Finally, we examine studies in developing metabolic inhibitors targeting these critical enzymes. These results provide the tools for researchers investigating the role of glycan metabolism in inflammation and have helped to identify promising glycotherapeutic approaches to inflammation.
Collapse
Affiliation(s)
- Aert F Scheper
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Jack Schofield
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Thomas Ritter
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland; School of Medicine, University of Galway, Ireland; Regenerative Medicine Institute (REMEDI), University of Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
11
|
Zhou X, Chi K, Zhang C, Liu Q, Yang G. Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment. BIOLOGY 2023; 12:832. [PMID: 37372117 DOI: 10.3390/biology12060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a "cloak" to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid-Siglec interaction.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chairui Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Quan Liu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Lustig M, Chan C, Jansen JHM, Bräutigam M, Kölling MA, Gehlert CL, Baumann N, Mester S, Foss S, Andersen JT, Bastian L, Sondermann P, Peipp M, Burger R, Leusen JHW, Valerius T. Disruption of the sialic acid/Siglec-9 axis improves antibody-mediated neutrophil cytotoxicity towards tumor cells. Front Immunol 2023; 14:1178817. [PMID: 37346044 PMCID: PMC10279866 DOI: 10.3389/fimmu.2023.1178817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. H. Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Max A. Kölling
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Simone Mester
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lorenz Bastian
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
13
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Medeiros HCD, Yang C, Herrera CK, Broadwater D, Ensink E, Bates M, Lunt RR, Lunt SY. Phosphorescent Metal Halide Nanoclusters for Tunable Photodynamic Therapy. Chemistry 2023; 29:e202202881. [PMID: 36351205 PMCID: PMC9898232 DOI: 10.1002/chem.202202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)-based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)-based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.
Collapse
Affiliation(s)
- Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Chenchen Yang
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Christopher K. Herrera
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Deanna Broadwater
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Matthew Bates
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
- Department of Physics and AstronomyMichigan State UniversityEast Lansing, MI48824USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
15
|
Banerjee DK. BIRTH OF A GLYCOTHERAPY FOR BREAST CANCER. TRENDS IN CARBOHYDRATE RESEARCH 2023; 15:25-37. [PMID: 38362162 PMCID: PMC10869124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Breast cancer is the most common malignant disease in women and is worldwide. The incidence rate of women's breast cancer in 2020 was 2,261,419 and 2022 estimates diagnosing 1,918,030 cases. The disease is heterogeneous and the pathogenesis of breast cancer still remains unclear. Much progress has been made in early detection and better treatment to improve survival. Unfortunately, the current treatment strategies destroy the patient's quality of life. The patients develop drug resistance, exhibit severe side effects, and not afford the cost creates anxiety among the patients, families, and friends. In addition, a considerable number of patients relapse as a result of organ metastasis, e.g., the triple-negative breast cancer (TNBC, ER-/PR-HER2-). The 5-year survival rate of patients who recurred with distant metastasis is less than 20%. More than half a million women worldwide still suffer from metastatic breast cancer annually, and 90% of their deaths could be attributed to metastasis. One of the reasons for the failure of cancer therapeutics is the approaches did not consider the cancer holistically. All breast cancer cells and their micro environmental capillary endothelial cells express asparagine-linked (N-linked) glycoproteins. We have tested a biologic and a small molecule, Tunicamycin-P (P = pure N-glycosylation inhibitor) to interfere with the protein N-glycosylation pathway in the endoplasmic reticulum (ER) by specifically blocking the catalytic activity of N-acetylglusosaminyl 1-phosphate transferase (GPT) activity. The outcome has been quantitative inhibition of in vitro and in vivo angiogenesis and the breast tumor progression of multiple subtypes in pre-clinical mouse models with "zero" toxicity. We have, therefore, concluded that Tunicamycin-P is expected to supersede the current therapeutics and become a Glycotherapy treating breast cancer of all subtypes.
Collapse
Affiliation(s)
- Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| |
Collapse
|
16
|
Läubli H, Nalle SC, Maslyar D. Targeting the Siglec-Sialic Acid Immune Axis in Cancer: Current and Future Approaches. Cancer Immunol Res 2022; 10:1423-1432. [PMID: 36264237 PMCID: PMC9716255 DOI: 10.1158/2326-6066.cir-22-0366] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
The sialic acid-binding immunoglobulin-like lectin (Siglec)-sialic acid immune axis is an evolutionarily conserved immunoregulatory pathway that provides a mechanism for establishing self-recognition and combatting invasive pathogens. Perturbations in the pathway lead to many immune dysregulated diseases, including autoimmunity, neurodegeneration, allergic conditions, and cancer. The purpose of this review is to provide a brief overview of the relationship between Siglecs and sialic acid as they relate to human health and disease, to consider current Siglec-based therapeutics, and to discuss new therapeutic approaches targeting the Siglec-sialic acid immune axis, with a focus on cancer.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University, of Basel, Basel, Switzerland.,Division of Oncology, University Hospital Basel, Basel, Switzerland.,Corresponding Author: Heinz Läubli, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland. Phone: 416-1556-5212; Fax: 416-1265-5316; E-mail:
| | | | | |
Collapse
|
17
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
18
|
Wenes M, Jaccard A, Wyss T, Maldonado-Pérez N, Teoh ST, Lepez A, Renaud F, Franco F, Waridel P, Yacoub Maroun C, Tschumi B, Dumauthioz N, Zhang L, Donda A, Martín F, Migliorini D, Lunt SY, Ho PC, Romero P. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab 2022; 34:731-746.e9. [PMID: 35452600 PMCID: PMC9116152 DOI: 10.1016/j.cmet.2022.03.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/25/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022]
Abstract
Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.
Collapse
Affiliation(s)
- Mathias Wenes
- Department of Oncology, University of Lausanne, Épalinges, Switzerland.
| | - Alison Jaccard
- Department of Oncology, University of Lausanne, Épalinges, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Tania Wyss
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anouk Lepez
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland; Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland
| | - Fabrice Renaud
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Fabien Franco
- Department of Oncology, University of Lausanne, Épalinges, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Benjamin Tschumi
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Nina Dumauthioz
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Alena Donda
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Francisco Martín
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Denis Migliorini
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland; Swiss Cancer Center Léman, Geneva and Lausanne, Switzerland; Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Épalinges, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Épalinges, Switzerland.
| |
Collapse
|
19
|
Rossi M, Altea-Manzano P, Demicco M, Doglioni G, Bornes L, Fukano M, Vandekeere A, Cuadros AM, Fernández-García J, Riera-Domingo C, Jauset C, Planque M, Alkan HF, Nittner D, Zuo D, Broadfield LA, Parik S, Pane AA, Rizzollo F, Rinaldi G, Zhang T, Teoh ST, Aurora AB, Karras P, Vermeire I, Broekaert D, Elsen JV, Knott MML, Orth MF, Demeyer S, Eelen G, Dobrolecki LE, Bassez A, Brussel TV, Sotlar K, Lewis MT, Bartsch H, Wuhrer M, Veelen PV, Carmeliet P, Cools J, Morrison SJ, Marine JC, Lambrechts D, Mazzone M, Hannon GJ, Lunt SY, Grünewald TGP, Park M, Rheenen JV, Fendt SM. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 2022; 605:747-753. [PMID: 35585241 PMCID: PMC9888363 DOI: 10.1038/s41586-022-04758-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/12/2022] [Indexed: 02/02/2023]
Abstract
Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvβ3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.
Collapse
Affiliation(s)
- Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Cristina Jauset
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - David Nittner
- Histopathology Expertise Center, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dongmei Zuo
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Antonino Alejandro Pane
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Francesca Rizzollo
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Arin B Aurora
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Panagiotis Karras
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sofie Demeyer
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Ayse Bassez
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - Harald Bartsch
- Institute of Pathology, Ludwig Maximilians University, Munich, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan Cools
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Morag Park
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
20
|
Vilen Z, Reeves AE, O’Leary TR, Joeh E, Kamasawa N, Huang ML. Cell Surface Engineering Enables Surfaceome Profiling. ACS Chem Biol 2022; 18:701-710. [PMID: 35443134 PMCID: PMC9901301 DOI: 10.1021/acschembio.1c00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell surface proteins (CSPs) are vital molecular mediators for cells and their extracellular environment. Thus, understanding which CSPs are displayed on cells, especially in different cell states, remains an important endeavor in cell biology. Here, we describe the integration of cell surface engineering with radical-mediated protein biotinylation to profile CSPs. This method relies on the prefunctionalization of cells with cholesterol lipid groups, followed by sortase-catalyzed conjugation with an APEX2 ascorbate peroxidase enzyme. In the presence of biotin-phenol and H2O2, APEX2 catalyzes the formation of highly reactive biotinyl radicals that covalently tag electron-rich residues within CSPs for subsequent streptavidin-based enrichment and analysis by quantitative mass spectrometry. While APEX2 is traditionally used to capture proximity-based interactomes, we envisioned using it in a "baitless" manner on cell surfaces to capture CSPs. We evaluate this strategy in light of another CSP labeling method that relies on the presence of cell surface sialic acid. Using the APEX2 strategy, we describe the CSPs found in three mammalian cell lines and compare CSPs in adherent versus three-dimensional pancreatic adenocarcinoma cells.
Collapse
Affiliation(s)
- Zak Vilen
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Abigail E. Reeves
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Timothy R. O’Leary
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284
| | - Eugene Joeh
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458
| | - Mia L. Huang
- Department of Molecular Medicine, Scripps Research, 120 Scripps Way, Jupiter, FL 33458-5284,Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037,Corresponding author:
| |
Collapse
|
21
|
Sialic acids: An Avenue to Target Cancer Progression, Metastasis, and Resistance to Therapy. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Sialic acids are alpha-keto acids with nine carbons that are commonly present in the terminal sugars of glycans on glycoproteins and glycolipids on the cell surface. Sialic acids have a role in a variety of physiological and pathological processes by interacting with carbohydrates and proteins, communicating between cells, and acting as cell surface receptors for viruses and bacteria. Several studies have shown the aberrant pattern of sialic acids on cancer cells due to change in their glycosylation status. This pattern may be attributed to various physiological and pathological changes occurring in tumour cells. Hypersialylation in tumours, its involvement in tumour growth, immune evasion and escape from the apoptotic pathway, metastasis formation, and therapeutic resistance have all been fairly well investigated.
Methods
A PubMed search was conducted and published articles in different studies from 2000 to 2020 were included and reviewed. Here, we discuss current outcomes that emphasize the unfavourable effects of hypersialylation on multiple aspects of tumour genesis, immune evasion, metastasis and resistance to therapy.
Conclusion
These recent investigations have found that aberrant sialylation is an essential process for tumour cells to evade immune surveillance and maintain their malignancy. Together, these noteworthy views provide a solid platform for designing and developing therapeutic approaches that target hypersialylation of cancer cells.
Collapse
|
22
|
Saraswat M, Mangalaparthi KK, Garapati K, Pandey A. TMT-Based Multiplexed Quantitation of N-Glycopeptides Reveals Glycoproteome Remodeling Induced by Oncogenic Mutations. ACS OMEGA 2022; 7:11023-11032. [PMID: 35415375 PMCID: PMC8991921 DOI: 10.1021/acsomega.1c06970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Glycoproteomics, or the simultaneous characterization of glycans and their attached peptides, is increasingly being employed to generate catalogs of glycopeptides on a large scale. Nevertheless, quantitative glycoproteomics remains challenging even though isobaric tagging reagents such as tandem mass tags (TMT) are routinely used for quantitative proteomics. Here, we present a workflow that combines the enrichment or fractionation of TMT-labeled glycopeptides with size-exclusion chromatography (SEC) for an in-depth and quantitative analysis of the glycoproteome. We applied this workflow to study the cellular glycoproteome of an isogenic mammary epithelial cell system that recapitulated oncogenic mutations in the PIK3CA gene, which codes for the phosphatidylinositol-3-kinase catalytic subunit. As compared to the parental cells, cells with mutations in exon 9 (E545K) or exon 20 (H1047R) of the PIK3CA gene exhibited site-specific glycosylation alterations in 464 of the 1999 glycopeptides quantified. Our strategy led to the discovery of site-specific glycosylation changes in PIK3CA mutant cells in several important receptors, including cell adhesion proteins such as integrin β-6 and CD166. This study demonstrates that the SEC-based enrichment of glycopeptides is a simple and robust method with minimal sample processing that can easily be coupled with TMT-labeling for the global quantitation of glycopeptides.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Kiran Kumar Mangalaparthi
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Kishore Garapati
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka 560029, India
| | - Akhilesh Pandey
- Department
of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International
Technology Park, Bangalore, Karnataka 560066, India
- Manipal
Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka 560029, India
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
23
|
Banerjee DK, Seijo Lebrón A, Baksi K. Glycotherapy: A New Paradigm in Breast Cancer Research. Biomolecules 2022; 12:biom12040487. [PMID: 35454076 PMCID: PMC9026886 DOI: 10.3390/biom12040487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is an ancient disease recognized first by the Egyptians as early as 1600 BC. The first cancer-causing gene in a chicken tumor virus was found in 1970. The United States signed the National Cancer Act in 1971, authorizing federal funding for cancer research. Irrespective of multi-disciplinary approaches, diverting a great deal of public and private resources, breast cancer remains at the forefront of human diseases, affecting as many as one in eight women during their lifetime. Because of overarching challenges and changes in the breast cancer landscape, five-year disease-free survival is no longer considered adequate. The absence of a cure, and the presence of drug resistance, severe side effects, and destruction of the patient’s quality of life, as well as the fact that therapy is often expensive, making it unaffordable to many, have created anxiety among patients, families, and friends. One of the reasons for the failure of cancer therapeutics is that the approaches do not consider cancer holistically. Characteristically, all breast cancer cells and their microenvironmental capillary endothelial cells express asparagine-linked (N-linked) glycoproteins with diverse structures. We tested a small biological molecule, Tunicamycin, that blocks a specific step of the protein N-glycosylation pathway in the endoplasmic reticulum (ER), i.e., the catalytic activity of N-acetylglusosaminyl 1-phosphate transferase (GPT). The outcome was overwhelmingly exciting. Tunicamycin quantitatively inhibits angiogenesis in vitro and in vivo, and inhibits the breast tumor progression of multiple subtypes in pre-clinical mouse models with “zero” toxicity. Mechanistic details support ER stress-induced unfolded protein response (upr) signaling as the cause for the apoptotic death of both cancer and the microvascular endothelial cells. Additionally, it interferes with Wnt signaling. We therefore conclude that Tunicamycin can be expected to supersede the current therapeutics to become a glycotherapy for treating breast cancer of all subtypes.
Collapse
Affiliation(s)
- Dipak K. Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA;
- Correspondence:
| | - Arelis Seijo Lebrón
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA;
| | - Krishna Baksi
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960-3001, USA;
| |
Collapse
|
24
|
Araújo R, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Front Oncol 2022; 12:786931. [PMID: 35299741 PMCID: PMC8921989 DOI: 10.3389/fonc.2022.786931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone receptor activation is the primary treatment strategy, however, about half of the patients, develop resistance in time. This involves the development of hormone independent tumors that initially are ET-responsive (HI), which may subsequently become resistant (HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and not completely understood. The aim of this work was to characterize the metabolic adaptations accompanying this conversion through the analysis of the polar metabolomes of tumor tissue and non-compromised mammary gland from mice implanted subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate (MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance (NMR) spectroscopy of tissue polar extracts and data mining through multivariate and univariate statistical analysis. Initial results unveiled marked changes between global tumor profiles and non-compromised mammary gland tissues, as expected. More importantly, specific metabolic signatures were found to accompany progression from HD, through HI and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and metabolites related to oxidative stress protection mechanisms. For each transition, sets of polar metabolites are advanced as potential markers of progression, including acquisition of resistance to ET. Putative biochemical interpretation of such signatures are proposed and discussed.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Victoria Fabris
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Luisa A Helguero
- Institute of Biomedicine (iBIMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
25
|
Jaggupilli A, Ly S, Nguyen K, Anand V, Yuan B, El-Dana F, Yan Y, Arvanitis Z, Piyarathna DWB, Putluri N, Piwnica-Worms H, Manning HC, Andreeff M, Battula VL. Metabolic stress induces GD2 + cancer stem cell-like phenotype in triple-negative breast cancer. Br J Cancer 2022; 126:615-627. [PMID: 34811508 PMCID: PMC8854435 DOI: 10.1038/s41416-021-01636-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Metabolic stress resulting from nutrient deficiency is one of the hallmarks of a growing tumour. Here, we tested the hypothesis that metabolic stress induces breast cancer stem-like cell (BCSC) phenotype in triple-negative breast cancer (TNBC). METHODS Flow cytometry for GD2 expression, mass spectrometry and Ingenuity Pathway Analysis for metabolomics, bioinformatics, in vitro tumorigenesis and in vivo models were used. RESULTS Serum/glucose deprivation not only increased stress markers but also enhanced GD2+ BCSC phenotype and function in TNBC cells. Global metabolomics profiling identified upregulation of glutathione biosynthesis in GD2high cells, suggesting a role of glutamine in the BCSC phenotype. Cueing from the upregulation of the glutamine transporters in primary breast tumours, inhibition of glutamine uptake using small-molecule inhibitor V9302 reduced GD2+ cells by 70-80% and BCSC characteristics in TNBC cells. Mechanistic studies revealed inhibition of the mTOR pathway and induction of ferroptosis by V9302 in TNBC cells. Finally, inhibition of glutamine uptake significantly reduced in vivo tumour growth in a TNBC patient-derived xenograft model using NSG (non-obese diabetic/severe combined immunodeficiency with a complete null allele of the IL-2 receptor common gamma chain) mice. CONCLUSION Here, we show metabolic stress results in GD2+ BCSC phenotype in TNBC and glutamine contributes to GD2+ phenotype, and targeting the glutamine transporters could complement conventional chemotherapy in TNBC.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stanley Ly
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Khoa Nguyen
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Anand
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Bin Yuan
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Fouad El-Dana
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yuanqing Yan
- grid.468222.8Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, Houston, TX USA
| | - Zoe Arvanitis
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Nagireddy Putluri
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX USA
| | - Helen Piwnica-Worms
- grid.240145.60000 0001 2291 4776Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Henry Charles Manning
- grid.152326.10000 0001 2264 7217Center for Molecular Probes, Vanderbilt University Institute of Imaging Science, Nashville, TN USA
| | - Michael Andreeff
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - V. Lokesh Battula
- grid.240145.60000 0001 2291 4776Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.240145.60000 0001 2291 4776Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
26
|
Dou C, Zhen G, Dan Y, Wan M, Limjunyawong N, Cao X. Sialylation of TLR2 initiates osteoclast fusion. Bone Res 2022; 10:24. [PMID: 35232979 PMCID: PMC8888621 DOI: 10.1038/s41413-022-00186-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
The molecular control of osteoclast formation is still not clearly elucidated. Here, we show that a process of cell recognition mediated by Siglec15-TLR2 binding is indispensable and occurs prior to cell fusion in RANKL-mediated osteoclastogenesis. Siglec15 has been shown to regulate osteoclastic bone resorption. However, the receptor for Siglec15 has not been identified, and the signaling mechanism involving Siglec15 in osteoclast function remains unclear. We found that Siglec15 bound sialylated TLR2 as its receptor and that the binding of sialylated TLR2 to Siglec15 in macrophages committed to the osteoclast-lineage initiated cell fusion for osteoclast formation, in which sialic acid was transferred by the sialyltransferase ST3Gal1. Interestingly, the expression of Siglec15 in macrophages was activated by M-CSF, whereas ST3Gal1 expression was induced by RANKL. Both Siglec15-specific deletion in macrophages and intrafemoral injection of sialidase abrogated cell recognition and reduced subsequent cell fusion for the formation of osteoclasts, resulting in increased bone formation in mice. Thus, our results reveal that cell recognition mediated by the binding of sialylated TLR2 to Siglec15 initiates cell fusion for osteoclast formation.
Collapse
Affiliation(s)
- Ce Dou
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gehua Zhen
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yang Dan
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mei Wan
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nathachit Limjunyawong
- grid.21107.350000 0001 2171 9311The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
27
|
Teoh ST, Leimanis-Laurens ML, Comstock SS, Winters JW, Vandenbosch NL, Prokop JW, Bachmann AS, Lunt SY, Rajasekaran S. Combined Plasma and Urinary Metabolomics Uncover Metabolic Perturbations Associated with Severe Respiratory Syncytial Viral Infection and Future Development of Asthma in Infant Patients. Metabolites 2022; 12:metabo12020178. [PMID: 35208252 PMCID: PMC8875115 DOI: 10.3390/metabo12020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
A large percentage of infants develop viral bronchiolitis needing medical intervention and often develop further airway disease such as asthma. To characterize metabolic perturbations in acute respiratory syncytial viral (RSV) bronchiolitis, we compared metabolomic profiles of moderate and severe RSV patients versus sedation controls. RSV patients were classified as moderate or severe based on the need for invasive mechanical ventilation. Whole blood and urine samples were collected at two time points (baseline and 72 h). Plasma and urinary metabolites were extracted in cold methanol and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and data from the two biofluids were combined for multivariate data analysis. Metabolite profiles were clustered according to severity, characterized by unique metabolic changes in both plasma and urine. Plasma metabolites that correlated with severity included intermediates in the sialic acid biosynthesis, while urinary metabolites included citrate as well as multiple nucleotides. Furthermore, metabolomic profiles were predictive of future development of asthma, with urinary metabolites exhibiting higher predictive power than plasma. These metabolites may offer unique insights into the pathology of RSV bronchiolitis and may be useful in identifying patients at risk for developing asthma.
Collapse
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
| | - Mara L. Leimanis-Laurens
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - John W. Winters
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Nikita L. Vandenbosch
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.Y.L.); (S.R.)
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.L.L.-L.); (J.W.W.); (J.W.P.); (A.S.B.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
- Correspondence: (S.Y.L.); (S.R.)
| |
Collapse
|
28
|
Abdul Kader S, Dib S, Achkar IW, Thareja G, Suhre K, Rafii A, Halama A. Defining the landscape of metabolic dysregulations in cancer metastasis. Clin Exp Metastasis 2021; 39:345-362. [PMID: 34921655 PMCID: PMC8971193 DOI: 10.1007/s10585-021-10140-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is the primary cause of cancer related deaths due to the limited number of efficient druggable targets. Signatures of dysregulated cancer metabolism could serve as a roadmap for the determination of new treatment strategies. However, the metabolic signatures of metastatic cells remain vastly elusive. Our aim was to determine metabolic dysregulations associated with high metastatic potential in breast cancer cell lines. We have selected 5 triple negative breast cancer (TNBC) cell lines including three with high metastatic potential (HMP) (MDA-MB-231, MDA-MB-436, MDA-MB-468) and two with low metastatic potential (LMP) (BT549, HCC1143). The normal epithelial breast cell line (hTERT-HME1) was also investigated. The untargeted metabolic profiling of cells and growth media was conducted and total of 479 metabolites were quantified. First we characterized metabolic features differentiating TNBC cell lines from normal cells as well as identified cell line specific metabolic fingerprints. Next, we determined 92 metabolites in cells and 22 in growth medium that display significant differences between LMP and HMP. The HMP cell lines had elevated level of molecules involved in glycolysis, TCA cycle and lipid metabolism. We identified metabolic advantages of cell lines with HMP beyond enhanced glycolysis by pinpointing the role of branched chain amino acids (BCAA) catabolism as well as molecules supporting coagulation and platelet activation as important contributors to the metastatic cascade. The landscape of metabolic dysregulations, characterized in our study, could serve as a roadmap for the identification of treatment strategies targeting cancer cells with enhanced metastatic potential.
Collapse
Affiliation(s)
- Sara Abdul Kader
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- University of Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Shaima Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
| | - Iman W Achkar
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- University of Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar.
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
29
|
Skaro M, Hill M, Zhou Y, Quinn S, Davis MB, Sboner A, Murph M, Arnold J. Are we there yet? A machine learning architecture to predict organotropic metastases. BMC Med Genomics 2021; 14:281. [PMID: 34819069 PMCID: PMC8611885 DOI: 10.1186/s12920-021-01122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND & AIMS Cancer metastasis into distant organs is an evolutionarily selective process. A better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is required to develop and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed to utilize transcript expression profiling features to predict the site-specific metastases of primary tumors and second, to identify the determinants of tissue specific progression. METHODS We used statistical machine learning for transcript feature selection to optimize classification and built tree-based classifiers to predict tissue specific sites of metastatic progression. RESULTS We developed a novel machine learning architecture that analyzes 33 types of RNA transcriptome profiles from The Cancer Genome Atlas (TCGA) database. Our classifier identifies the tumor type, derives synthetic instances of primary tumors metastasizing to distant organs and classifies the site-specific metastases in 16 types of cancers metastasizing to 12 locations. CONCLUSIONS We have demonstrated that site specific metastatic progression is predictable using transcriptomic profiling data from primary tumors and that the overrepresented biological processes in tumors metastasizing to congruent distant loci are highly overlapping. These results indicate site-specific progression was organotropic and core features of biological signaling pathways are identifiable that may describe proliferative plasticity in distant soils.
Collapse
Affiliation(s)
- Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Marcus Hill
- Department of Computer Science, University of Georgia, Athens, GA, 30602, USA
| | - Yi Zhou
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Shannon Quinn
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Computer Science, University of Georgia, Athens, GA, 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa B Davis
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell Medicine, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mandi Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
30
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
31
|
Tang Y, Jia C, Wang Y, Wan W, Li H, Huang G, Zhang X. Lactate Consumption via Cascaded Enzymes Combined VEGF siRNA for Synergistic Anti-Proliferation and Anti-Angiogenesis Therapy of Tumors. Adv Healthc Mater 2021; 10:e2100799. [PMID: 34310079 DOI: 10.1002/adhm.202100799] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Lactate, as the most abundant component with concentrations of 4-40 mm in tumors, contributes to the regulation of metabolic pathways, angiogenesis, and immunosuppression, exhibiting remarkable potential in cancer treatment. Therefore, a codelivery strategy that combined the cascaded enzymes Lactate oxidase/Catalase (LOx/CAT) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) to suppress tumor proliferation and angiogenesis synergistically is creatively proposed. In brief, the cationic liposomes (LIP) encapsulated with LOx/CAT and siVEGF via hydrophilic interaction and electrostatic adsorption followed by coating with PEGylated phenylboronic acid (PP) is established (PPL@[LOX+CAT]). Moreover, a simple 3-aminophenylboronic acid (PBA)-shielded strategy via fructose (Fru) is applied to further enhance the targeting efficiency in the tumor site. The obtained co-encapsulated nanoparticles (NPs) can simultaneous intracellular release of LOx/CAT and siVEGF, and the collaborative use of LOx and CAT can promote lactate consumption even under a hypoxic tumor microenvironment (TME) without producing systemic toxicity. The combined application of lactate depletion and VEGF silencing demonstrated the efficient migration suppression of 4T1 cells in vitro and superior antitumor and antimetastatic properties in vivo. This work offers a promising tumor treatment strategy via integrating cascaded enzymes and gene therapy, and explores a promising therapy regimen for 4T1 triple-negative breast cancer.
Collapse
Affiliation(s)
- Yan Tang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Changhao Jia
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yu Wang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Wenjun Wan
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Hui Li
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Gui Huang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xuenong Zhang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
32
|
Characterization of Sialic Acid Affinity of the Binding Domain of Mistletoe Lectin Isoform One. Int J Mol Sci 2021; 22:ijms22158284. [PMID: 34361050 PMCID: PMC8348413 DOI: 10.3390/ijms22158284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Sialic acid (Sia) is considered as one of the most important biomolecules of life since its derivatives and terminal orientations on cell membranes and macromolecules play a major role in many biological and pathological processes. To date, there is only a limited number of active molecules that can selectively bind to Sia and this limitation has made the study of this glycan challenging. The lectin superfamily is a well-known family of glycan binding proteins, which encompasses many strong glycan binding peptides with diverse glycan affinities. Mistletoe lectin (ML) is considered one of the most active members of lectin family which was initially classified in early studies as a galactose binding lectin; more recent studies have suggested that the peptide can also actively bind to Sia. However, the details with respect to Sia binding of ML and the domain responsible for this binding are left unanswered because no comprehensive studies have been instigated. In this study, we sought to identify the binding domain responsible for the sialic acid affinity of mistletoe lectin isoform I (MLI) in comparison to the binding activity of elderberry lectin isoform I (SNA), which has long been identified as a potent Sia binding lectin. In order to execute this, we performed computational carbohydrate-protein docking for MLB and SNA with Neu5Ac and β-Galactose. We further analyzed the coding sequence of both lectins and identified their glycan binding domains, which were later cloned upstream and downstream to green fluorescent protein (GFP) and expressed in Escherichia coli (E. coli). Finally, the glycan affinity of the expressed fusion proteins was assessed by using different biochemical and cell-based assays and the Sia binding domains were identified.
Collapse
|
33
|
Liu D, Wang S, Zhang J, Xiao W, Miao CH, Konkle BA, Wan XF, Li L. Site-Specific N- and O-Glycosylation Analysis of Human Plasma Fibronectin. Front Chem 2021; 9:691217. [PMID: 34211961 PMCID: PMC8239226 DOI: 10.3389/fchem.2021.691217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Human plasma fibronectin is an adhesive protein that plays a crucial role in wound healing. Many studies had indicated that glycans might mediate the expression and functions of fibronectin, yet a comprehensive understanding of its glycosylation is still missing. Here, we performed a comprehensive N- and O-glycosylation mapping of human plasma fibronectin and quantified the occurrence of each glycoform in a site-specific manner. Intact N-glycopeptides were enriched by zwitterionic hydrophilic interaction chromatography, and N-glycosite sites were localized by the 18O-labeling method. O-glycopeptide enrichment and O-glycosite identification were achieved by an enzyme-assisted site-specific extraction method. An RP–LC–MS/MS system functionalized with collision-induced dissociation and stepped normalized collision energy (sNCE)-HCD tandem mass was applied to analyze the glycoforms of fibronectin. A total of 6 N-glycosites and 53 O-glycosites were identified, which were occupied by 38 N-glycoforms and 16 O-glycoforms, respectively. Furthermore, 77.31% of N-glycans were sialylated, and O-glycosylation was dominated by the sialyl-T antigen. These site-specific glycosylation patterns on human fibronectin can facilitate functional analyses of fibronectin and therapeutics development.
Collapse
Affiliation(s)
- Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Junping Zhang
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Weidong Xiao
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
34
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
35
|
Lee DH, Kang SH, Choi DS, Ko M, Choi E, Ahn H, Min H, Oh SJ, Lee MS, Park Y, Jin HS. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells. Cancer Lett 2021; 510:37-47. [PMID: 33872695 DOI: 10.1016/j.canlet.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Aberrant activation of cytokine and growth factor signal transduction pathways confers enhanced survival and proliferation properties to acute myeloid leukemia (AML) cells. However, the mechanisms underlying the deregulation of signaling pathways in leukemia cells are unclear. To identify genes capable of independently supporting cytokine-independent growth, we employed a genome-wide CRISPR/Cas9-mediated loss-of-function screen in GM-CSF-dependent human AML TF-1 cells. More than 182 genes (p < 0.01) were found to suppress the cytokine-independent growth of TF-1 cells. Among the top hits, genes encoding key factors involved in sialylation biosynthesis were identified; these included CMAS, SLC35A1, NANS, and GNE. Knockout of either CMAS or SLC35A1 enabled cytokine-independent proliferation and survival of AML cells. Furthermore, NSG (NOD/SCID/IL2Rγ-/-) mice injected with CMAS or SLC35A1-knockout TF-1 cells exhibited a shorter survival than mice injected with wild-type cells. Mechanistically, abrogation of sialylation biosynthesis in TF-1 cells induced a strong activation of ERK signaling, which sensitized cells to MEK inhibitors but conferred resistance to JAK inhibitors. Further, the surface level of α2,3-linked sialic acids was negatively correlated with the sensitivity of AML cell lines to MEK/ERK inhibitors. We also found that sialylation modulated the expression and stability of the CSF2 receptor. Together, these results demonstrate a novel role of sialylation in regulating oncogenic transformation and drug resistance development in leukemia. We propose that altered sialylation could serve as a biomarker for targeted anti-leukemic therapy.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong-Ho Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minkyung Ko
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eunji Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyejin Ahn
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myeong Sup Lee
- Laboratory of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
36
|
Phenylboronic acid conjugated to doxorubicin nanocomplexes as an anti-cancer drug delivery system in hepatocellular carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102389. [PMID: 33753281 DOI: 10.1016/j.nano.2021.102389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Anti-cancer strategies using nanocarrier systems have been explored in a variety of cancers; these systems can easily be incorporated into tumors via the enhanced permeability and retention (EPR) effect leading to enhanced anti-tumor activity while reducing systemic toxicity by specific tumor-targeting. The prognosis of hepatocellular carcinoma (HCC) is extremely poor when the condition is diagnosed at the unresectable stage as treatment options are limited. In order to improve the treatment of cancer and the overall anti-cancer effect, polymerized phenylboronic acid conjugated doxorubicin (pPBA-Dox) nanocomplexes were generated, and conjugated doxorubicin, which is conventionally used in HCC. The nanocomplexes exhibited enhanced anti-tumor activity via tumor-specific targeting in the subcutaneous and orthotopic HCC syngeneic mice tumor model, implying that the nanocomplexes facilitate the targeted Dox delivery to liver cancer in which the sialic acid is over-expressed. Therefore, this study provides insight into the novel targeted therapy using the nanocomplexes for the treatment of HCC.
Collapse
|
37
|
Murugesan G, Weigle B, Crocker PR. Siglec and anti-Siglec therapies. Curr Opin Chem Biol 2021; 62:34-42. [PMID: 33607404 DOI: 10.1016/j.cbpa.2021.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of receptors that bind sialic acids in specific linkages on glycoproteins and glycolipids. Siglecs play roles in immune signalling and exhibit cell-type specific expression and endocytic properties. Recent studies suggest that Siglecs are likely to function as immune checkpoints that regulate responses in cancers and inflammatory diseases. In this review, we discuss strategies to target the Siglec-sialic acid axis in human diseases, particularly cancer, and the possibility of exploiting them for therapeutic intervention.
Collapse
Affiliation(s)
- Gavuthami Murugesan
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Bernd Weigle
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Str. 65, 88397, Biberach/Riss, Germany
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom.
| |
Collapse
|
38
|
Chowdhury S, Ghosh S. Sialylation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
de Fátima Martins M, Honório-Ferreira A, S Reis M, Cortez-Vaz C, Gonçalves CA. Sialic acids expression in newborn rat lungs: implications for pulmonary developmental biology. Acta Histochem 2020; 122:151626. [PMID: 33068965 DOI: 10.1016/j.acthis.2020.151626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Mammalian lung development proceeds during the postnatal period and continues throughout life. Intricate tubular systems of airways and vessels lined by epithelial cells are developed during this process. All cells, and particularly epithelial cells, carry an array of glycans on their surfaces. N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic (Neu5Gc) acids, two most frequently-occurring sialic acid residues, are essential determinants during development and in the homeostasis of cells and organisms. However, systematic data about the presence of cell surface sialic acids in the postnatal lung and their content is still scarce. In the present study, we addressed the histochemical localization of Neu5Ac > Neu5Gc in 0-day-old rat lungs. Furthermore, both residues were separated, identified and quantified in lung membranes isolated from 0-day-old rat lungs using high-performance liquid chromatography (HPLC) methodologies. Finally, we compared these results with those previously reported by us for adult rat lungs. The Neu5Ac > Neu5Gc residues were located on the surface of ciliated and non-ciliated cells and the median values for both residues in the purified lung membranes of newborn rats were 5.365 and 1.935 μg/mg prot., respectively. Comparing these results with those reported for the adults, it was possible to observe a significant difference between the levels of Neu5Ac and Neu5Gc (p < 0.001). A more substantial change was found for the case of Neu5Ac. The preponderance of Neu5Ac and its expressive increase during the postnatal development points towards a more prominent role of this residue. Bearing in mind that sialic acids are negatively charged molecules, the high content of Neu5Ac could contribute to the formation of an anion "shield" and have a role in pulmonary development and physiology.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ana Honório-Ferreira
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Marco S Reis
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Catarina Cortez-Vaz
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal
| | - Carlos Alberto Gonçalves
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Polo I Rua Larga, 3004-504, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| |
Collapse
|
40
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
41
|
Kim A, Suzuki M, Matsumoto Y, Fukumitsu N, Nagasaki Y. Non-isotope enriched phenylboronic acid-decorated dual-functional nano-assembles for an actively targeting BNCT drug. Biomaterials 2020; 268:120551. [PMID: 33307363 DOI: 10.1016/j.biomaterials.2020.120551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The feasibility of boron neutron capture therapy (BNCT) greatly depends on the selective accumulation of 10B in tumors. The p-boronophenylalanine-fructose (BPA-f) complex has been established as a conventional BNCT agent due to its preferential uptake into tumors, which is driven by amino acid transporters. However, the retention of BPA-f in tumors is highly limited because of an antiport mechanism, which is regulated by a gradient of amino acid concentration across the cancer cell membrane. Thus, to preserve a high 10B concentration in tumors, patients are inevitably subjected to a constant intravenous infusion. To this end, we employed a phenylboronic acid (PBA)-decorated polymeric nanoparticle (NanoPBA) as a sialic acid-targeting BNCT agent. In this manner, the PBA can exhibit dual functionalities, i.e., exhibiting a neutron capture capacity and hypersialyated cancer cell targeting effect. Our developed NanoPBA possesses a supramolecular structure composed of a core and shell comprised of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) segments, respectively. The PBA moiety is installed at the PEG end, providing an unusually strong targeting effect, supposedly via multivalent binding onto the cancer cell membrane. As in BNCT, we verified the feasibility of NanoPBA against a B16 melanoma-bearing mouse model. By virtue of efficient tumor targeting, even at a 100-fold lower dose than BPA-f, the NanoPBA achieved a potent antitumor effect.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan; Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Nobuyoshi Fukumitsu
- Department of Radiation Oncology, Kobe Proton Center, 1-6-8 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan; Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
42
|
Ma Y, Yin Y, Ni L, Miao H, Wang Y, Pan C, Tian X, Pan J, You T, Li B, Pan G. Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioact Mater 2020; 6:1308-1317. [PMID: 33251380 PMCID: PMC7662873 DOI: 10.1016/j.bioactmat.2020.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
In this work, a sialic acid (SA)-imprinted thermo-responsive hydrogel layer was prepared for selective capture and release of cancer cells. The SA-imprinting process was performed at 37 °C using thermo-responsive functional monomer, thus generating switchable SA-recognition sites with potent SA binding at 37 °C and weak binding at a lower temperature (e.g., 25 °C). Since SA is often overexpressed at the glycan terminals of cell membrane proteins or lipids, the SA-imprinted hydrogel layer could be used for selective cancer cell recognition. Our results confirmed that the hydrogel layer could efficiently capture cancer cells from not only the culture medium but also the real blood samples. In addition, the captured cells could be non-invasively released by lowing the temperature. Considering the non-invasive processing mode, considerable capture efficiency, good cell selectivity, as well as the more stable and durable SA-imprinted sites compared to natural antibodies or receptors, this thermo-responsive hydrogel layer could be used as a promising and general platform for cell-based cancer diagnosis. Thermo-responsive sialic acid (SA)-imprinted hydrogel layer was prepared. The hydrogel layer could efficiently and selective capture cancer cells at 37 °C. The captured cancer cells could be released at a lower temperature (e.g., 25 °C). The hydrogel layer could be used for capture and release cancer cells from blood.
Collapse
Affiliation(s)
- Yue Ma
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,Jiangsu Agrochem Laboratory, Changzhou, Jiangsu 213022, PR China
| | - Yimei Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Li Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yingjia Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Cheng Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaohua Tian
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
43
|
Bertok T, Jane E, Chrenekova N, Hroncekova S, Bertokova A, Hires M, Vikartovska A, Kubanikova P, Sokol R, Fillo J, Kasak P, Borsig L, Tkac J. Analysis of serum glycome by lectin microarrays for prostate cancer patients - a search for aberrant glycoforms. Glycoconj J 2020; 37:703-711. [PMID: 33119808 DOI: 10.1007/s10719-020-09958-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
This is the first work focused on glycoprofiling of whole N- and O- glycome using lectins in an array format applied for analysis of serum samples from healthy individuals, benign prostate hyperplasia (BPH) patients, and prostate cancer (PCa) patients. Lectin microarray was prepared using traditional lectins with the incorporation of 2 recombinant bacterial lectins and 3 human lectins (17 lectins in total). Clinical validation of glycans as biomarkers was done in two studies: discrimination of healthy individuals with BPH patients vs. PCa patients (C vs. PCa) and discrimination of healthy individuals vs. BPH and PCa patients (H vs. PCond). Single lectins (17 lectins) and a combination of two lectins (136 binary lectin combinations) were applied in the clinical validation of glycan biomarkers providing 153 AUC values from ROC curves for both studies (C vs. PCa and H vs. PCond). Potential N- and O-glycans as biomarkers were identified and possible carriers of these glycans are shortly discussed.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.,Glycanostics, Ltd, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Nikola Chrenekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Petra Kubanikova
- Private Urological Ambulance, Piaristicka 6, 911 01, Trencin, Slovakia
| | - Roman Sokol
- Private Urological Ambulance, Piaristicka 6, 911 01, Trencin, Slovakia
| | - Juraj Fillo
- University Hospital Bratislava, Mickiewiczova 13, 81107, Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia. .,Glycanostics, Ltd, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
| |
Collapse
|
44
|
UDP-glucose 6-dehydrogenase knockout impairs migration and decreases in vivo metastatic ability of breast cancer cells. Cancer Lett 2020; 492:21-30. [PMID: 32768525 DOI: 10.1016/j.canlet.2020.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Dysregulated metabolism is a hallmark of cancer that supports tumor growth and metastasis. One understudied aspect of cancer metabolism is altered nucleotide sugar biosynthesis, which drives aberrant cell surface glycosylation known to support various aspects of cancer cell behavior including migration and signaling. We examined clinical association of nucleotide sugar pathway gene expression and found that UGDH, encoding UDP-glucose 6-dehydrogenase which catalyzes production of UDP-glucuronate, is associated with worse breast cancer patient survival. Knocking out the mouse homolog Ugdh in highly-metastatic 6DT1 breast cancer cells impaired migration ability without affecting in vitro proliferation. Further, Ugdh-KO resulted in significantly decreased metastatic capacity in vivo when the cells were orthotopically injected in syngeneic mice. Our experiments show that UDP-glucuronate biosynthesis is critical for metastasis in a mouse model of breast cancer.
Collapse
|
45
|
Maroufy V, Shah P, Asghari A, Deng N, Le RNU, Ramirez JC, Yaseen A, Zheng WJ, Umetani M, Wu H. Gene expression dynamic analysis reveals co-activation of Sonic Hedgehog and epidermal growth factor followed by dynamic silencing. Oncotarget 2020; 11:1358-1372. [PMID: 32341755 PMCID: PMC7170495 DOI: 10.18632/oncotarget.27547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/14/2020] [Indexed: 12/02/2022] Open
Abstract
Aberrant activation of the Sonic Hedgehog (SHH) gene is observed in various cancers. Previous studies have shown a “cross-talk” effect between the canonical Hedgehog signaling pathway and the Epidermal Growth Factor (EGF) pathway when SHH is active in the presence of EGF. However, the precise mechanism of the cross-talk effect on the entire gene population has not been investigated. Here, we re-analyzed publicly available data to study how SHH and EGF cooperate to affect the dynamic activity of the gene population. We used genome dynamic analysis to explore the expression profiles under different conditions in a human medulloblastoma cell line. Ordinary differential equations, equipped with solid statistical and computational tools, were exploited to extract the information hidden in the dynamic behavior of the gene population. Our results revealed that EGF stimulation plays a dominant role, overshadowing most of the SHH effects. We also identified cross-talk genes that exhibited expression profiles dissimilar to that seen under SHH or EGF stimulation alone. These unique cross-talk patterns were validated in a cell culture model. These cross-talk genes identified here may serve as valuable markers to study or test for EGF co-stimulatory effects in an SHH+ environment. Furthermore, these cross-talk genes may play roles in cancer progression, thus they may be further explored as cancer treatment targets.
Collapse
Affiliation(s)
- Vahed Maroufy
- Department of Biostatistics and Data Science, School of Public Heath, University of Texas Health Science Center at Houston, Houston, TX, USA.,These authors contributed equally to this work
| | - Pankil Shah
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA.,These authors contributed equally to this work
| | - Arvand Asghari
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Nan Deng
- Department of Biostatistics and Data Science, School of Public Heath, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rosemarie N U Le
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Juan C Ramirez
- Facultad de Ingeniería de Sistemas, Universidad Antonio Nariño, Bogota, Colombia
| | - Ashraf Yaseen
- Department of Biostatistics and Data Science, School of Public Heath, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,HEALTH Research Institute, University of Houston, Houston, TX, USA
| | - Hulin Wu
- Department of Biostatistics and Data Science, School of Public Heath, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
46
|
Zhou X, Zhai Y, Liu C, Yang G, Guo J, Li G, Sun C, Qi X, Li X, Guan F. Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin α5β1 interaction and Akt signaling pathway. Cell Commun Signal 2020; 18:44. [PMID: 32164705 PMCID: PMC7066847 DOI: 10.1186/s12964-019-0500-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Sialic acids are widely distributed in animal tissues, and aberrantly expressed in a variety of cancer types. High expression of sialic acid contributes to tumor aggressiveness by promoting cell proliferation, migration, angiogenesis, and metastasis. Sialidases are responsible for removal of sialic acids from glycoproteins and glycolipids. Methods N-glycomics of bladder cancer cells were detected by MALDI-TOF mass spectrometry. Sialic acid modification in bladder cancer tissue was determined by lectin blot. The down-regulation of NEU1 in bladder cancer cells was determined by high resolution liquid chromatography mass spectrometry (HR LC-MS). The effects of sialidase NEU1 expression on proliferation and apoptosis of human bladder cancer cells were examined by western blot, RT-PCR, confocal imaging and flow cytometry. Moreover, the function of sialic acids on fibronectin-integrin α5β1 interaction were assayed by immunoprecipitation and ELISA. The importance of NEU1 in tumor formation in vivo was performed using BALB/c-nu mice. Expression of NEU1 in primary human bladder cancer tissue samples was estimated using bladder cancer tissue microarray. Results (1) Downregulation of NEU1 was primarily responsible for aberrant expression of sialic acids in bladder cancer cells. (2) Decreased NEU1 expression was correlated with bladder cancer progression. (3) NEU1 overexpression enhanced apoptosis and reduced proliferation of bladder cancer cells. (4) NEU1 disrupted FN-integrin α5β1 interaction and deactivated the Akt signaling pathway. (5) NEU1 significantly suppressed in vivo tumor formation in BALB/c-nu mice. Conclusions Our data showed that NEU1 inhibited cancer cell proliferation, induced apoptosis, and suppressed tumor formation both in vitro and in vivo, by disrupting interaction of FN and integrin β1 and inhibiting the Akt signaling pathway. Our observations indicate that NEU1 is an important modulator of the malignant properties of bladder cancer cells, and is a potential therapeutic target for prognosis and treatment of bladder cancer. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yanhong Zhai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Changmei Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jia Guo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guang Li
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chengwen Sun
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiang Li
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
47
|
Teng X, Chen F, Gao Y, Meng R, Wu Y, Wang F, Ying Y, Liu X, Guo X, Sun Y, Lin P, Wen Y, Yang H. Enzyme-Assist-Interference-Free Strategy for Raman Selective Determination of Sialic Acid. Anal Chem 2020; 92:3332-3339. [PMID: 31965784 DOI: 10.1021/acs.analchem.9b05264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormal physiological levels of sialic acid (SA) could be used to diagnosis cancer progression stages. In this work, we describe an enzyme-assist-interference-free strategy for Raman selective determination of SA in serum. First, we assemble gold nanoparticles (Au NPs) onto the indium tin oxide glass (ITO) to construct an ITO/Au two-dimension substrate. Through modification of 4-mercaptoboric acid (4-MPBA) onto the surface of ITO/Au, the SA response plate is prepared due to the reversible esterification bond. In this strategy, a sandwich structure is rationally designed as ITO/Au/4-MPBA/SA/4-MPBA/Au to enhance the Raman scattering. The Raman detection linear concentration of SA ranged from 2.5 × 10-7 to 1.5 × 10-6 M, and a limit of detection about 1.2 × 10-7 M could be achieved. Considering the presence of glucose (Glu) in physiological fluid, we introduce glucose oxidase to remove the interference from Glu and realize the accurate determination of SA. The proposed novel Raman rapid method provides an ultrasensitive and interference-free protocol for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Xinyan Teng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Fu Chen
- School of Environmental and Geographical Sciences , Shanghai Normal University , Shanghai 200234 , China
| | - Yun Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Ru Meng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Yang Sun
- Institute of Arthritis Research , Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital , Shanghai 200052 , P. R. China
| | - Ping Lin
- Clinical Laboratory , Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai 200065 , P. R. China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and School of Chemistry and Materials Science , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
48
|
Metabolomic studies of breast cancer in murine models: A review. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165713. [PMID: 32014550 DOI: 10.1016/j.bbadis.2020.165713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabolomic strategies have been extensively used to search for biomarkers of disease, including cancer, in biological complex mixtures such as cells, tissues and biofluids. In breast cancer research, murine models are of great value and metabolomics has been increasingly applied to characterize tumor or organ tissues, or biofluids, for instance to follow-up metabolism during cancer progression or response to specific therapies. SCOPE OF REVIEW This review briefly introduces the different murine models used in breast cancer research and proceeds to present the metabolomic studies reported so far to describe the deviant metabolic behavior associated to breast cancer, in each type of model: xenografts (cell- or patient-derived), spontaneous (naturally-occurring or genetically engineered) and carcinogen-induced. The type of sample and strategies followed are identified, as well as the main findings from of study. MAJOR CONCLUSIONS Metabolomics has gradually become relevant in characterizing murine models of breast cancer, using either Nuclear Magnetic Resonance (NMR) or Mass Spectromety (MS). Both tissue and biofluids are matrixes of interest in this context, although in some type of models, reports have focused primarily on the former. The aims of tissue studies have comprised the search for mechanistic knowledge of carcinogenesis, metastasis development and response/resistance to therapies. Biofluid metabolomics has mainly aimed at finding non-invasive biomarkers for early breast cancer detection or prognosis determination. GENERAL SIGNIFICANCE Metabolomics provides exquisite detail on murine tumor and systemic metabolism of breast cancer. This knowledge paves the way for the discovery of new biomarkers, potentially translatable to in vivo non-invasive patient follow-up.
Collapse
|
49
|
Zhou X, Yang G, Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020; 9:E273. [PMID: 31979120 PMCID: PMC7072699 DOI: 10.3390/cells9020273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Sialic acids, a subset of nine carbon acidic sugars, often exist as the terminal sugars of glycans on either glycoproteins or glycolipids on the cell surface. Sialic acids play important roles in many physiological and pathological processes via carbohydrate-protein interactions, including cell-cell communication, bacterial and viral infections. In particular, hypersialylation in tumors, as well as their roles in tumor growth and metastasis, have been widely described. Recent studies have indicated that the aberrant sialylation is a vital way for tumor cells to escape immune surveillance and keep malignance. In this article, we outline the present state of knowledge on the metabolic pathway of human sialic acids, the function of hypersialylation in tumors, as well as the recent labeling and analytical techniques for sialic acids. It is expected to offer a brief introduction of sialic acid metabolism and provide advanced analytical strategies in sialic acid studies.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
50
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|