1
|
Stalker M, Grady CB, Watts A, Hwang WT, Chandrasekhara K, Sun F, Liu G, Patel D, Nieva J, Herrmann A, Marrone K, Lam VK, Velcheti V, Liu SV, Bravo Montenegro GL, Tompkins W, Patil T, Weiss J, Miller KL, Schwartzman W, Dowell JE, Shaverdashvili K, Villaruz L, Cass A, Iams W, Aisner D, Aggarwal C, Camidge DR, Sun L, Marmarelis ME. Changing Treatment and Metastatic Disease Patterns in Patients with EGFR Mutated NSCLC: An Academic Thoracic Medical Investigator's Consortium Registry Analysis. JTO Clin Res Rep 2025; 6:100765. [PMID: 39758601 PMCID: PMC11699429 DOI: 10.1016/j.jtocrr.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Osimertinib is now a standard first-line (1L) therapy for EGFR-mutated (EGFRm) advanced NSCLC. We aimed to characterize patterns of therapy and longitudinal risk of brain and liver metastasis in a cohort of EGFRm NSCLC. Methods Patients with metastatic EGFRm NSCLC who received 1L systemic therapy at sites within the Academic Thoracic Medical Investigator's Consortium were included; demographic and clinical data including treatment patterns were described. Analyses of overall survival, time to next treatment, and incident brain and liver metastasis were performed using the Kaplan-Meier method, Cox regression, and cumulative incidence functions on patients who started 1L therapy in 2015 or later. Results The full cohort included 1132 patients and the mean age of the participants was 63.4 years; among the participants, 53% were White individuals, 68% were female individuals, and 67% were nonsmokers. Among the participants, 830 patients received 1L systemic therapy in 2015 or later. The predominant first EGFR-tyrosine kinase inhibitor was erlotinib (65%) before 2018 and osimertinib (81%) after 2018. The median time to the next treatment after the start of 1L therapy was 13.9 months overall and the longest in patients receiving 1L osimertinib (28 months). In the post-2015 cohort, the baseline prevalence of brain metastasis (BM) was 54% and among patients without baseline brain metastasis, the probability of incident BM at 12, 24, and 48 months was 8%, 22%, and 44%, respectively. Development of an on-treatment brain metastasis among patients without baseline brain metastasis was associated with a 3.2 times higher risk of death. Conclusion Even in a contemporary era with prevalent osimertinib use, the baseline and longitudinal risk of BM development was high. The ongoing risk of developing BM, together with the associated survival detriment, argues for routine surveillance of the brain through magnetic resonance imaging for patients with EGFRm NSCLC, which is not currently included in the guidelines.
Collapse
Affiliation(s)
- Margaret Stalker
- Department of Medicine, Perelman School of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Connor B. Grady
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex Watts
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Krishna Chandrasekhara
- Department of Medicine, Perelman School of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fangdi Sun
- Division of Hematology/Oncology, UCSF School of Medicine, University of California San Francisco, San Francisco, California
| | - Geoffrey Liu
- Division of Hematology/Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Devalben Patel
- Division of Hematology/Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Jorge Nieva
- University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Amanda Herrmann
- University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Kristen Marrone
- Division of Hematology/Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vincent K. Lam
- Division of Hematology/Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vamsidhar Velcheti
- Division of Hematology/Oncology, NYU Grossman School of Medicine, New York University, New York, New York
| | - Stephen V. Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | | | - William Tompkins
- Department of Medicine, Perelman School of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tejas Patil
- Division of Hematology/Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Kelsey Leigh Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - William Schwartzman
- Harold C Simmons Comprehensive Cancer Center, UT Southwestern, Dallas, Texas
| | - Jonathan E. Dowell
- Harold C Simmons Comprehensive Cancer Center, UT Southwestern, Dallas, Texas
| | | | - Liza Villaruz
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Amanda Cass
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wade Iams
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dara Aisner
- Division of Hematology/Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | - Charu Aggarwal
- Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D. Ross Camidge
- Division of Hematology/Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | - Lova Sun
- Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melina E. Marmarelis
- Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Podder V, Bellur S, Margolin K, Advani P, Mahtani RL, Subbiah V, Novo GB, Ranjan T, Ahluwalia MS. Immunotherapeutic and Targeted Strategies for Managing Brain Metastases from Common Cancer Origins: A State-of-the-Art Review. Curr Oncol Rep 2024; 26:1612-1638. [PMID: 39514054 DOI: 10.1007/s11912-024-01593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review examines contemporary strategies for managing brain metastases (BM) from common cancers such as lung, breast, and melanoma. We evaluate the efficacy and applicability of targeted therapies and immunotherapies, exploring their potential to cross the blood-brain barrier and improve patient outcomes. RECENT FINDINGS Recent studies have shown that tyrosine kinase inhibitors, immune checkpoint inhibitors, and ADCs effectively treat BM. These treatments can overcome the challenges posed by the blood-brain barrier and improve therapeutic outcomes. ADCs are promising because they can deliver cytotoxic agents directly to tumor cells, which reduces systemic toxicity and increases drug delivery efficiency to the brain. Personalized medicine is becoming increasingly significant in treatment decisions, with biomarkers playing an essential role. Advances in molecular genetics and drug development have led to more refined treatments, emphasizing the precision medicine framework. The management of BM is evolving, driven by drug efficacy, resistance mechanisms, and the need for personalized medicine. Integrating ADCs into treatment regimens represents a significant advancement in targeting metastatic brain tumors. Despite these advances, BM management still presents considerable challenges, requiring ongoing research and multi-institutional trials to optimize therapeutic strategies. This review outlines the current state and future directions in treating BM, highlighting the critical need for continued innovation and comprehensive clinical evaluations to improve survival rates and quality of life for affected patients.
Collapse
Affiliation(s)
- Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Shreyas Bellur
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Kim Margolin
- Saint John's Cancer Institute, Santa Monica, CA, USA
| | | | - Reshma L Mahtani
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute (SCRI), Nashville, TN, USA
| | - Gabriella B Novo
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | |
Collapse
|
3
|
Foresi B, Shah A, Meade S, Krishnaney A. Tumor markers in non-small cell lung cancer spine metastasis: an assessment of prognosis and overall survival. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4346-4352. [PMID: 39223432 DOI: 10.1007/s00586-024-08447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The identification of gene mutations in the modern medical workup of metastatic spine tumors has become more common but has not been highly utilized in surgical planning. Potential utility of these genetic markers as surrogates for cancer behavior in current prognosis scoring systems and overall survival (OS) remains underexplored in existing literature. This study seeks to investigate the association of frequently identified tumor markers, EGFR, ALK, and PD-L1, in metastatic non-small cell lung cancer (NSCLC) to the spine with Tokuhashi prognosis scoring and OS. METHODS Patients with NSCLC metastasis to spine were identified through chart review. EGFR, ALK, and PD-L1 wild type vs. mutant type were identified from targeted chemotherapy genetic testing. Multiple linear regression was performed to assess gene profile contributions to Tokuhashi score. Cox Proportional Hazards models were generated for each tumor marker to assess the relationship between each marker and OS. RESULTS A total of 119 patients with NSCLC spine metastasis were identified. We employed a multiple linear regression analysis to investigate the influence of EGFR, ALK, and PD-L1 genotypes on the Tokuhashi score, revealing statistically significant relationships overall (p = 0.002). Individual genotype contributions include EGFR as a non-significant contributor (p = 0.269) and ALK and PD-L1 as significant contributors (p = 0.037 and p = 0.001 respectively). Overall survival was not significantly associated with tumor marker profiles through Kaplan-Meier analysis (p = 0.46) or by multivariable analysis (p = 0.108). CONCLUSION ALK and PD-L1 were significantly associated with Tokuhashi score while EGFR was not. Tumor markers alone were not predictive of OS. These findings indicate that genetic markers found in NSCLC metastases to the spine may demonstrate prognostic value. Therefore, employing standard tumor markers could enhance the identification of appropriate surgical candidates, although they demonstrate limited effectiveness in predicting overall survival.
Collapse
Affiliation(s)
- Brian Foresi
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA.
| | - Aakash Shah
- College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Seth Meade
- College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ajit Krishnaney
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Boldig C, Boldig K, Mokhtari S, Etame AB. A Review of the Molecular Determinants of Therapeutic Response in Non-Small Cell Lung Cancer Brain Metastases. Int J Mol Sci 2024; 25:6961. [PMID: 39000069 PMCID: PMC11241836 DOI: 10.3390/ijms25136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related morbidity and mortality worldwide. Metastases in the brain are a common hallmark of advanced stages of the disease, contributing to a dismal prognosis. Lung cancer can be broadly classified as either small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC represents the most predominant histology subtype of lung cancer, accounting for the majority of lung cancer cases. Recent advances in molecular genetics, coupled with innovations in small molecule drug discovery strategies, have facilitated both the molecular classification and precision targeting of NSCLC based on oncogenic driver mutations. Furthermore, these precision-based strategies have demonstrable efficacy across the blood-brain barrier, leading to positive outcomes in patients with brain metastases. This review provides an overview of the clinical features of lung cancer brain metastases, as well as the molecular mechanisms that drive NSCLC oncogenesis. We also explore how precision medicine-based strategies can be leveraged to improve NSCLC brain metastases.
Collapse
Affiliation(s)
- Catherine Boldig
- Department of Neurology, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Kimberly Boldig
- Department of Internal Medicine, University of Florida Jacksonville, 655 W. 8th St., Jacksonville, FL 32209, USA
| | - Sepideh Mokhtari
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B Etame
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Stares M, Brown LR, Abhi D, Phillips I. Prognostic Biomarkers of Systemic Inflammation in Non-Small Cell Lung Cancer: A Narrative Review of Challenges and Opportunities. Cancers (Basel) 2024; 16:1508. [PMID: 38672590 PMCID: PMC11048253 DOI: 10.3390/cancers16081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy and is associated with poor survival outcomes. Biomarkers of systemic inflammation derived from blood tests collected as part of routine clinical care offer prognostic information for patients with NSCLC that may assist clinical decision making. They are an attractive tool, as they are inexpensive, easily measured, and reproducible in a variety of healthcare settings. Despite the wealth of evidence available to support them, these inflammatory biomarkers are not yet routinely used in clinical practice. In this narrative review, the key inflammatory indices reported in the literature and their prognostic significance in NSCLC are described. Key challenges limiting their clinical application are highlighted, including the need to define the optimal biomarker of systemic inflammation, a lack of understanding of the systemic inflammatory landscape of NSCLC as a heterogenous disease, and the lack of clinical relevance in reported outcomes. These challenges may be overcome with standardised recording and reporting of inflammatory biomarkers, clinicopathological factors, and survival outcomes. This will require a collaborative approach, to which this field of research lends itself. This work may be aided by the rise of data-driven research, including the potential to utilise modern electronic patient records and advanced data-analysis techniques.
Collapse
Affiliation(s)
- Mark Stares
- Edinburgh Cancer Centre, NHS Lothian, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Leo R. Brown
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Dhruv Abhi
- Edinburgh Cancer Centre, NHS Lothian, Edinburgh EH4 2XU, UK
| | - Iain Phillips
- Edinburgh Cancer Centre, NHS Lothian, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| |
Collapse
|
6
|
Chul Cho B, Han JY, Hyeong Lee K, Lee YG, Kim DW, Joo Min Y, Kim SW, Kyung Cho E, Kim JH, Lee GW, Sook Lee S, Lee N, Young Wang J, Park H, Ahn MJ. Lazertinib as a frontline treatment in patients with EGFR-mutated advanced non-small cell lung cancer: Long-term follow-up results from LASER201. Lung Cancer 2024; 190:107509. [PMID: 38432025 DOI: 10.1016/j.lungcan.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This analysis of the first-line cohort of LASER201 study evaluated the efficacy and safety of lazertinib 240 mg as a frontline therapy for epidermal growth factor receptor (EGFR)-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). METHODS A total of 43 patients, with EGFR mutation-positive (Exon19Del, n = 24; L858R, n = 18; G719X, n = 1) locally advanced or metastatic NSCLC who had not previously received EGFR tyrosine kinase inhibitor (EGFR TKI) therapy, received once-daily lazertinib 240 mg. EGFR mutation status was confirmed by local or central testing. The primary endpoint was objective response rate (ORR) assessed by blinded independent central review. Secondary efficacy endpoints included duration of response (DoR), disease control rate (DCR), progression-free survival (PFS), tumor shrinkage, and overall survival (OS). RESULTS At the primary data cut-off (DCO; January 8, 2021), the ORR was 70 % (95 % confidence interval [CI]: 56.0-83.5), DCR was 86 % (95 % CI: 75.7-96.4) and the median DoR was 23.5 (95 % CI: 12.5-not reached) months. The median PFS was 24.6 (95 % CI: 12.2-30.2) months. At the final DCO (March 30, 2023), the median OS was not estimable and the median follow-up duration for OS was 55.2 [95 % CI: 22.8-55.7] months. OS rates at 36 months and 54 months were 66 % (95 % CI: 47.5-79.3 %) and 55 % (95 % CI: 36.6-70.7 %), respectively. The most commonly reported TEAEs were rash (54 %), diarrhea (47 %), pruritus (35 %), and paresthesia (35 %). No drug-related rash or pruritus TEAEs of grade 3 or higher were reported. Diarrhea and paresthesia of grade 3 or higher were reported in 3 (7 %) and 1 (2 %) patients, respectively. CONCLUSION This analysis demonstrated long-term clinical benefit with lazertinib 240 mg in patients with EGFR-mutated NSCLC who had not previously received EGFR TKIs. The safety profile for lazertinib was tolerable and consistent with that previously reported.
Collapse
Affiliation(s)
- Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Ki Hyeong Lee
- Division of Medical Oncology, Department of Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yun-Gyoo Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Joo Min
- Division of Hematology and Oncology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Cho
- Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Joo-Hang Kim
- CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Gyeong-Won Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung Sook Lee
- Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - NaMi Lee
- Yuhan Corporation, Seoul, Republic of Korea
| | | | | | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Imber BS, Sehgal R, Saganty R, Reiner AS, Ilica AT, Miao E, Li BT, Riely GJ, Yu HA, Panageas KS, Young RJ, Pike LR, Moss NS. Intracranial Outcomes of De Novo Brain Metastases Treated With Osimertinib Alone in Patients With Newly Diagnosed EGFR-Mutant NSCLC. JTO Clin Res Rep 2023; 4:100607. [PMID: 38124791 PMCID: PMC10730363 DOI: 10.1016/j.jtocrr.2023.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Patients with EGFR-mutant NSCLC have a high incidence of brain metastases. The EGFR-directed tyrosine kinase inhibitor osimertinib has intracranial activity, making the role of local central nervous system (CNS)-directed therapies, such as radiation and surgery, less clear. Methods Patients with EGFR-mutant NSCLC and brain metastases who received osimertinib as initial therapy after brain metastasis diagnosis were included. Individual lesion responses were assessed using adapted RANO-BM criteria. CNS progression and local progression of brain metastasis from osimertinib start were analyzed using cumulative incidence treating death as a competing risk. Overall survival was estimated using Kaplan-Meier methodology. Results There were 36 patients who had a median interval from brain metastasis diagnosis to first-line osimertinib initiation of 25 days. In total, 136 previously untreated brain metastases were tracked from baseline. Overall, 105 lesions (77.2%) had complete response and 31 had partial response reflecting best objective response of 100%. Best response occurred at a median of 96 days (range: 28-1113 d) from baseline magnetic resonance imaging. This reflects a best objective response rate of 100%. Two-year overall survival was 80%. CNS progression rates at 1-, 2-, and 3-years post-osimertinib were 21%, 32%, and 41%, respectively. Lesion-level local failure was estimated to be 0.7% and 4.7% at 1- and 2-years post-osimertinib, respectively. No clinicodemographic factors including brain metastasis number were associated with post-osimertinib progression. Conclusions Intracranial response to osimertinib is excellent for patients with EGFR-mutant NSCLC with de novo, previously untreated brain metastases. Very low local failure rates support a strategy of upfront osimertinib alone in selected patients.
Collapse
Affiliation(s)
- Brandon S. Imber
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryka Sehgal
- Department of Neurosurgery and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel Saganty
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne S. Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A. Turan Ilica
- Division of Neuroradiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Miao
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bob T. Li
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York and Weill Cornell Medical College, New York, New York
| | - Gregory J. Riely
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York and Weill Cornell Medical College, New York, New York
| | - Helena A. Yu
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York and Weill Cornell Medical College, New York, New York
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Young
- Division of Neuroradiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luke R.G. Pike
- Department of Radiation Oncology and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Department of Neurosurgery and Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
8
|
Jung HA, Park S, Lee SH, Ahn JS, Ahn MJ, Sun JM. Dacomitinib in EGFR-mutant non-small-cell lung cancer with brain metastasis: a single-arm, phase II study. ESMO Open 2023; 8:102068. [PMID: 38016250 PMCID: PMC10774959 DOI: 10.1016/j.esmoop.2023.102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION Dacomitinib showed superior progression-free survival (PFS) and overall survival compared to gefitinib in patients with advanced non-small-cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations in the ARCHER1050 study. However, because that study did not include patients with brain metastases, the efficacy of dacomitinib in patients with brain metastases has not been clarified. PATIENTS AND METHODS This single-arm phase II study enrolled 30 patients with treatment-naïve advanced NSCLC harboring activating EGFR mutations from January 2021 to June 2021 and started them on dacomitinib (45 mg/day). All patients had non-irradiated brain metastases with a diameter of ≥5 mm. The primary endpoint was confirmed intracranial objective response rate (iORR). RESULTS Patients had exon 19 deletions (46.7%) and L858R mutations in exon 21 (55.3%). The confirmed iORR was 96.7% (29/30), with an intracranial complete response of 63.3%. Median intracranial PFS (iPFS) was not reached, with 12- and 18-month iPFS rates of 78.6% [95% confidence interval (CI) 64.8% to 95.4%] and 70.4% (95% CI 54.9% to 90.1%), respectively. In the competing risk analysis, the 12-month cumulative incidence of intracranial progression was 16.7%. Regarding the overall efficacy for intracranial and extracranial lesions, the overall ORR was 96.7%, and the median PFS was 17.5 months (95% CI 15.2 months-not reached). Grade 3 or higher treatment-related adverse events were reported in 16.7% of patients, and 83.3% required a reduced dacomitinib dose to manage adverse events. However, none permanently discontinued dacomitinib treatment due to treatment-related adverse events. CONCLUSIONS Dacomitinib has outstanding intracranial efficacy in patients with EGFR-mutant NSCLC with brain metastases.
Collapse
Affiliation(s)
- H A Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - S Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - S-H Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J S Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - M-J Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J-M Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Gillespie CS, Mustafa MA, Richardson GE, Alam AM, Lee KS, Hughes DM, Escriu C, Zakaria R. Genomic Alterations and the Incidence of Brain Metastases in Advanced and Metastatic NSCLC: A Systematic Review and Meta-Analysis. J Thorac Oncol 2023; 18:1703-1713. [PMID: 37392903 DOI: 10.1016/j.jtho.2023.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Brain metastases (BMs) in patients with advanced and metastatic NSCLC are linked to poor prognosis. Identifying genomic alterations associated with BM development could influence screening and determine targeted treatment. We aimed to establish prevalence and incidence in these groups, stratified by genomic alterations. METHODS A systematic review and meta-analysis compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses were conducted (PROSPERO identification CRD42022315915). Articles published in MEDLINE, EMBASE, and Cochrane Library between January 2000 and May 2022 were included. Prevalence at diagnosis and incidence of new BM per year were obtained, including patients with EGFR, ALK, KRAS, and other alterations. Pooled incidence rates were calculated using random effects models. RESULTS A total of 64 unique articles were included (24,784 patients with NSCLC with prevalence data from 45 studies and 9058 patients with NSCLC having incidence data from 40 studies). Pooled BM prevalence at diagnosis was 28.6% (45 studies, 95% confidence interval [CI]: 26.1-31.0), and highest in patients that are ALK-positive (34.9%) or with RET-translocations (32.2%). With a median follow-up of 24 months, the per-year incidence of new BM was 0.13 in the wild-type group (14 studies, 95% CI: 0.11-0.16). Incidence was 0.16 in the EGFR group (16 studies, 95% CI: 0.11-0.21), 0.17 in the ALK group (five studies, 95% CI: 0.10-0.27), 0.10 in the KRAS group (four studies, 95% CI: 0.06-0.17), 0.13 in the ROS1 group (three studies, 95% CI: 0.06-0.28), and 0.12 in the RET group (two studies, 95% CI: 0.08-0.17). CONCLUSIONS Comprehensive meta-analysis indicates a higher prevalence and incidence of BM in patients with certain targetable genomic alterations. This supports brain imaging at staging and follow-up, and the need for targeted therapies with brain penetrance.
Collapse
Affiliation(s)
- Conor S Gillespie
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad A Mustafa
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - George E Richardson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Ali M Alam
- Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Keng Siang Lee
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - David M Hughes
- Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Carles Escriu
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
10
|
Perng PS, Hsu HJ, Lee JS, Wang LC, Huang CY, Tien CH, Lai YH, Su PL, Hsu HH, Chen LY, Lee PH. Outcomes of surgery and subsequent therapy for central nervous system oligoprogression in EGFR-mutated NSCLC patients. World J Surg Oncol 2023; 21:368. [PMID: 38007448 PMCID: PMC10675964 DOI: 10.1186/s12957-023-03248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Oligoprogression is an emerging issue in patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). However, the surgical treatment for central nervous system (CNS) oligoprogression is not widely discussed. We investigated the outcomes of craniotomy with adjuvant whole-brain radiotherapy (WBRT) and subsequent therapies for CNS oligoprogression in patients with EGFR-mutated NSCLC. METHODS NSCLC patients with CNS oligoprogression were identified from a tertiary medical center. The outcomes of surgery with adjuvant WBRT or WBRT alone were analyzed, along with other variables. Overall survival and progression-free survival were analyzed using the log-rank test as the primary and secondary endpoints. A COX regression model was used to identify the possible prognostic factors. RESULTS Thirty-seven patients with CNS oligoprogression who underwent surgery or WBRT were included in the study after reviewing 728 patients. Twenty-one patients underwent surgery with adjuvant WBRT, and 16 received WBRT alone. The median overall survival for surgery and WBRT alone groups was 43 (95% CI 17-69) and 22 (95% CI 15-29) months, respectively. Female sex was a positive prognostic factor for overall survival (OR 0.19, 95% CI 0.06-0.57). Patients who continued previous tyrosine kinase inhibitors (OR 3.48, 95% CI 1.06-11.4) and induced oligoprogression (OR 3.35, 95% CI 1.18-9.52) were associated with worse overall survival. Smoking history (OR 4.27, 95% CI 1.54-11.8) and induced oligoprogression (OR 5.53, 95% CI 2.1-14.7) were associated with worse progression-free survival. CONCLUSIONS Surgery combined with adjuvant WBRT is a feasible treatment modality for CNS oligoprogression in patients with EGFR-mutated NSCLC. Changing the systemic-targeted therapy after local treatments may be associated with improved overall survival.
Collapse
Affiliation(s)
- Pang-Shuo Perng
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Juei Hsu
- Department of Surgery, Tainan Municipal Hospital, Tainan, Taiwan
| | - Jung-Shun Lee
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chao Wang
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yuan Huang
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hao Tien
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Lai
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Hsiang Hsu
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Chen
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Chang YP, Huang GK, Chen YC, Huang KT, Chen YM, Lin CY, Huang CC, Lin MC, Wang CC. E-cadherin expression in the tumor microenvironment of advanced epidermal growth factor receptor-mutant lung adenocarcinoma and the association with prognosis. BMC Cancer 2023; 23:569. [PMID: 37340370 DOI: 10.1186/s12885-023-10980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The expression of programmed death-ligand 1 (PD-L1), tumor-infiltrating lymphocytes (TILs), E-cadherin, and vimentin in lung cancer tumor microenvironment is known to impact patient survival or response to therapy. The expression of these biomarkers may also differ between primary lung tumors and brain metastatic tumors. In this study, we investigated the interaction between these biomarkers in lung tumors with or without concomitant brain metastasis and the interaction with paired brain metastatic tumors. METHODS The study included 48 patients with stage IV epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. Sixteen of the forty-eight patients were diagnosed with brain metastasis, while the remaining thirty-two were not. All sixteen patients with brain metastasis had brain tumors. The expression of PD-L1, TILs (CD8+ T lymphocytes and FOXP3+ regulatory T lymphocytes), E-cadherin, and vimentin were evaluated using immunohistochemical (IHC) staining. RESULTS Patients with brain metastasis exhibited a higher frequency of exon 19 deletion and uncommon EGFR mutations, a higher lung tumor vimentin score, worse progression-free survival (PFS), and overall survival (OS) than patients without brain metastasis. IHC staining showed no difference between paired lung and brain tumors. Patients with low PD-L1 expression had better PFS and OS. After multivariate analysis, higher body mass index, the presence of brain metastasis, bone metastasis, and uncommon EGFR mutations were correlated with worse PFS, while the presence of brain metastasis and high lung tumor E-cadherin score was associated with worse OS. CONCLUSIONS In patients with stage IV EGFR-mutant lung adenocarcinoma, high E-cadherin expression in the lung tumor might be associated with worse OS. Vimentin expression in the lung tumor was positively related to the risk of brain metastasis.
Collapse
Affiliation(s)
- Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gong-Kai Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Mu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Yu Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Biobank and Tissue Bank, Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan.
| |
Collapse
|
12
|
Urso L, Bonatto E, Nieri A, Castello A, Maffione AM, Marzola MC, Cittanti C, Bartolomei M, Panareo S, Mansi L, Lopci E, Florimonte L, Castellani M. The Role of Molecular Imaging in Patients with Brain Metastases: A Literature Review. Cancers (Basel) 2023; 15:cancers15072184. [PMID: 37046845 PMCID: PMC10093739 DOI: 10.3390/cancers15072184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Over the last several years, molecular imaging has gained a primary role in the evaluation of patients with brain metastases (BM). Therefore, the "Response Assessment in Neuro-Oncology" (RANO) group recommends amino acid radiotracers for the assessment of BM. Our review summarizes the current use of positron emission tomography (PET) radiotracers in patients with BM, ranging from present to future perspectives with new PET radiotracers, including the role of radiomics and potential theranostics approaches. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2022 were reviewed. Current evidence confirms the important role of amino acid PET radiotracers for the delineation of BM extension, for the assessment of response to therapy, and particularly for the differentiation between tumor progression and radionecrosis. The newer radiotracers explore non-invasively different biological tumor processes, although more consistent findings in larger clinical trials are necessary to confirm preliminary results. Our review illustrates the role of molecular imaging in patients with BM. Along with magnetic resonance imaging (MRI), the gold standard for diagnosis of BM, PET is a useful complementary technique for processes that otherwise cannot be obtained from anatomical MRI alone.
Collapse
Affiliation(s)
- Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Elena Bonatto
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Nieri
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Anna Margherita Maffione
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| | - Luigi Mansi
- Interuniversity Research Center for the Sustainable Development (CIRPS), 00152 Rome, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
13
|
Wang Y, Li S, Peng Y, Ma W, Wang Y, Li W. Progress in phase III clinical trials of molecular targeted therapy and immunotherapy for glioblastoma. CANCER INNOVATION 2023; 2:114-130. [PMID: 38090060 PMCID: PMC10686181 DOI: 10.1002/cai2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 10/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase III clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase III clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shenglan Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Wang H, Xing R, Li M, Zhang M, Wei C, Zhang G, Niu Y, Ma Z, Yan X. Clinical efficacy and prognosis analysis of treatment regimens for EGFR mutant non-small cell lung cancer and brain metastasis: a retrospective study. BMC Cancer 2023; 23:289. [PMID: 36997925 PMCID: PMC10061743 DOI: 10.1186/s12885-023-10744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The aims of the study were to evaluate potential differences among first-line treatment for EGFR mutant (m+) non-small cell lung cancer (NSCLC) patients with brain metastasis in China and to identify the factors influencing survival outcomes. METHODS In this retrospective study, 172 EGFRm + patients with advanced NSCLC who received a 1st generation EGFR tyrosine kinase inhibitor (TKI) were divided into 4 groups: A, EGFR-TKI (n = 84); B, EGFR-TKI + pemetrexed + cisplatin/carboplatin chemotherapy (CT) (n = 55); C, EGFR-TKI + bevacizumab (n = 15); and D, EGFR-TKI + pemetrexed + cisplatin/carboplatin CT + bevacizumab (n = 18). Intracranial and extracranial progression-free survival (PFS), the overall survival (OS), objective remission rates (ORRs) and adverse events were analyzed. RESULTS Intracranial PFS of groups C + D was longer than for groups A + B (18.9 m vs. 11.0 m, P = 0.027). Extracranial PFS were longer in group B in comparison with group A (13.0 m vs. 11.5 m, P = 0.039) and in groups C + D compared to groups A + B (18.9 m vs. 11.9 m, P = 0.008). Median OS in groups A and B were 27.9 m and 24.4 m, respectively, while groups C and D have not yet achieved median OS. Significant difference was found in intracranial ORR between groups A + B vs. C + D (31.0% vs. 65.2%, P = 0.002). Most patients suffered grade 1-2 treatment-related adverse events, which were relieved soon after symptomatic treatment. CONCLUSIONS First-generation EGFR-TKI + bevacizumab treatment outperformed other regimens in EGFRm + NSCLC patients with brain metastasis. The therapy improved the control and delayed progression of intracranial lesions and prolonged survival times.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China.
| | - Ruyue Xing
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Mengmeng Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Mina Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Chunhua Wei
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Guowei Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Yuanyuan Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Zhiyong Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| | - Xiangtao Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450000, China
| |
Collapse
|
15
|
Low JL, Lim SM, Lee JB, Cho BC, Soo RA. Advances in the management of non-small-cell lung cancer harbouring EGFR exon 20 insertion mutations. Ther Adv Med Oncol 2023; 15:17588359221146131. [PMID: 36756143 PMCID: PMC9899956 DOI: 10.1177/17588359221146131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/01/2022] [Indexed: 01/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutation is one of the key oncogenic mutations in non-small-cell lung cancer with adenocarcinoma histology. Exon 19 deletions and exon 21 L858R substitutions account for 90%, while EGFR exon 20 insertions constitute 4-10% of EGFR mutations and are the third most prevalent activating EGFR mutations. EGFR exon 20 insertions are associated with decreased sensitivity to EGFR tyrosine kinase inhibitors and, until recently, effective targeted therapy against these tumours remained an unmet clinical need and chemotherapy was the only treatment of choice available. The approval of amivantamab and mobocertinib for patients who have progressed after chemotherapy represents an important step forward in the management of these patients. Here in this review, we summarize the epidemiology, structure and the tumour microenvironment of EGFR exon 20 insertion and also review the systemic treatments, including targeted therapies and ongoing clinical trials in EGFR exon 20 insertion mutations, as well as detection methods for EGFR exon 20 insertion. Lastly, resistant mechanisms and future directions are addressed.
Collapse
Affiliation(s)
- Jia Li Low
- Department of Haematology-Oncology, National
University Cancer Institute, Singapore, Singapore
| | - Sun Min Lim
- Division of Medical Oncology, Department of
Internal Medicine, Yonsei University College of Medicine, Seoul, South
Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of
Internal Medicine, Yonsei University College of Medicine, Seoul, South
Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of
Internal Medicine, Yonsei University College of Medicine, Seoul, South
Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National
University Cancer Institute, Level 7 NUHS Tower Block, 1E Kent Ridge Road,
Singapore 119228, Singapore
| |
Collapse
|
16
|
Perng PS, Hsu HP, Lee PH, Huang CC, Lin CC, Lee JS. Correlation of EGFR mutation subtypes and survival in surgically treated brain metastasis from non-small-cell lung cancer. Asian J Surg 2023; 46:269-276. [PMID: 35393224 DOI: 10.1016/j.asjsur.2022.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Epidermal growth factor receptor (EGFR) mutation is a positive prognostic factor for survival in patients with non-small-cell lung cancer (NSCLC). In such patients, brain metastasis signifies negative outcomes. Patients with NSCLC brain metastasis that may benefit from neurosurgery is under investigation. We aim to investigate the impact of different mutation loci in surgically treated NSCLC brain metastasis patients. METHODS This retrospective cohort study included patients with NSCLC brain metastasis who underwent brain lesionectomy, followed by radiotherapy and chemotherapy or targeted therapy. Demographics and tumor characteristics were compared between the EGFR mutant type and wild type groups. Postoperative survival and risk factors were analyzed using log rank and Cox regression methods. RESULTS Overall, 101 patients were included, with 57 belonging to the EGFR mutant type group and 44 to the EGFR wild type group. The median postoperative survival was 17 months for the entire cohort, with the duration being 19 and 14 months for EGFR mutant type and wild type patients (p = 0.013), respectively. Multivariate analysis revealed that exon 19 del (p = 0.02) and a high Karnofsky Performance Scale score (p < 0.01) were independent positive prognostic factors to predict survival. The timing of development of the brain metastasis or the location of the intracranial metastasis was not associated with EGFR mutations. CONCLUSION EGFR mutations are associated with better survival outcomes in patients with NSCLC brain metastasis suitable for surgical treatment. This advantage was attributed to patients having a specific mutation of exon 19 deletion.
Collapse
Affiliation(s)
- Pang-Shuo Perng
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Hsu
- Section of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Tabor JK, Onoichenco A, Narayan V, Wernicke AG, D’Amico RS, Vojnic M. Brain metastasis screening in the molecular age. Neurooncol Adv 2023; 5:vdad080. [PMID: 37484759 PMCID: PMC10358433 DOI: 10.1093/noajnl/vdad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
The incidence of brain metastases (BM) amongst cancer patients has been increasing due to improvements in therapeutic options and an increase in overall survival. Molecular characterization of tumors has provided insights into the biology and oncogenic drivers of BM and molecular subtype-based screening. Though there are currently some screening and surveillance guidelines for BM, they remain limited. In this comprehensive review, we review and present epidemiological data on BM, their molecular characterization, and current screening guidelines. The molecular subtypes with the highest BM incidence are epithelial growth factor receptor-mutated non-small cell lung cancer (NSCLC), BRCA1, triple-negative (TN), and HER2+ breast cancers, and BRAF-mutated melanoma. Furthermore, BMs are more likely to present asymptomatically at diagnosis in oncogene-addicted NSCLC and BRAF-mutated melanoma. European screening standards recommend more frequent screening for oncogene-addicted NSCLC patients, and clinical trials are investigating screening for BM in hormone receptor+, HER2+, and TN breast cancers. However, more work is needed to determine optimal screening guidelines for other primary cancer molecular subtypes. With the advent of personalized medicine, molecular characterization of tumors has revolutionized the landscape of cancer treatment and prognostication. Incorporating molecular characterization into BM screening guidelines may allow physicians to better identify patients at high risk for BM development and improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Vinayak Narayan
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - A Gabriella Wernicke
- Department of Radiation Medicine, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Randy S D’Amico
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Morana Vojnic
- Corresponding Author: Morana Vojnic, MD, MBA, 210 East 64th Street, Floor 4, New York, NY 10065, USA ()
| |
Collapse
|
18
|
Billena C, Lobbous M, Cordova CA, Peereboom D, Torres-Trejo A, Chan T, Murphy E, Chao ST, Suh J, Yu JS. The role of targeted therapy and immune therapy in the management of non-small cell lung cancer brain metastases. Front Oncol 2023; 13:1110440. [PMID: 36910642 PMCID: PMC9997098 DOI: 10.3389/fonc.2023.1110440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Brain metastases are a significant source of morbidity and mortality in patients with non-small cell lung cancer. Historically, surgery and radiation therapy have been essential to maintaining disease control within the central nervous system due to poorly penetrant conventional chemotherapy. With the advent of targeted therapy against actionable driver mutations, there is potential to control limited and asymptomatic intracranial disease and delay local therapy until progression. In this review paper, intracranial response rates and clinical outcomes to biological and immune therapies are summarized from the literature and appraised to assist clinical decision making and identify areas for further research. Future clinical trials ought to prioritize patient-centered quality of life and neurocognitive measures as major outcomes and specifically stratify patients based on mutational marker status, disease burden, and symptom acuity.
Collapse
Affiliation(s)
- Cole Billena
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Mina Lobbous
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Christine A Cordova
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - David Peereboom
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Alejandro Torres-Trejo
- Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Timothy Chan
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Erin Murphy
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - John Suh
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Jennifer S Yu
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, United States.,Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, OH, United States.,Center for Cancer Stem Cell Biology, Department of Cancer Biology, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
19
|
Kaler AK, Patel K, Patil H, Tiwarekar Y, Kulkarni B, Hastak M, Athikari N, Rane S, Nikam A, Umarji S, Shaikh I, Goyle S, Mistry R. Mutational Analysis of EGFR Mutations in Non-Small Cell Lung Carcinoma-An Indian Perspective of 212 Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:758. [PMID: 36613084 PMCID: PMC9819110 DOI: 10.3390/ijerph20010758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Lung cancer is the world's leading cause of cancer-related deaths. Epidermal growth factor receptor (EGFR) is one of the critical oncogenes and plays a significant role in tumor proliferation and metastasis. Patients with sensitizing mutations in the EGFR gene have better clinical outcomes when treated with tyrosine kinase inhibitors (TKI). This study expands our knowledge of the spectrum of EGFR mutations among lung cancer patients in the Indian scenario. This is a retrospective descriptive study of all newly diagnosed patients with lung cancer in tertiary care hospital in India. All the samples were subjected to real-time PCR (q-PCR) analysis and confirmation of rare novel mutations was done using Sanger sequencing. Clinicopathological characteristics, mutational EGFR status, and location on the exon and metastatic sites were evaluated. An analysis of total 212 samples showed mutations in 38.67% of cases. Among these, five (5.9%) samples had mutations in exon 18, 41 (48.8%) samples had mutations in exon 19, 12 (14.28%) samples had mutations in exon 20, and 26 (30.95%) samples had mutations in exon 21. Eleven (13.41%) were found to be uncommon EGFR mutations. Additionally, six (21.4%) samples that had EGFR mutations were also positive for brain metastasis. Future testing on bigger panels will help to characterize the incidence of genetic mutations and to determine the appropriate targeted treatment choices for NSCLC patients.
Collapse
Affiliation(s)
- Amrit Kaur Kaler
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Khushi Patel
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Harshali Patil
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Yash Tiwarekar
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Bijal Kulkarni
- Department of Pathology, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Meenal Hastak
- Department of Pathology, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Nivetha Athikari
- Department of Pathology, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Samrudhi Rane
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Ankita Nikam
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Smita Umarji
- Department of Molecular Pathology and Genomics, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Imran Shaikh
- Department of Oncology, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Sandeep Goyle
- Department of Oncology, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| | - Rajesh Mistry
- Department of Oncology, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India
| |
Collapse
|
20
|
Kuo CY, Tsai MJ, Hung JY, Wu KL, Tsai YM, Tsai YC, Chuang CH, Lee TH, Chen HC, Yang CJ, Chong IW. Different Tyrosine Kinase Inhibitors Used in Treating EGFR-Mutant Pulmonary Adenocarcinoma with Brain Metastasis and Intracranial Intervention Have No Impact on Clinical Outcomes. Cancers (Basel) 2022; 15:cancers15010187. [PMID: 36612183 PMCID: PMC9818223 DOI: 10.3390/cancers15010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Brain metastasis in patients with non-small-cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations is a factor of poor prognosis. We conducted a retrospective study to determine the optimal treatment strategy for EGFR-mutant NSCLC patients with brain metastasis receiving or not receiving intracranial intervention. A total of 186 patients treated with an EGFR TKI were enrolled in the study, and 79 (42%) received intracranial intervention. Patients who received intracranial intervention and those who did not had a similar treatment response rate (RR), progression-free survival (PFS) (median PFS: 11.0 vs. 10.0 months, p = 0.4842), and overall survival (OS) (median OS: 23.0 vs. 23.2 months, p = 0.2484). Patients treated with gefitinib, erlotinib, afatinib, or osimertinib had a similar RR (63%, 76%, 81%, or 100%, respectively, p = 0.1390), but they had significantly different PFS (median PFS: 7.5, 10.0, 14.8 months, or not reached, respectively, p = 0.0081). In addition, OS tended to be different between different EGFR TKI treatments (median OS of 19.2, 23.7, or 33.0 months for gefitinib, erlotinib, or afatinib treatments, respectively, p = 0.0834). Afatinib and osimertinib both demonstrated significantly longer PFS than gefitinib in a Cox regression model. Graded prognostic assessment (GPA) versions 2017 and 2022 stratified patients with different OS; patients with higher GPA index scores had significantly longer OS (p = 0.0368 and 0.0407 for version 2017 and 2022, respectively).
Collapse
Affiliation(s)
- Chia-Yu Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Chen Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tai-Huang Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Huang-Chi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-J.Y.); (I.-W.C.); Tel.: +886-7-320-8159 (C.-J.Y. & I.-W.C.); Fax: +886-7-316-1210 (C.-J.Y. & I.-W.C.)
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-J.Y.); (I.-W.C.); Tel.: +886-7-320-8159 (C.-J.Y. & I.-W.C.); Fax: +886-7-316-1210 (C.-J.Y. & I.-W.C.)
| |
Collapse
|
21
|
Ge Y, Xu B, Wang H, Gao J, Zhang X, Lu T, Gao R, Li J. Efficacy and Safety of EGFR Tyrosine Kinase Inhibitors Combined with Cranial Radiotherapy for Brain Metastases from Non-Small-Cell Lung Cancer: A Protocol for a Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6531748. [PMID: 35872868 PMCID: PMC9301690 DOI: 10.1155/2022/6531748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Introduction. Brain metastases (BMs) are common in non-small-cell lung cancer (NSCLC), which leads to a poor prognosis. As the two most effective strategies available, the use of combination of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and radiotherapy (RT) is still controversial. This protocol proposes a methodology for carrying out a systematic review and meta-analysis that is aimed at (1) focusing on the efficacy and safety role of EGFR-TKIs combined with RT for BMs from NSCLC and (2) displaying the difference in efficacy of EGFR-TKIs owing to the sites and number of BMs, different types of RT, EGFR mutation status, and the subtypes of EGFR mutations by subgroup analysis. Methods and Analysis. Electronic databases including PubMed, Embase, CENTRAL, Web of Science, CBM, CNKI, Wanfang database, and VIP database will be searched from their inception until May 2022. Only randomized controlled trials evaluating the clinical efficacy and safety of EGFR-TKIs combined with RT on BMs of NSCLC will be included. Two reviewers will select the articles, assess the risk of bias, and extract data independently and in duplicate. The RoB 2 tool will be used to assess the quality of included studies. The meta-analysis of data synthesis will be performed with Stata 16. Publication bias will be assessed with the funnel plot method and the Egger test. Quality of the evidence will be evaluated by the GRADE system. Discussion. The approval of an ethical committee is not required. All the included trials will comply with the current ethical standards and the Declaration of Helsinki. Given the ongoing controversies regarding the optimal sequencing of the available and expanding treatment options for EGFR-TKIs in NSCLC with BMs, a synthesis of available, high-quality clinical research evidence is essential to advance our understanding in the treatment of this complex and common disease. This systematic review will evaluate available evidence, will try to provide optimized advice in the applications of EGFR-TKIs, and will be published in a high-quality journal. This study is registered with PROSPERO registration number CRD42021291509.
Collapse
Affiliation(s)
- Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Heping Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Junmao Gao
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Taicheng Lu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Koulouris A, Tsagkaris C, Corriero AC, Metro G, Mountzios G. Resistance to TKIs in EGFR-Mutated Non-Small Cell Lung Cancer: From Mechanisms to New Therapeutic Strategies. Cancers (Basel) 2022; 14:3337. [PMID: 35884398 PMCID: PMC9320011 DOI: 10.3390/cancers14143337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) of the epidermal growth factor receptor (EGFR) in advanced mutant Non-Small Cell Lung Cancer (NSCLC) constitutes a therapeutic challenge. This review intends to summarize the existing knowledge about the mechanisms of resistance to TKIs in the context of EGFR mutant NSCLC and discuss its clinical and therapeutic implications. EGFR-dependent and independent molecular pathways have the potential to overcome or circumvent the activity of EGFR-targeted agents including the third-generation TKI, osimertinib, negatively impacting clinical outcomes. CNS metastases occur frequently in patients on EGFR-TKIs, due to the inability of first and second-generation agents to overcome both the BBB and the acquired resistance of cancer cells in the CNS. Newer-generation TKIs, TKIs targeting EGFR-independent resistance mechanisms, bispecific antibodies and antibody-drug conjugates or combinations of TKIs with other TKIs or chemotherapy, immunotherapy and Anti-Vascular Endothelial Growth Factors (anti-VEGFs) are currently in use or under investigation in EGFR mutant NSCLC. Liquid biopsies detecting mutant cell-free DNA (cfDNA) provide a window of opportunity to attack mutant clones before they become clinically apparent. Overall, EGFR TKIs-resistant NSCLC constitutes a multifaceted therapeutic challenge. Mapping its underlying mutational landscape, accelerating the detection of resistance mechanisms and diversifying treatment strategies are essential for the management of the disease.
Collapse
Affiliation(s)
- Andreas Koulouris
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden;
- Faculty of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | - Anna Chiara Corriero
- School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, UK;
| | - Giulio Metro
- Giulio Metro, Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
| | - Giannis Mountzios
- Clinical Trials Unit, Fourth Department of Medical Oncology, Henry Dunant Hospital Center, 11526 Athens, Greece
| |
Collapse
|
23
|
Loh J, Wijaya ST, Sooi K, Chia PL, Soo RA. Resectable non-small cell lung cancer: an evolving landscape. Transl Lung Cancer Res 2022; 11:1241-1246. [PMID: 35958327 PMCID: PMC9359945 DOI: 10.21037/tlcr-22-520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Silvana T Wijaya
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Kenneth Sooi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ross A. Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, Singapore, Singapore
| |
Collapse
|
24
|
van Veelen A, Gulikers J, Hendriks LE, Dursun S, Ippel J, Smit EF, Dingemans AMC, van Geel R, Croes S. Pharmacokinetic boosting of osimertinib with cobicistat in patients with non-small cell lung cancer: the OSIBOOST trial. Lung Cancer 2022; 171:97-102. [DOI: 10.1016/j.lungcan.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
|
25
|
Li AY, Gaebe K, Jerzak KJ, Cheema PK, Sahgal A, Das S. Intracranial Metastatic Disease: Present Challenges, Future Opportunities. Front Oncol 2022; 12:855182. [PMID: 35330715 PMCID: PMC8940535 DOI: 10.3389/fonc.2022.855182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial metastatic disease (IMD) is a prevalent complication of cancer that significantly limits patient survival and quality of life. Over the past half-century, our understanding of the epidemiology and pathogenesis of IMD has improved and enabled the development of surveillance and treatment algorithms based on prognostic factors and tumor biomolecular characteristics. In addition to advances in surgical resection and radiation therapy, the treatment of IMD has evolved to include monoclonal antibodies and small molecule antagonists of tumor-promoting proteins or endogenous immune checkpoint inhibitors. Moreover, improvements in the sensitivity and specificity of imaging as well as the development of new serological assays to detect brain metastases promise to revolutionize IMD diagnosis. In this review, we will explore current treatment principles in patients with IMD, including the emerging role of targeted and immunotherapy in select primary cancers, and discuss potential areas for further investigation.
Collapse
Affiliation(s)
- Alyssa Y Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katarzyna J Jerzak
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Parneet K Cheema
- Division of Oncology, William Osler Health System, Brampton, ON, Canada
| | - Arjun Sahgal
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Rivera-Concepcion J, Uprety D, Adjei AA. Challenges in the Use of Targeted Therapies in NSCLC. Cancer Res Treat 2022; 54:315-329. [PMID: 35209703 PMCID: PMC9016301 DOI: 10.4143/crt.2022.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Precision oncology has fundamentally changed how we diagnose and treat cancer. In recent years, there has been a significant change in the management of patients with oncogene-addicted advanced-stage non–small cell lung cancer (NSCLC). Increasing amounts of identifiable oncogene drivers have led to the development of molecularly targeted drugs. Undoubtedly, the future of thoracic oncology is shifting toward increased molecular testing and the use of targeted therapies. For the most part, these novel drugs have proven to be safe and effective. As with all great innovations, targeted therapies pose unique challenges. Drug toxicities, resistance, access, and costs are some of the expected obstacles that will need to be addressed. This review highlights some of the major challenges in the use of targeted therapies in NSCLC and provides guidance for the future strategies.
Collapse
|
27
|
Peled N, Kian W, Inbar E, Goldstein IM, Zemel M, Rotem O, Rozenblum AB, Nechushtan H, Dudnik E, Levin D, Zer A, Keren-Rosenberg S, Yust-Katz S, Fuchs V, Remilah AA, Shelef I, Roisman LC. Osimertinib in advanced EGFR-mutant lung adenocarcinoma with asymptomatic brain metastases: an open-label, 3-arm, phase II pilot study. Neurooncol Adv 2022; 4:vdab188. [PMID: 35156036 PMCID: PMC8826702 DOI: 10.1093/noajnl/vdab188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osimertinib is selective for both epidermal growth factor receptor (EGFR)-tyrosine-kinase inhibitor (TKI) sensitizing and Thr790Met mutations. While intracranial activity of osimertinib is documented in larger trials, a prospective study focusing exclusively on patients with asymptomatic brain metastases has not been reported. METHODS In this nonrandomized, phase II, open-label, 3-arm prospective proof-of-concept pilot study, 48 patients with metastatic EGFR-mutant lung adenocarcinoma (LUAD) received osimertinib 80 mg daily. Patients were either treatment naive (arm A = 20) or previously treated with an EGFR-TKI and Thr790Met positive (arm B = 18) or negative (arm C = 10). In cases of isolated intracranial progression, osimertinib dose was escalated (160 mg). The primary endpoints were intracranial objective response rate (iORR) and intracranial disease control rate (iDCR). The secondary endpoint was intracranial progression-free survival (iPFS). This study is registered at Clinicaltrials.gov, NCT02736513. RESULTS The iORRs were 84.2%, 66.7%, and 50% and the iDCRs were 94.7%, 94.4%, and 80% in arms A, B, and C, respectively. The median iPFS was 11.8 months (95% CI 7.7 to NA), 7.6 months (95% CI 5.3 to NA), and 6.3 months (95% CI 3.9 to NA) in arms A, B, and C, respectively. Following dose escalation, pooled iORR was 54% (arm A = 5, arm B = 4, arm C = 2). Adverse events were similar to those in previously published literature. CONCLUSION Osimertinib demonstrated high efficacy on brain metastases. All trial arms displayed a significant decrease in the number and diameter of target lesions. These findings indicate that osimertinib is effective for Thr790Met-positive and -negative LUAD patients with asymptomatic brain metastases. Therefore, osimertinib should be considered a viable option for EGFR-mutant patients with brain involvement regardless of their Thr790Met mutation status.
Collapse
Affiliation(s)
- Nir Peled
- Department of Oncology, The Institute of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Waleed Kian
- Department of Oncology, The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center & Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Edna Inbar
- Department of Diagnostic Imaging, Rabin Medical Center, Davidoff Cancer Center, Petach Tikva, Israel
| | - Iris M Goldstein
- Department of Oncology, The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center & Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Melanie Zemel
- Department of Oncology, The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center & Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Ofer Rotem
- Department of Oncology, Rabin Medical Center, Davidoff Cancer Center, Petach Tikva, Israel
| | - Anna B Rozenblum
- Department of Oncology, Rabin Medical Center, Davidoff Cancer Center, Petach Tikva, Israel
| | - Hovav Nechushtan
- Department of oncology, Hadassah Medical Center, Jerusalem, Israel
| | - Elizabeth Dudnik
- Department of Oncology, Rabin Medical Center, Davidoff Cancer Center, Petach Tikva, Israel
| | - Daniel Levin
- Department of Diagnostic Imaging, The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center & Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Alona Zer
- Department of Oncology, Rabin Medical Center, Davidoff Cancer Center, Petach Tikva, Israel
| | | | - Shlomit Yust-Katz
- Department of Oncology, Rabin Medical Center, Davidoff Cancer Center, Petach Tikva, Israel
| | - Vered Fuchs
- Department of Oncology, The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center & Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Areen A Remilah
- Department of Oncology, The Institute of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ilan Shelef
- Department of Diagnostic Imaging, Diagnostic Imaging Institute, Soroka University Medical Center, Be’er-Sheba, Israel
| | - Laila C Roisman
- Department of Oncology, The Institute of Oncology, Shaare Zedek Medical Center, Jerusalem, Israel
- Department of Oncology, The Legacy Heritage Center & Dr. Larry Norton Institute, Soroka Medical Center & Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
28
|
Luttman JH, Hoj JP, Lin KH, Lin J, Gu JJ, Rouse C, Nichols AG, MacIver NJ, Wood KC, Pendergast AM. ABL allosteric inhibitors synergize with statins to enhance apoptosis of metastatic lung cancer cells. Cell Rep 2021; 37:109880. [PMID: 34706244 PMCID: PMC8579324 DOI: 10.1016/j.celrep.2021.109880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Targeting mitochondrial metabolism has emerged as a treatment option for cancer patients. The ABL tyrosine kinases promote metastasis, and enhanced ABL signaling is associated with a poor prognosis in lung adenocarcinoma patients. Here we show that ABL kinase allosteric inhibitors impair mitochondrial integrity and decrease oxidative phosphorylation. To identify metabolic vulnerabilities that enhance this phenotype, we utilized a CRISPR/Cas9 loss-of-function screen and identified HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway and target of statin therapies, as a top-scoring sensitizer to ABL inhibition. Combination treatment with ABL allosteric inhibitors and statins decreases metastatic lung cancer cell survival in vitro in a synergistic manner. Notably, combination therapy in mouse models of lung cancer brain metastasis and therapy resistance impairs metastatic colonization with a concomitant increase in animal survival. Thus, metabolic combination therapy might be effective to decrease metastatic outgrowth, leading to increased survival for lung cancer patients with advanced disease. Metabolic reprogramming in tumors is an adaptation that generates vulnerabilities that can be exploited for developing new therapies. Here Luttman et al. identify synergism between ABL allosteric inhibitors and lipophilic statins to impair metastatic lung cancer cell outgrowth and colonization, leading to increased survival in mouse models of advanced disease.
Collapse
Affiliation(s)
- Jillian Hattaway Luttman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jacob P Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaxing Lin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Clay Rouse
- Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
29
|
Sun CY, Cao D, Ren QN, Zhang SS, Zhou NN, Mai SJ, Feng B, Wang HY. Combination Treatment With Inhibitors of ERK and Autophagy Enhances Antitumor Activity of Betulinic Acid in Non-small-Cell Lung Cancer In Vivo and In Vitro. Front Pharmacol 2021; 12:684243. [PMID: 34267658 PMCID: PMC8275840 DOI: 10.3389/fphar.2021.684243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Aberrant activation of the Ras-ERK signaling pathway drives many important cancer phenotypes, and several inhibitors targeting such pathways are under investigation and/or approved by the FDA as single- or multi-agent therapy for patients with melanoma and non-small-cell lung cancer (NSCLC). Here, we show that betulinic acid (BA), a natural pentacyclic triterpenoid, inhibits cell proliferation, and induces apoptosis and protective autophagy in NSCLC cells. Thus, the cancer cell killing activity of BA is enhanced by autophagy inhibition. Mitogen-activated protein kinases, and especially ERK that facilitates cancer cell survival, are also activated by BA treatment. As such, in the presence of ERK inhibitors (ERKi), lung cancer cells are much more sensitive to BA. However, the dual treatment of BA and ERKi results in increased protective autophagy and AKT phosphorylation. Accordingly, inhibition of AKT has a highly synergistic anticancer effect with co-treatment of BA and ERKi. Notably, autophagy inhibition by hydroxychloroquine (HCQ) increases the response of lung cancer cells to BA in combination with ERKi. In vivo, the three-drug combination (BA, ERKi, and HCQ), resulted in superior therapeutic efficacy than single or dual treatments in the xenograft mouse model. Thus, our study provides a combined therapy strategy that is a highly effective treatment for patients with NSCLC.
Collapse
Affiliation(s)
- Chao-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Di Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qian-Nan Ren
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
30
|
Li C, Nie W, Guo J, Xiong A, Zhong H, Chu T, Zhong R, Xu J, Lu J, Zheng X, Zhang B, Shen Y, Pan F, Han B, Zhang X. Osimertinib alone as second-line treatment for brain metastases (BM) control may be more limited than for non-BM in advanced NSCLC patients with an acquired EGFR T790M mutation. Respir Res 2021; 22:145. [PMID: 33975616 PMCID: PMC8114713 DOI: 10.1186/s12931-021-01741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/07/2021] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND This study was designed to investigate the difference between brain metastases (BM) and non-brain metastases (non-BM) treated by osimertinib in advanced patients with an acquired EGFR T790M mutation after obtaining first-generation EGFR-TKI resistance. METHODS A total number of 135 first-generation EGFR-TKI-resistant patients with an acquired EGFR T790M mutation were retrospectively analyzed. The patients were divided into BM and non-BM groups. According to the type of treatment (whether brain radiotherapy), the BM patients were divided into an osimertinib combined with brain radiotherapy group and an osimertinib without brain radiotherapy group. In addition, according to the type of BM (the sequence between BM and osimertinib), the BM patients were subdivided into an osimertinib after BM group (initial BM developed after obtaining first-generation EGFR-TKI resistance) and an osimertinib before BM group (first-generation EGFR-TKI resistance then osimertinib administration performed; initial BM was not developed until osimertinib resistance). The progression-free survival (PFS) and overall survival (OS) were evaluated. The primary endpoint was OS between BM and no-BM patients. The secondary endpoints were PFS of osimertinib, and OS between brain radiotherapy and non-brain radiotherapy patients. RESULTS A total of 135 patients were eligible and the median follow-up time of all patients was 50 months. The patients with BM (n = 54) had inferior OS than those without BM (n = 81) (45 months vs. 55 months, P = 0.004). And in BM group, the OS was longer in patients that received osimertinib combined with brain radiotherapy than in those without brain radiotherapy (53 months vs. 40 months, P = 0.014). In addition, the PFS was analysed according to whether developed BM after osimertinib resistance. The PFS of the patients that developed BM after acquiring osimertinib resistance was shorter than that without BM development, whether patients developed initial BM after first-generation EGFR-TKI resistance (7 months vs. 13 months, P = 0.003), or developed non-BM after first-generation EGFR-TKI resistance (13 months vs. 17 months, P < 0.001). CONCLUSIONS In advanced patients with an acquired EGFR T790M mutation after obtaining first-generation EGFR-TKI resistance, osimertinib may be more limited in its control in BM than in non-BM. Also, osimertinib combined with brain radiotherapy may improve the survival time of BM patients.
Collapse
Affiliation(s)
- Changhui Li
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Wei Nie
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Jingdong Guo
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Anning Xiong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Tianqing Chu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Runbo Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Jianlin Xu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Xiaoxuan Zheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Bo Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Yinchen Shen
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Feng Pan
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China
| | - Baohui Han
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China.
| | - Xueyan Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 Huaihai West Road, Xuhui District, Shanghai, 200030, China.
| |
Collapse
|
31
|
Maldonado F, Gonzalez-Ling A, Oñate-Ocaña LF, Cabrera-Miranda LA, Zatarain-Barrón ZL, Turcott JG, Flores-Estrada D, Lozano-Ruiz F, Cacho-Díaz B, Arrieta O. Prophylactic Cranial Irradiation in Patients With High-Risk Metastatic Non-Small Cell Lung Cancer: Quality of Life and Neurocognitive Analysis of a Randomized Phase II Study. Int J Radiat Oncol Biol Phys 2021; 111:81-92. [PMID: 33915217 DOI: 10.1016/j.ijrobp.2021.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE To this date, studies regarding the use of prophylactic cranial irradiation (PCI) versus standard of care (SoC) for patients with non-small cell lung cancer have shown limited benefit in survival outcomes, in addition to the potential effects on quality of life (QoL) and neurocognitive function (NCF). This randomized, phase II study evaluated the role of PCI in QoL and NCF, in a population comprised of subjects at a high risk for development of brain metastases (BM). METHODS AND MATERIALS Eligible patients had histologically confirmed non-small cell lung cancer without baseline BM, harboring epidermal growth factor receptor mutations, anaplastic lymphoma kinase rearrangements, or elevated carcinoembryonic antigen (CEA) at diagnosis. Participants were assigned to receive SoC or SoC plus PCI (25 Gy in 10 fractions). Primary endpoint was BM at 24 months (BM-24), for which the study was powered. Secondary endpoints included QoL assessed using the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLQ-C30) and the Lung Cancer module (LC13) and NCF assessed using the Mini Mental State Examination (MMSE). Patients were followed every 3 months for a year for QoL and NCF. RESULTS From May 2012 to December 2017, 84 patients were enrolled in the study, 41 were allocated to PCI while 43 received SoC. Efficacy outcomes are discussed in a separate article. The global health-QoL scores were similar at 3, 6, 9, and 12 months after randomization between both study arms, with no significant differences when comparing by groups. At 1-year postrandomization, median global health QoL scores were 83 (p25-p75: 75-83) and 83 (p25-p75: 75-83) in the control and experimental arms, respectively. There were no significant changes in terms of the mean differences between subjects in either study arm when analyzing the change between baseline and 12-month scores (16.4 ± 19.9 vs 12.9 ± 14.7; P = .385). Seventeen patients were alive at database lockdown in February 2020, without significant differences in median MMSE (30 [p25-75: 29-30] vs 30 [p25-75: 28-30]) or QLQ-C30 scores (75.0 [p25-75: 50-87.2] vs 67.0 [p25-75: 50.0-100.0]). CONCLUSIONS Among a selected high-risk population for developing BM, PCI did not significantly decrease QoL or neurocognitive function as assessed using the MMSE. Future studies are warranted to assess this observation, using more varied and sensitive tools available to date.
Collapse
|
32
|
Zeeshan Ozair M, Giantini Larsen AM, Eng J, Moss NS. Exceptional Response of a Large and Symptomatic EGFR-Mutant Brain Metastasis to Osimertinib: Case Report and Review of the Literature. JCO Precis Oncol 2021; 5:PO.20.00485. [PMID: 34095710 DOI: 10.1200/po.20.00485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY
| | - Alexandra M Giantini Larsen
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juliana Eng
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nelson S Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
33
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Ma Z, Lu S, Zhou H, Zhang S, Wang Y, Lin N. Determination of intracellular anlotinib, osimertinib, afatinib and gefitinib accumulations in human brain microvascular endothelial cells by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8955. [PMID: 32990383 DOI: 10.1002/rcm.8955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Brain metastases are a common complication in patients with non-small-cell lung cancer (NSCLC). Anlotinib hydrochloride is a novel multi-target tyrosine kinase inhibitor (TKI) exhibiting a superior overall response rate for brain metastases from NSCLC. The penetrability of anlotinib and three generations of epidermal growth factor receptor (EGFR) TKIs (osimertinib, afatinib and gefitinib) into brain microvascular endothelial cells (HBMECs) was compared. METHODS A sensitive quantification method for the four TKIs was developed using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). Anlotinib and the three EGFR TKIs were separated on an ACQUITY BEH C18 column after a direct protein precipitation, and then analyzed using electrospray ionization in positive ion mode. The linearity, accuracy, precision, limit of quantification, specificity and stability were assessed. RESULTS The four analytes could be efficiently quantified in a single run of 3.8 min. The validation parameters of all analytes satisfy the acceptance criteria of bioanalytical method guidelines. The calibration range was 0.2-200 ng mL-1 for anlotinib and gefitinib, 1-500 ng mL-1 for osimertinib and 1-200 ng mL-1 for afatinib. The penetration of anlotinib across HBMECs was comparable with that of afatinib and gefitinib but less than that of osimertinib. CONCLUSIONS A sensitive LC/MS/MS method to simultaneously measure anlotinib, osimertinib, afatinib and gefitinib in cell extracts was successfully validated and applied to determine their uptake inside HBMECs, which could pave the way for future research on the role of anlotinib in NSCLC brain metastases.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Shirong Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Yuqing Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
35
|
Park JH, Choi BS, Han JH, Kim CY, Cho J, Bae YJ, Sunwoo L, Kim JH. MRI Texture Analysis for the Prediction of Stereotactic Radiosurgery Outcomes in Brain Metastases from Lung Cancer. J Clin Med 2021; 10:jcm10020237. [PMID: 33440723 PMCID: PMC7827024 DOI: 10.3390/jcm10020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
This study aims to evaluate the utility of texture analysis in predicting the outcome of stereotactic radiosurgery (SRS) for brain metastases from lung cancer. From 83 patients with lung cancer who underwent SRS for brain metastasis, a total of 118 metastatic lesions were included. Two neuroradiologists independently performed magnetic resonance imaging (MRI)-based texture analysis using the Imaging Biomarker Explorer software. Inter-reader reliability as well as univariable and multivariable analyses were performed for texture features and clinical parameters to determine independent predictors for local progression-free survival (PFS) and overall survival (OS). Furthermore, Harrell’s concordance index (C-index) was used to assess the performance of the independent texture features. The primary tumor histology of small cell lung cancer (SCLC) was the only clinical parameter significantly associated with local PFS in multivariable analysis. Run-length non-uniformity (RLN) and short-run emphasis were the independent texture features associated with local PFS. In the non-SCLC (NSCLC) subgroup analysis, RLN and local range mean were associated with local PFS. The C-index of independent texture features was 0.79 for the all-patients group and 0.73 for the NSCLC subgroup. In conclusion, texture analysis on pre-treatment MRI of lung cancer patients with brain metastases may have a role in predicting SRS response.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon 443-380, Korea;
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.C.); (Y.J.B.); (L.S.); (J.H.K.)
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.C.); (Y.J.B.); (L.S.); (J.H.K.)
- Correspondence: ; Tel.: +82-31-787-7625; Fax: +82-31-787-4011
| | - Jung Ho Han
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.H.H.); (C.-Y.K.)
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.H.H.); (C.-Y.K.)
| | - Jungheum Cho
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.C.); (Y.J.B.); (L.S.); (J.H.K.)
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.C.); (Y.J.B.); (L.S.); (J.H.K.)
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.C.); (Y.J.B.); (L.S.); (J.H.K.)
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea; (J.C.); (Y.J.B.); (L.S.); (J.H.K.)
| |
Collapse
|
36
|
Lei L, Wang WX, Wang D, Lin L, Zhu YC, Wang H, Wang LP, Zhuang W, Fang MY, Wan B, Feng HJ, Xu CW. A real-world study in advanced non-small cell lung cancer with de novo brain metastasis. J Cancer 2021; 12:1467-1473. [PMID: 33531991 PMCID: PMC7847653 DOI: 10.7150/jca.51411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Brain metastases are the major cause of life-expectancy shortened for patients with lung cancer. The prognostic value of EGFR mutation subtypes and survival benefit of EGFR-tyrosine kinase inhibitors (TKIs) in advanced non-small cell lung cancer (NSCLC) patients with de novo brain metastasis is still not clear. Here, we present a real-world study nation-wide focusing on the prognostic value of genomic and therapeutic factors in overall survival (OS) of those patients. We enrolled a total of 233 patients diagnosed with advanced NSCLC and de novo BM from multi-medical centers across China. The enrolled patients were divided into 4 groups, including EGFR 19del, EGFR L858R, EGFR wild-type, and EGFR unknown groups. The median OS of patients with EGFR mutations and all patients were 29.0 and 25.0 months, respectively. There was significant difference in OS of patients among EGFR 19del (n=76), EGFR L858R (n=94), EGFR wild-type (n=46) and EGFR unknown (n=17) groups (30.5 vs 27.5 vs 16.0 vs 25.0, P=0.025). Patients treated by icotinib showed better OS than gefitinib and erlotinib (31.0 vs 25.5 vs 26.5, P=0.02). There was a difference in OS of patients received the whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), or WBRT+SRS (20.0 vs 31.0 vs 30.0 months, P<0.001), respectively. In multivariate analysis, patients treated with icotinib had superior iPFS benefit than gefitinib and erlotinib (HR=0.86[95%CI (0.74-1.0)], P=0.04). Besides, the histology of non-adenocarcinomas, the number of BM (>3), and extracranial metastases status could have an independent negative impact on the OS of all patients (P<0.001). EGFR mutant NSCLC patients with de novo BM had a better OS than patients with EGFR wild type. Patients treated with icotinib had longer iPFS than gefitinib and erlotinib but not in OS. Non-adenocarcinomas, number of BM (>3) and extracranial metastases were independent negative prognostic factors in iPFS and OS of all patients. Prospective clinical trials are warranted to explore more effective multimodality in this population.
Collapse
Affiliation(s)
- Lei Lei
- Department of Chemotherapy, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou Zhejiang 310022, People's Republic of China
| | - Wen-Xian Wang
- Department of Chemotherapy, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou Zhejiang 310022, People's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, People's Republic of China
| | - Li Lin
- Department of Oncology, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - You-Cai Zhu
- Department of Thoracic Disease Center, Zhejiang Rongjun Hospital, Jiaxing Zhejiang 314000, People's Republic of China
| | - Hong Wang
- Department of Lung Cancer, The Fifth Medical Center, General Hospital of PLA, Beijing 100071, People's Republic of China
| | - Li-Ping Wang
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou Inner Mongolia 014000, People's Republic of China
| | - Wu Zhuang
- Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou Fujian 350014, People's Republic of China
| | - Mei-Yu Fang
- Department of Chemotherapy, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou Zhejiang 310022, People's Republic of China
| | - Bing Wan
- Department of Respiratory, The Affiliated Jiangning Hopsital of Nanjing Medical University, Nanjing Jiangsu 210002, People's Republic of China
| | - Hui-Jing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan Shanxi 030032, People's Republic of China
| | - Chun-Wei Xu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, People's Republic of China
| |
Collapse
|
37
|
Kong AM, Pavilack M, Huo H, Shenolikar R, Moynihan M, Marchlewicz EH, Chebili-Larson C, Min S, Subramaniam DS. Real-world impact of brain metastases on healthcare utilization and costs in patients with non-small cell lung cancer treated with EGFR-TKIs in the US. J Med Econ 2021; 24:328-338. [PMID: 33576296 DOI: 10.1080/13696998.2021.1885418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) with brain metastases (BM) is difficult to treat and associated with poor survival. This study assessed the impact of BM on healthcare-related utilization and costs (HRUC) among patients receiving epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). PATIENTS AND METHODS Adults newly-diagnosed with metastatic NSCLC, initiating first-/second-generation EGFR-TKI treatment, with BM or no BM (NBM), were identified retrospectively from IBM MarketScan healthcare claims databases (2013-2017). HRUC were measured during the variable-length follow-up period. Generalized linear models assessed the impact of BM on total healthcare costs, standardized to 2017 US$. RESULTS Overall, 222 BM and 280 NBM patients were included, with a mean duration of follow-up of 14 months. Adjusted NSCLC-related and all-cause costs over average follow-up were 1.2 times higher among BM patients (Δ$5,640 and Δ$6,366, respectively; p <0.05); differences were driven primarily by radiation treatment and radiology. More than two times more BM than NBM patients received NSCLC-related radiation treatment, in both inpatient (15.3% vs 6.8%; p <0.05) and outpatient settings (87.8% vs 37.5%; p <0.05). Per-patient per-month (PPPM) radiation costs were also higher among BM patients, both inpatient ($796 vs $464, p =0.172) and outpatient ($2,443 vs $747, p <0.05). All-cause PPPM radiology visits (2.0 vs 1.3) and associated costs ($3,824 vs $1,621) were higher among BM patients (both p <0.05). CONCLUSION NSCLC-related HRUC, especially those attributable to radiation treatment, were higher among patients with BM. Future research should compare the potential for CNS-active EGFR-TKIs vs first-/second-generation EGFR-TKIs combined with radiotherapy to reduce HRUC.
Collapse
|
38
|
Ouyang W, Yu J, Zhou Y, Xu Y, Li J, Gong J, Zhang J, Xie C. Metachronous Brain Metastasis in patients with EGFR-mutant NSCLC indicates a worse prognosis. J Cancer 2020; 11:7283-7290. [PMID: 33193892 PMCID: PMC7646168 DOI: 10.7150/jca.46462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: NSCLC patients with EGFR mutation were associated with high incidence of brain metastasis (BM). BM could be grouped by the time of occurrence, including synchronous BM at initial diagnosis and metachronous BM during disease course. The primary aim of the study was to investigate the survival of patients with metachronous BM. Methods: A total of 99 EGFR-mutant advanced NSCLC patients in our institute between 2012 and 2018 were grouped into synchronous BM and metachronous BM. Comparisons of OS were performed based on BM status. The independent prognostic factors of OS were investigated, and extracranial and intracranial PFS were further analyzed. Results: Patients with metachronous BM (mOS: 22.1 months) had poorer outcomes than synchronous BM (mOS: 30.3 months) (P=0.016). Moreover, multivariate analysis indicated that BM status (P=0.015), local therapy for BM (P=0.013) and subsequent treatment of Osimertinib (P=0.008) impact significantly on OS. Significantly, the proportion of local therapy for BM had no difference between patients with synchronous and metachronous BM. And patients with metachronous BM harbored a more favorable prognostic factor (higher proportion of subsequent Osimertinib treatment), but also harbored a poorer prognostic factor (metachronous BM), which confirmed BM status was the most significant prognostic factor of OS. At last, results of extracranial and intracranial PFS indicated that patients with metachronous BM tended to have a higher risk of intracranial disease progression. Conclusions: Patients developing metachronous BM during EGFR-TKIs treatment have worse outcomes than synchronous BM. Our findings suggested that the patients with metachronous BM should receive more aggressive treatments.
Collapse
Affiliation(s)
- Wen Ouyang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jing Yu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jie Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Kasherman L, Madariaga A, Rouzbahman M, Murphy K, Shultz D, Stockley T, Oza AM. Across barriers: poly ADP-ribose polymerase inhibitors beyond progression in high grade serous ovarian cancer with brain metastases. Int J Gynecol Cancer 2020; 31:139-143. [PMID: 32998861 DOI: 10.1136/ijgc-2020-001849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 11/03/2022] Open
Affiliation(s)
- Lawrence Kasherman
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Ainhoa Madariaga
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kieran Murphy
- Joint Department of Medical Imaging, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - David Shultz
- Radiation Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | | | - Amit M Oza
- Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
40
|
A TAZ-AXL-ABL2 Feed-Forward Signaling Axis Promotes Lung Adenocarcinoma Brain Metastasis. Cell Rep 2020; 29:3421-3434.e8. [PMID: 31825826 DOI: 10.1016/j.celrep.2019.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Brain metastases are a common consequence of advanced lung cancer, resulting in cranial neuropathies and increased mortality. Currently, there are no effective therapies to treat brain metastases due to a lack of actionable targets and a failure of systemic therapies to penetrate the blood-brain barrier (BBB). Here we identify an autocrine signaling axis required for lung adenocarcinoma brain metastasis, whereby nuclear accumulation of the TAZ transcriptional co-activator drives expression of a panel of transcripts enriched in brain metastases, including ABL2 and AXL, encoding for protein tyrosine kinases that engage in bidirectional signaling. Activation of ABL2 in turn promotes TAZ tyrosine phosphorylation and nuclear localization, establishing an autocrine AXL-ABL2-TAZ feed-forward signaling loop required for brain metastasis colonization. Notably, treatment with a BBB-penetrant ABL allosteric inhibitor or knockdown of ABL2, AXL, or TAZ markedly decreases brain metastases. These findings suggest that ABL and AXL inhibitors might be effective against brain metastases.
Collapse
|
41
|
Ma C, Wang S, Mu N, Li J, Liu M, Li L, Jiang R. Effective Treatment With Afatinib of Lung Adenocarcinoma With Leptomeningeal Metastasis Harboring the Exon 18 p.G719A Mutation in the EGFR Gene Was Detected in Cerebrospinal Fluid: A Case Report. Front Oncol 2020; 10:1635. [PMID: 33014823 PMCID: PMC7506151 DOI: 10.3389/fonc.2020.01635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background: In patients with lung adenocarcinoma and leptomeningeal metastases, it remains unknown whether non-classical mutations in the epidermal growth factor receptor (EGFR) gene can be detected in the cerebrospinal fluid (CSF) and how it may be used to design directed therapy. Methods: On April 18, 2018, the Interventional Department of Tianjin Huanhu Hospital admitted a 34-years-old male patient with lung adenocarcinoma and leptomeningeal metastasis. An emergency lateral ventriculoperitoneal shunt was performed to relieve the clinical symptoms of intracranial hypertension. Next-generation sequencing (NGS) of the CFS specimens revealed a mutation in EGFR exon 18 p.G719A, and afatinib was administered. Follow-up showed significantly relieved headache, with significantly reduced soft leptomeningeal abnormal enhancement as revealed by enhanced magnetic resonance imaging and significantly smaller tumors in the left lung by chest computed tomography. Carcinoembryonic antigens (CEAs) in cerebrospinal fluid and peripheral blood were significantly reduced. The patient responded well to afatinib, with mild adverse complications. The patient died on October 27, 2019 from respiratory failure as a result of lung infection unrelated to cancer progression. The overall survival (OS) using afatinib was 530 days. Conclusion: CSF can be used as a liquid biopsy for NGS gene detection in patients with lung adenocarcinoma and leptomeningeal metastases. Afatinib exhibits a beneficial effect in patients with lung adenocarcinoma and leptomeningeal metastases harboring the EGFR exon 18 p.G719A mutation.
Collapse
Affiliation(s)
- Chunhua Ma
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuyuan Wang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Ning Mu
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, China
| | - Jinduo Li
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, China
| | - Mei Liu
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, China
| | - Lin Li
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, China
| | - Rong Jiang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
42
|
Chavda V, Patel V, Yadav D, Shah J, Patel S, Jin JO. Therapeutics and Research Related to Glioblastoma: Advancements and Future Targets. Curr Drug Metab 2020; 21:186-198. [DOI: 10.2174/1389200221666200408083950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/28/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
Glioblastoma, the most common primary brain tumor, has been recognized as one of the most lethal and
fatal human tumors. It has a dismal prognosis, and survival after diagnosis is less than 15 months. Surgery and radiotherapy
are the only available treatment options at present. However, numerous approaches have been made to upgrade
in vivo and in vitro models with the primary goal of assessing abnormal molecular pathways that would be
suitable targets for novel therapeutic approaches. Novel drugs, delivery systems, and immunotherapy strategies to
establish new multimodal therapies that target the molecular pathways involved in tumor initiation and progression in
glioblastoma are being studied. The goal of this review was to describe the pathophysiology, neurodegeneration
mechanisms, signaling pathways, and future therapeutic targets associated with glioblastomas. The key features have
been detailed to provide an up-to-date summary of the advancement required in current diagnosis and therapeutics
for glioblastoma. The role of nanoparticulate system graphene quantum dots as suitable therapy for glioblastoma has
also been discussed.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| | - Jigar Shah
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| |
Collapse
|
43
|
Shriyan B, Patil D, Gurjar M, Nookala M, Patil A, Kannan S, Patil V, Joshi A, Noronha V, Prabhash K, Gota V. Safety and CSF distribution of high-dose erlotinib and gefitinib in patients of non-small cell lung cancer (NSCLC) with brain metastases. Eur J Clin Pharmacol 2020; 76:1427-1436. [PMID: 32529316 DOI: 10.1007/s00228-020-02926-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/01/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Patients of non-small cell lung cancer (NSCLC) with brain metastases have limited treatment options. High-dose erlotinib (HDE) and gefitinib (HDG) have been tried in the past. This study investigates the cerebrospinal fluid (CSF) disposition and safety of both, high-dose erlotinib and gefitinib regimens. METHODS Eleven and nine patients were treated with erlotinib and gefitinib, respectively. All patients received 1 week of standard dose of erlotinib (150 mg OD) or gefitinib (250 mg OD), followed by the high dose (1500 mg weekly for erlotinib and 1250 mg OD for gefitinib) from day 8. Blood and CSF samples were collected on days 7 and 15, 4 h after the morning dose and drug levels determined using LC-MS/MS. Adverse events were documented as per CTCAE 4.03 till day 15. RESULTS Pulsatile HDE and daily HDG resulted in 1.4- and 1.9-fold increase in CSF levels, respectively. A constant 2% CSF penetration rate was observed across both doses of erlotinib, while for gefitinib the penetration rate for high dose was half that of the standard dose suggesting a nonlinear disposition. Three patients on HDE treatment discontinued treatment after the first dose due to intolerable toxicities, whereas HDG was better tolerated with no treatment discontinuations. Since CSF disposition of gefitinib followed saturable kinetics, a lower dose of 750 mg was found to achieve CSF concentrations comparable to that of the 1250 mg dose. CONCLUSIONS HDG was better tolerated than HDE. CSF disposition of gefitinib was found to be saturable at a higher dose. Based on these findings, the dose of 750 mg OD should be considered for further evaluation in this setting.
Collapse
Affiliation(s)
- Bharati Shriyan
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Deepali Patil
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Manjunath Nookala
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Anand Patil
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sadhana Kannan
- Department of Biostatistics, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Amit Joshi
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
44
|
Deshpande K, Buchanan I, Martirosian V, Neman J. Clinical Perspectives in Brain Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037051. [PMID: 31615863 DOI: 10.1101/cshperspect.a037051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brain metastases (BMs) are responsible for decline in neurological function, reduction in overall quality of life, and mortality from recurrent or untreatable lesions. Advances in diagnostics and imaging have led to increased detection of central nervous system (CNS) metastases in patients with progressive cancers. Improved control of extracranial systemic disease, and the limited ability of current therapeutics to cross the blood-brain barrier (BBB) also contribute to the increase in incidence of brain metastases, as tumor cells seek refuge in the brain. Surgery, chemotherapy, and/or radiation (whole-brain radiation therapy and stereotactic radiation surgery [WBRT/SRS]) are a clinically established treatment paradigm for patients with brain metastases. With the advent of genetic and molecular characterization of tumors and their immune microenvironment, clinical trials seek to include targeted drugs into the therapeutic regimen for eligible patients. Several challenges, like treatment of multiple CNS lesions, superior uptake of chemotherapy into the brain, and trials with multidisciplinary approaches, are now being clinically addressed.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Ian Buchanan
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Vahan Martirosian
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Josh Neman
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common malignant primary brain tumor, and the available treatment options are limited. This article reviews the recent preclinical and clinical investigations that seek to expand the repertoire of effective medical and radiotherapy options for GBM. RECENT FINDINGS Recent phase III trials evaluating checkpoint inhibition did not result in significant survival benefit. Select vaccine strategies have yielded promising results in early phase clinical studies and warrant further validation. Various targeted therapies are being explored but have yet to see breakthrough results. In addition, novel radiotherapy approaches are in development to maximize safe dose delivery. A multitude of preclinical and clinical studies in GBM explore promising immunotherapies, targeted agents, and novel radiation modalities. Recent phase III trial failures have once more highlighted the profound tumor heterogeneity and diverse resistance mechanisms of glioblastoma. This calls for the development of biomarker-driven and personalized treatment approaches.
Collapse
Affiliation(s)
- Elisa K Liu
- New York University Grossman School of Medicine, New York, NY, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10019, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvia C Kurz
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10019, USA. .,Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
46
|
Dodson C, Richards TJ, Smith DA, Ramaiya NH. Tyrosine Kinase Inhibitor Therapy for Brain Metastases in Non-Small-Cell Lung Cancer: A Primer for Radiologists. AJNR Am J Neuroradiol 2020; 41:738-750. [PMID: 32217548 DOI: 10.3174/ajnr.a6477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Abstract
Treatment options for patients who develop brain metastases secondary to non-small-cell lung cancer have rapidly expanded in recent years. As a key adjunct to surgical and radiation therapy options, systemic therapies are now a critical component of the oncologic management of metastatic CNS disease in many patients with non-small-cell lung cancer. The aim of this review article was to provide a guide for radiologists, outlining the role of systemic therapies in metastatic non-small-cell lung cancer, with a focus on tyrosine kinase inhibitors. The critical role of the blood-brain barrier in the development of systemic therapies will be described. The final sections of this review will provide an overview of current imaging-based guidelines for therapy response. The utility of the Response Assessment in Neuro-Oncology criteria will be discussed, with a focus on how to use the response criteria in the assessment of patients treated with systemic and traditional therapies.
Collapse
Affiliation(s)
- C Dodson
- From the Department of Radiology (C.D., T.J.R., D.A.S., N.H.R.), University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - T J Richards
- From the Department of Radiology (C.D., T.J.R., D.A.S., N.H.R.), University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
- Department of Radiology and Imaging Sciences (T.J.R.), University of Utah Hospital, Salt Lake City, Utah
| | - D A Smith
- From the Department of Radiology (C.D., T.J.R., D.A.S., N.H.R.), University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - N H Ramaiya
- From the Department of Radiology (C.D., T.J.R., D.A.S., N.H.R.), University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
47
|
Doval DC, Desai CJ, Sahoo TP. Molecularly targeted therapies in non-small cell lung cancer: The evolving role of tyrosine kinase inhibitors. Indian J Cancer 2020; 56:S23-S30. [PMID: 31793439 DOI: 10.4103/ijc.ijc_449_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer. Patients with NSCLC are diagnosed at a locally advanced or metastatic stage where prognosis with palliative chemotherapy is poor. The discovery of epidermal growth factor receptor (EGFR) mutations has revolutionized cancer treatment for NSCLC by promoting the development of molecularly targeted therapies like tyrosine kinase inhibitors (TKIs). This review summarizes the clinical efficacy and tolerability of EGFR-TKIs, including osimertinib, in EGFR-mutated advanced NSCLC. EGFR-TKIs have demonstrated superior response and overall survival rates compared with chemotherapy in EGFR-mutated NSCLC. However, despite the initial rapid and durable clinical responses, acquired resistance to first- and second-generation TKIs eventually develops in most cases, with disease progression observed mostly within 12 months of treatment initiation. Osimertinib, a potent third-generation TKI, irreversibly inhibits mutated EGFR alleles, including T790M. In addition to longer survival and higher response rate, osimertinib has a favorable safety profile with a lower incidence of grade ≥3 treatment-related adverse events compared with other TKIs. Based on the efficacy and safety results, recently the National Comprehensive Cancer Network (NCCN) has included osimertinib as the "preferred first-line of treatment" in patients with metastatic EGFR mutationpositive NSCLC. Thus, osimertinib as first-line therapy for EGFRpositive patients irrespective of the T790M mutation status could be an ideal choice in the Indian setting where only 50% of patients opt for any second-line therapy after first-line failure.
Collapse
Affiliation(s)
- D C Doval
- Department of Medical Oncology/Hemato-Oncology Chair Medical Oncology and Chief of Breast and Thoracic Services, Rajiv Gandhi Cancer Institute, New Delhi, India
| | - C J Desai
- Consultant Oncologist and Director, Hemato Oncology Clinic, Vendanta Institute of Medical Sciences, Ahmadabad, Gujarat, India
| | - T P Sahoo
- Consultant Medical Oncologist, Silverline Hospital, Bhopal, Madhya Pradesh, India
| |
Collapse
|
48
|
Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules 2020; 25:E1471. [PMID: 32213992 PMCID: PMC7146177 DOI: 10.3390/molecules25061471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.
Collapse
Affiliation(s)
- Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| |
Collapse
|
49
|
Ma C, Zhang J, Tang D, Ye X, Li J, Mu N, Li Z, Liu R, Xiang L, Huang C, Jiang R. Tyrosine Kinase Inhibitors Could Be Effective Against Non-small Cell Lung Cancer Brain Metastases Harboring Uncommon EGFR Mutations. Front Oncol 2020; 10:224. [PMID: 32195178 PMCID: PMC7066117 DOI: 10.3389/fonc.2020.00224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The significance of uncommon epidermal growth factor receptor (EGFR) mutations in patients with non-small cell lung cancer (NSCLC) and brain metastasis (BM) remains unclear. Cerebrospinal fluid (CSF) liquid biopsy is a novel tool for assessing EGFR mutations in BM. This study aimed to evaluate the EGFR mutations in patients with NSCLC and newly diagnosed BM and to examine the effect of EGFR tyrosine kinase inhibitors (TKI) on BM harboring CSF-tested uncommon EGFR mutations. Methods: This was a prospective study of 21 patients with NSCLC and BM diagnosed between 04/2018 and 01/2019. CSF was obtained to detect the BM EGFR mutations by next-generation sequencing. BM characteristics at magnetic resonance imaging (MRI) and EGFR-TKI response were examined. Results: Of 21 patients with NSCLC, 10 (47.6%) had leptomeningeal metastasis (LM), while 11 (52.4%) had brain parenchymal metastasis (BPM); 13 (61.9%) had confirmed EGFR mutation-positive primary tumors. The uncommon mutation rate in CSF ctDNA was 33.3% (7/21). Among those with EGFR mutation-positive primary tumors, the rate of uncommon EGFR mutations in CSF was 53.8% (7/13). Uncommon EGFR mutations were more common in patients with LM than in patients with PBM (6/11, 54.5% vs. 1/10, 10%), and included G719A, L861Q, L703P, and G575R. TKI was effective for four patients with BMs harboring uncommon EGFR mutations. Conclusion: In patients with NSCLC and LM, the rate of uncommon EGFR mutation was high. The BMs with uncommon EGFR mutations seem to respond to EGFR-TKI treatment. CSF liquid biopsy could reveal the EGFR genetic profile of the BM and help guide treatment using small-molecule TKI.
Collapse
Affiliation(s)
- Chunhua Ma
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin HuanHu Hospital, Tianjin, China
| | - Juncheng Zhang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China.,Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Dongjiang Tang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China.,Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Xin Ye
- Zhuhai SanMed Biotech Ltd., Zhuhai, China.,Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Jing Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin HuanHu Hospital, Tianjin, China
| | - Ning Mu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin HuanHu Hospital, Tianjin, China
| | - Zhi Li
- Zhuhai Livzon Gene Diagnostics Ltd., Zhuhai, China
| | - Renzhong Liu
- Zhuhai Livzon Gene Diagnostics Ltd., Zhuhai, China
| | - Liang Xiang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China.,Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Chuoji Huang
- Zhuhai SanMed Biotech Ltd., Zhuhai, China.,Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macao, Zhuhai, China
| | - Rong Jiang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin HuanHu Hospital, Tianjin, China
| |
Collapse
|
50
|
Li W, Bai R, Qian L, Chen N, Zhao Y, Han F, Bai L, Li J, Yu Y, Cui J. Cost-effectiveness of icotinib versus whole-brain irradiation with or without chemotherapy in EGFR-mutant NSCLC patients with brain metastases. Asia Pac J Clin Oncol 2020; 17:e40-e47. [PMID: 31957251 DOI: 10.1111/ajco.13291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Nonsmall cell lung cancer (NSCLC) patients with brain metastases (BM) have a poor prognosis. Despite the traditional methods including radiotherapy and chemotherapy, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) might benefit patients on survival and quality of life. We investigated the cost-effectiveness of icotinib compared with whole-brain irradiation (WBI) with or without chemotherapy for NSCLC patients with BM. MATERIALS AND METHODS A Markov model was conducted based on the data of BRAIN trial. We compared the economic benefit between icotinib and the combination of WBI and WBI plus chemotherapy group. We considered disease progression as intracranial progression and overall progression separately. Sensitivity analyses were performed to observe the stability of the model. The willingness-to-pay (WTP) was set as 3× per capita gross domestic product ($25929/quality-adjusted life year [QALY]) from the Chinese healthcare perspective. RESULTS When considering progression as intracranial progression and overall progression, respectively, the incremental cost-effectiveness ratio was $14 882.64/QALY and $13 484.21/QALY between icotinib and WBI/WBI-chemotherapy. Besides, both of the average cost-effective ratio (ACER) and net benefit showed advantage of icotinib (ACER: $34 521.42/QALY for intracranial progression and $36 562.63/QALY for overall progression; net benefit: -$8407.36 for intracranial progression and -$9836.41 for overall progression). One-way sensitivity analyses demonstrated that no thresholds were encountered. The probabilistic sensitivity analyses showed even at a WTP under $18 000/QALY, icotinib could be cost-effective. CONCLUSION Icotinib was cost-effective compared with WBI with or without chemotherapy.
Collapse
Affiliation(s)
- Wenqian Li
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Rilan Bai
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Lei Qian
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Naifei Chen
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Yuguang Zhao
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Fujun Han
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Ling Bai
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Jiaxuan Li
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Yu Yu
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| | - Jiuwei Cui
- The Cancer Center of the First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|