1
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
2
|
Sutanto H, Safira A, Fetarayani D. From tumor to tolerance: A comprehensive review of immune checkpoint inhibitors and immune-related adverse events. Asia Pac Allergy 2024; 14:124-138. [PMID: 39220570 PMCID: PMC11365684 DOI: 10.5415/apallergy.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for various malignancies by harnessing the body's immune system to target cancer cells. However, their widespread use has unveiled a spectrum of immune-related adverse events, highlighting a critical balance between antitumor immunity and autoimmunity. This review article delves into the molecular immunology of ICIs, mapping the journey from their therapeutic action to the unintended induction of immune-related adverse events. We provide a comprehensive overview of all available ICIs, including cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1, programmed death-ligand 1 inhibitors, and emerging targets, discussing their mechanisms of action, clinical applications, and the molecular underpinnings of associated immune-related adverse events. Special attention is given to the activation of autoreactive T cells, B cells, cytokine release, and the inflammatory cascade, which together contribute to the development of immune-related adverse events. Through a molecular lens, we explore the clinical manifestations of immune-related adverse events across organ systems, offering insights into diagnosis, management, and strategies to mitigate these adverse effects. The review underscores the importance of understanding the delicate interplay between enhancing antitumor responses and minimizing immune-related adverse events, aiming to guide future research and the development of next-generation ICIs with improved drug safety profiles.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ardea Safira
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Afzal A, Afzal Z, Bizink S, Davis A, Makahleh S, Mohamed Y, Coniglio SJ. Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond. Curr Issues Mol Biol 2024; 46:7795-7811. [PMID: 39194679 DOI: 10.3390/cimb46080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.
Collapse
Affiliation(s)
- Amber Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Zobia Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sophia Bizink
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sara Makahleh
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Yara Mohamed
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Salvatore J Coniglio
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
4
|
Zhang Z, Xu X, Du J, Chen X, Xue Y, Zhang J, Yang X, Chen X, Xie J, Ju S. Redox-responsive polymer micelles co-encapsulating immune checkpoint inhibitors and chemotherapeutic agents for glioblastoma therapy. Nat Commun 2024; 15:1118. [PMID: 38320994 PMCID: PMC10847518 DOI: 10.1038/s41467-024-44963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Immunotherapy with immune checkpoint blockade (ICB) for glioblastoma (GBM) is promising but its clinical efficacy is seriously challenged by the blood-tumor barrier (BTB) and immunosuppressive tumor microenvironment. Here, anti-programmed death-ligand 1 antibodies (aPD-L1) are loaded into a redox-responsive micelle and the ICB efficacy is further amplified by paclitaxel (PTX)-induced immunogenic cell death (ICD) via a co-encapsulation approach for the reinvigoration of local anti-GBM immune responses. Consequently, the micelles cross the BTB and are retained in the reductive tumor microenvironment without altering the bioactivity of aPD-L1. The ICB efficacy is enhanced by the aPD-L1 and PTX combination with suppression of primary and recurrent GBM, accumulation of cytotoxic T lymphocytes, and induction of long-lasting immunological memory in the orthotopic GBM-bearing mice. The co-encapsulation approach facilitating efficient antibody delivery and combining with chemotherapeutic agent-induced ICD demonstrate that the chemo-immunotherapy might reprogram local immunity to empower immunotherapy against GBM.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Xue Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Rajan A, Gray JE, Devarakonda S, Birhiray R, Korchin B, Menius E, Donahue RN, Schlom J, Gulley JL. Phase 1 trial of CV301 in combination with anti-PD-1 therapy in nonsquamous non-small cell lung cancer. Int J Cancer 2023; 152:447-457. [PMID: 36054490 PMCID: PMC10690498 DOI: 10.1002/ijc.34267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
CV301, a poxviral-based vaccine, has been evaluated in a phase 1 clinical trial (NCT02840994) and shown to be safe and immunologically active (phase 1a). Preclinical data support a combination of CV301 with programmed death-1 inhibitors, which has been evaluated in the phase 1b part of this trial and is reported here. Patients with advanced nonsquamous non-small cell lung cancer (NSCLC) without actionable genomic alterations received two priming doses of modified vaccinia Ankara-BN-CV301 (MVA) 4 weeks apart, followed by boosting doses of fowlpox-CV301 (FPV) at increasing time intervals for a maximum of 17 doses in combination with nivolumab for cohort 1 (C1) and 15 doses in combination with pembrolizumab for cohort 2 (C2). The primary objective was evaluation of safety and tolerability. Between October 2017 and September 14, 2018, patients were enrolled (C1: 4; median age: 64 years). Mean treatment duration was 332 days in C1 and 289 days in C2. CTCAE ≥grade 3 adverse events (AEs) were observed in four (100%) patients in C1 and three (37.5%) patients in C2. There was one death on trial. Immune-related AEs (irAEs) fulfilling criteria for a dose-limiting toxicity included 1 case of pneumonitis. Among 11 evaluable patients, 1 (9%) had a complete response, 1 (9%) had a partial response and 9 (82%) had stable disease. We conclude that CV301 administered with PD-1 inhibitors is safe and clinically active in patients with advanced NSCLC. The frequency or severity of AEs is not increased, including irAEs for each component of the combination.
Collapse
Affiliation(s)
- Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jhanelle E Gray
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Ruemu Birhiray
- Medical Oncology, Investigative Clinical Research of Indiana, Indianapolis, Indiana, USA
| | | | - Erika Menius
- Bavarian Nordic, Morrisville, North Carolina, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Extracellular Vesicles Are Important Mediators That Regulate Tumor Lymph Node Metastasis via the Immune System. Int J Mol Sci 2023; 24:ijms24021362. [PMID: 36674900 PMCID: PMC9865533 DOI: 10.3390/ijms24021362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular vesicles (EVs) are particles with a lipid bilayer structure, and they are secreted by various cells in the body. EVs interact with and modulate the biological functions of recipient cells by transporting their cargoes, such as nucleic acids and proteins. EVs influence various biological phenomena, including disease progression. They also participate in tumor progression by stimulating a variety of signaling pathways and regulating immune system activation. EVs induce immune tolerance by suppressing CD8+ T-cell activation or polarizing macrophages toward the M2 phenotype, which results in tumor cell proliferation, migration, invasion, and metastasis. Moreover, immune checkpoint molecules are also expressed on the surface of EVs that are secreted by tumors that express these molecules, allowing tumor cells to not only evade immune cell attack but also acquire resistance to immune checkpoint inhibitors. During tumor metastasis, EVs contribute to microenvironmental changes in distant organs before metastatic lesions appear; thus, EVs establish a premetastatic niche. In particular, lymph nodes are adjacent organs that are connected to tumor lesions via lymph vessels, so that tumor cells metastasize to draining lymph nodes at first, such as sentinel lymph nodes. When EVs influence the microenvironment of lymph nodes, which are secondary lymphoid tissues, the immune response against tumor cells is weakened; subsequently, tumor cells spread throughout the body. In this review, we will discuss the association between EVs and tumor progression via the immune system as well as the clinical application of EVs as biomarkers and therapeutic agents.
Collapse
|
7
|
Curry J, Alnemri A, Philips R, Fiorella M, Sussman S, Stapp R, Solomides C, Harshyne L, South A, Luginbuhl A, Tuluc M, Martinez-Outschoorn U, Argiris A, Linnenbach A, Johnson J. CD8+ and FoxP3+ T-Cell Cellular Density and Spatial Distribution After Programmed Death-Ligand 1 Check Point Inhibition. Laryngoscope 2022. [PMID: 36125263 DOI: 10.1002/lary.30389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To analyze CD8+ and FoxP3+ T-cell cellular density (CD) and intercellular distances (ID) in head and neck squamous cell carcinoma (HNSCC) samples from a neoadjuvant trial of durvalumab +/- metformin. METHODS Paired pre- and post-treatment primary HNSCC tumor samples were stained for CD8+ and FoxP3+. Digital image analysis was used to determine estimated mean CD8+ and FoxP3+ CDs and CD8+-FoxP3+ IDs in the leading tumor edge (LTE) and tumor adjacent stroma (TAS) stratified by treatment arm, human papillomavirus (HPV) status, and pathologic treatment response. A subset of samples was characterized for T-cell related signatures using digital spatial genomic profiling. RESULTS Post-treatment analysis revealed a significant decrease in FoxP3+ CD and an increase in CD8+ CDs in the TAS between patients receiving durvalumab and metformin versus durvlaumab alone. Both treatment arms demonstrated significant post-treatment increases in ID. Although HPV+ and HPV- had similar immune cell CDs in the tumor microenvironment, HPV+ pre-treatment samples had 1.60 times greater ID compared with HPV- samples, trending toward significance (p = 0.05). At baseline, pathologic responders demonstrated a 1.16-fold greater CD8+ CDs in the LTE (p = 0.045) and 2.28-fold greater ID (p = 0.001) than non-responders. Digital spatial profiling revealed upregulation of FoxP3+ and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) in the TAS (p = 0.006, p = 0.026) in samples from pathologic responders. CONCLUSIONS Analysis of CD8+ and FoxP3+ detected population differences according to HPV status, pathologic response, and treatment. Greater CD8+-FoxP3+ ID was associated with pathologic response. CD8+ and FoxP3+ T-cell distributions may be predictive of response to immune checkpoint inhibition. CLINICALTRIALS gov (Identifier NCT03618654). LEVEL OF EVIDENCE Level 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Angela Alnemri
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Ramez Philips
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Michele Fiorella
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Sarah Sussman
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Robert Stapp
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Charalambos Solomides
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Larry Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Andrew South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Madalina Tuluc
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | | | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Alban Linnenbach
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
8
|
Zhang J, Tang Z, Guo X, Wang Y, Zhou Y, Cai W. Synergistic effects of nab-PTX and anti-PD-1 antibody combination against lung cancer by regulating the Pi3K/AKT pathway through the Serpinc1 gene. Front Oncol 2022; 12:933646. [PMID: 35992834 PMCID: PMC9381811 DOI: 10.3389/fonc.2022.933646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a type of cancer with higher morbidity and mortality. In spite of the impressive response rates of nab-paclitaxel (nab-PTX) or programmed cell death-1 (PD-1) and its ligand inhibitors, the effective treatment remains limited. Currently, alternative strategies aim at drug combination of nab-PTX and PD-1/PD-L1 inhibitors. Even as the clinical impact of the combined agents continues to increase, basic research studies are still limited and the mechanisms underlying this synergy are not well studied. In this study, we evaluated the antitumor efficacy and the molecular mechanisms of action of nab-PTX in combination with anti-PD-1 antibody, using Lewis lung carcinoma (LLC) cell and subcutaneously transplanted tumor models. The combination of nab-PTX and anti-PD-1 antibody displayed stronger antitumor effects, manifested at tumor volume, proliferation and apoptosis through Ki67 and TUNEL staining. In-vivo experiments showed significant increases in CD4+ T cells, CD8+ T cells, IFN-γ, TNF-α, IL-2, PF, and Gzms-B, exerting antitumor effects with reductions in MDSCs and IL-10 after the treatments. Furthermore, transcriptomic analysis indicated 20 overlapped differentially expressed genes, and Serpin peptidase inhibitor clade C Member 1 (Serpinc1) was downregulated during treatment in vivo, whose expression level was markedly related to metastasis and overall survival of lung cancer patients. Functional enrichment analysis of the target gene revealed primary GO terms related to tumor, which warrants further investigation. We also found that Serpinc1 overexpression promoted cell proliferation, migration, and invasion and inhibited cell apoptosis of LLC cells in vitro, possibly regulating the associated factors via the Pi3K/AKT pathway. In summary, our results reveal the synergistic antitumor responses of nab-PTX combined with anti-PD-1 antibody, in which Serpinc1 may play an important role, providing a target gene for combination treatment strategy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijia Tang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunxia Wang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jeon MJ, Lee H, Lee J, Baek SY, Lee D, Jo S, Lee JY, Kang M, Jung HR, Han SB, Kim NJ, Lee S, Kim H. Development of Potent Immune Modulators Targeting Stimulator of Interferon Genes Receptor. J Med Chem 2022; 65:5407-5432. [PMID: 35315650 DOI: 10.1021/acs.jmedchem.1c01795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum-membrane protein that plays important roles in cancer immunotherapy by activating innate immune responses. We designed and synthesized STING modulators and characterized compounds 4a and 4c that share a crucial amidobenzimidazole moiety. In vitro STING binding and cell-based activity assays demonstrated the potency and efficacy of the compounds that function as direct STING agonists by stimulating STING downstream signaling and promoting type I interferon immune responses. In vitro metabolic studies and the pharmacokinetic properties of the compounds led us to investigate their anticancer activity in an in vivo syngeneic model. Intravenous injection of compounds 4a and 4c significantly decreased tumor volume in a CT26 murine colorectal carcinoma model, and the immunological memory-derived cancer inhibition was observed in 4c-treated mouse models. The present results suggest the therapeutic potential of the compounds for cancer immunotherapy via STING-mediated immune activation.
Collapse
Affiliation(s)
- Min Jae Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyelim Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeehee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Soo Yeon Baek
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Donghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seongman Jo
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joo-Youn Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Miso Kang
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Ra Jung
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Bong Han
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Nam-Jung Kim
- Department of Basic Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sanghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
10
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
11
|
Chen Y, Chen Z, Chen R, Fang C, Zhang C, Ji M, Yang X. Immunotherapy-based combination strategies for treatment of EGFR-TKI-resistant NSCLC. Future Oncol 2022; 18:1757-1775. [PMID: 35232247 DOI: 10.2217/fon-2021-0862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rapid development of molecular targeted therapy brings hope to patients with advanced non-small-cell lung cancer (NSCLC). However, drug resistance inevitably occurs during treatment with EGFR-tyrosine kinase inhibitors (TKIs). Osimertinib, a third-generation EGFR-TKI, shows a favorable prognosis in T790M-positive NSCLC. Unfortunately, acquired resistance is still a challenge for both patients and clinicians. There is still no consensus on the optimal treatment. PD-1 and its ligand receptor 1 (PD-L1) inhibitors have yielded great progress, especially in patients with no actionable mutations. In this review, the authors take stock of the relationship between EGFR mutations and PD-L1 expression and summarize the important clinical studies on immunotherapy-inhibitor-based treatment in patients with EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| | - Rui Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| | - Chu Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| | - Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, no 185 Juqian Road, Tianning District, Changzhou, 213003, China
| |
Collapse
|
12
|
Hong Y, Duan P, He L, Li Q, Chen Y, Wang P, Fu Y, Liu T, Ding Z. Systematic Immunological Level Determined the Prognosis of Leptomeningeal Metastasis in Lung Cancer. Cancer Manag Res 2022; 14:1153-1164. [PMID: 35321403 PMCID: PMC8934871 DOI: 10.2147/cmar.s347323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ye Hong
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Ping Duan
- Department of Oncology, Cheng Du First People’s Hospital, Chengdu, People’s Republic of China
| | - Lang He
- Department of Oncology, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qing Li
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Yang Fu
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Zhenyu Ding, Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People’s Republic of China, Tel +86 28 8542 2562, Fax +86 28 8516 4059, Email
| |
Collapse
|
13
|
Liu Y, Wang B, Shi S, Li Z, Wang Y, Yang J. Construction of methylation-associated nomogram for predicting the recurrence-free survival risk of stage I-III lung adenocarcinoma. Future Oncol 2021. [PMID: 34476982 DOI: 10.2217/fon-2020-1270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: The aim of our study was to investigate a methylation-associated predictor for prognosis in patients with stage I-III lung adenocarcinoma (LUAD). Methods: A DNA methylation-based signature was developed via univariate, least absolute shrinkage and selection operator and multivariate Cox regression models. Results: We identified a 14-site methylation signature that was correlated with recurrence-free survival of stage I-III lung adenocarcinoma patients. By receiver operating characteristic analysis, we showed the high ability of the 14-site methylation signature for predicting recurrence-free survival. In addition, the nomogram result showed a satisfactory predictive value. Conclusion: We successfully identified a DNA methylation-associated nomogram which can predict recurrence-free survival in patients with stage I-III lung adenocarcinoma.
Collapse
Affiliation(s)
- Youcai Liu
- Sanquan College of Xinxiang Medical University/Experimental Teaching Center of Biology & Basic Medicine, Xinxiang 453514, China
| | - Bin Wang
- Sanquan College of Xinxiang Medical University/College of Basic Medical Science, Xinxiang 453514, China
| | - Shiqiang Shi
- Sanquan College of Xinxiang Medical University/Experimental Teaching Center of Biology & Basic Medicine, Xinxiang 453514, China
| | - Zhaoxi Li
- Sanquan College of Xinxiang Medical University/College of Basic Medical Science, Xinxiang 453514, China
| | - Yajuan Wang
- Sanquan College of Xinxiang Medical University/College of Basic Medical Science, Xinxiang 453514, China
| | - Jie Yang
- Sanquan College of Xinxiang Medical University/Experimental Teaching Center of Biology & Basic Medicine, Xinxiang 453514, China
| |
Collapse
|
14
|
Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, Kojima T, Metges JP, Li Z, Kim SB, Cho BC, Mansoor W, Li SH, Sunpaweravong P, Maqueda MA, Goekkurt E, Hara H, Antunes L, Fountzilas C, Tsuji A, Oliden VC, Liu Q, Shah S, Bhagia P, Kato K. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet 2021; 398:759-771. [PMID: 34454674 DOI: 10.1016/s0140-6736(21)01234-4] [Citation(s) in RCA: 699] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND First-line therapy for advanced oesophageal cancer is currently limited to fluoropyrimidine plus platinum-based chemotherapy. We aimed to evaluate the antitumour activity of pembrolizumab plus chemotherapy versus chemotherapy alone as first-line treatment in advanced oesophageal cancer and Siewert type 1 gastro-oesophageal junction cancer. METHODS We did a randomised, placebo-controlled, double-blind, phase 3 study across 168 medical centres in 26 countries. Patients aged 18 years or older with previously untreated, histologically or cytologically confirmed, locally advanced, unresectable or metastatic oesophageal cancer or Siewert type 1 gastro-oesophageal junction cancer (regardless of PD-L1 status), measurable disease per Response Evaluation Criteria in Solid Tumors version 1.1, and Eastern Cooperative Oncology Group performance status of 0-1, were randomly assigned (1:1) to intravenous pembrolizumab 200 mg or placebo, plus 5-fluorouracil and cisplatin (chemotherapy), once every 3 weeks for up to 35 cycles. Randomisation was stratified by geographical region, histology, and performance status. Patients, investigators, and site staff were masked to group assignment and PD-L1 biomarker status. Primary endpoints were overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients. This trial is registered with ClinicalTrials.gov, NCT03189719, and is closed to recruitment. FINDINGS Between July 25, 2017, and June 3, 2019, 1020 patients were screened and 749 were enrolled and randomly assigned to pembrolizumab plus chemotherapy (n=373 [50%]) or placebo plus chemotherapy (n=376 [50%]). At the first interim analysis (median follow-up of 22·6 months), pembrolizumab plus chemotherapy was superior to placebo plus chemotherapy for overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 CPS of 10 or more (median 13·9 months vs 8·8 months; hazard ratio 0·57 [95% CI 0·43-0·75]; p<0·0001), oesophageal squamous cell carcinoma (12·6 months vs 9·8 months; 0·72 [0·60-0·88]; p=0·0006), PD-L1 CPS of 10 or more (13·5 months vs 9·4 months; 0·62 [0·49-0·78]; p<0·0001), and in all randomised patients (12·4 months vs 9·8 months; 0·73 [0·62-0·86]; p<0·0001). Pembrolizumab plus chemotherapy was superior to placebo plus chemotherapy for progression-free survival in patients with oesophageal squamous cell carcinoma (6·3 months vs 5·8 months; 0·65 [0·54-0·78]; p<0·0001), PD-L1 CPS of 10 or more (7·5 months vs 5·5 months; 0·51 [0·41-0·65]; p<0·0001), and in all randomised patients (6·3 months vs 5·8 months; 0·65 [0·55-0·76]; p<0·0001). Treatment-related adverse events of grade 3 or higher occurred in 266 (72%) patients in the pembrolizumab plus chemotherapy group versus 250 (68%) in the placebo plus chemotherapy group. INTERPRETATION Compared with placebo plus chemotherapy, pembrolizumab plus chemotherapy improved overall survival in patients with previously untreated, advanced oesophageal squamous cell carcinoma and PD-L1 CPS of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients regardless of histology, and had a manageable safety profile in the total as-treated population. FUNDING Merck Sharp & Dohme.
Collapse
Affiliation(s)
- Jong-Mu Sun
- Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea.
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Manish A Shah
- Weill Cornell Medical College, New York City, NY, USA
| | | | - Antoine Adenis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Université Montpellier, ICM, Montpellier, France
| | - Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Jean-Philippe Metges
- CHU Brest-Institut de Cancerologie et d'Hematologie ARPEGO Network, Brest, France
| | - Zhigang Li
- Section of Oesophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sung-Bae Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Shau-Hsuan Li
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | - Eray Goekkurt
- Hematology Oncology Practice Eppendorf and University Cancer Center Hamburg, Hamburg, Germany
| | | | - Luis Antunes
- University Hospital of Santa Maria, Federal University of Santa Maria, and Viver Research Center, Santa Maria, Brazil
| | | | | | | | - Qi Liu
- Merck, Kenilworth, NJ, USA
| | | | | | - Ken Kato
- National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Hinz TK, Kalkur R, Rabinovitch J, Hinkle W, Heasley LE. TP53 Null Mutations Identify Lung Cancer Cell Lines with Highest Sensitivity to the Nontaxane Microtubule Inhibitor Eribulin. Mol Pharmacol 2021; 100:144-154. [PMID: 34031188 PMCID: PMC11037449 DOI: 10.1124/molpharm.121.000254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
The nontaxane microtubule inhibitor eribulin is an approved therapeutic for metastatic breast cancer and liposarcoma. Eribulin was previously tested in unselected patients with lung cancer and yielded a modest objective response rate of ∼5%-12%. Because lung cancers represent diverse histologies and driving oncogenic mutations, we postulated that eribulin may exhibit properties of a precision oncology agent with a previously undefined specificity for a molecularly distinct subset of lung cancers. Herein, we screened a panel of 44 non-small cell and small-cell lung cancer cell lines for in vitro growth sensitivity to eribulin. The results revealed a greater than 15,000-fold range in eribulin sensitivity (IC50 = 0.005-89 nM) among the cell lines that was not correlated with their sensitivity to the taxane-based inhibitor paclitaxel. The quartile of cell lines exhibiting the lowest eribulin IC50 values was not enriched for specific histologies, epithelial-mesenchymal differentiation, or specific oncogene drivers but was significantly enriched for nonsense/frameshift TP53 mutations and low-TP53 mRNA but not missense TP53 mutations. By comparison, the mutation status of cyclin-dependent kinase inhibitor 2A, STK11, and KEAP1 was not associated with eribulin sensitivity. Finally, the highest eribulin IC50 quartile (>1 nM) exhibited significantly elevated mRNA expression of the drug pump, ATP binding cassette B1, defined resistance mechanism to eribulin, and paclitaxel. The findings support further investigations into basic mechanisms by which complete lack of TP53 function regulates anticancer activity of eribulin and the potential utility of TP53 null phenotypes distinct from TP53 missense mutations as a biomarker of response in patients with lung cancer. SIGNIFICANCE STATEMENT: Distinct from precision oncology agents that are matched to cancers bearing oncogenically activated versions of their targets, microtubule inhibitors, such as eribulin, are deployed in an unselected manner. The results in this study demonstrate that lung cancer cell lines exhibiting the highest sensitivity to eribulin bear TP53 null phenotypes, supporting a rationale to consider the status of this tumor suppressor in the clinical setting.
Collapse
Affiliation(s)
- Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado (T.K.H., R.K., J.R., W.H., L.E.H.) and Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado (L.E.H.)
| | - Roshni Kalkur
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado (T.K.H., R.K., J.R., W.H., L.E.H.) and Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado (L.E.H.)
| | - Jonathan Rabinovitch
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado (T.K.H., R.K., J.R., W.H., L.E.H.) and Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado (L.E.H.)
| | - Wyatt Hinkle
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado (T.K.H., R.K., J.R., W.H., L.E.H.) and Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado (L.E.H.)
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado (T.K.H., R.K., J.R., W.H., L.E.H.) and Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado (L.E.H.)
| |
Collapse
|
16
|
Cervera-Carrascon V, Quixabeira DCA, Santos JM, Havunen R, Milenova I, Verhoeff J, Heiniö C, Zafar S, Garcia-Vallejo JJ, van Beusechem VW, de Gruijl TD, Kalervo A, Sorsa S, Kanerva A, Hemminki A. Adenovirus Armed With TNFa and IL2 Added to aPD-1 Regimen Mediates Antitumor Efficacy in Tumors Refractory to aPD-1. Front Immunol 2021; 12:706517. [PMID: 34367166 PMCID: PMC8343222 DOI: 10.3389/fimmu.2021.706517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Ioanna Milenova
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands.,Orca Therapeutics, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | | | - Suvi Sorsa
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
17
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
18
|
Zhang D, Tailor T, Kim C, Atkins M, Braithwaite D, Akinyemiju T. Immunotherapy Utilization Among Patients With Metastatic NSCLC: Impact of Comorbidities. J Immunother 2021; 44:198-203. [PMID: 33758148 PMCID: PMC10294120 DOI: 10.1097/cji.0000000000000366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
In patients with metastatic non-small cell lung cancer (mNSCLC), the extent to which immunotherapy utilization rate varies by comorbidities is unclear. Using the National Cancer Database from 2015 to 2016, we assessed the association between levels of comorbidity and immunotherapy utilization among mNSCLC patients. Burden of comorbidities was ascertained based on the modified Charlson-Deyo score and categorized as an ordinal variable (0, 1, and ≥2). Immunotherapy utilization was determined based on registry data. Multivariable logistic regressions were used to estimate adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the comorbidity score while adjusting for sociodemographic factors, histopathologic subtype, surgery, chemotherapy, radiotherapy, insurance, facility type, and other cancer history. Subgroup analyses were conducted by age and race/ethnicity. Overall, of the 89,030 patients with mNSCLC, 38.6% (N=34,382) had the comorbidity score of ≥1. Most patients were non-Hispanic white (82.3%, N=73,309) and aged 65 years and above (63.2%, N=56,300), with the mean age of 68.4 years (SD=10.6). Only 7.0% (N=6220) of patients received immunotherapy during 2015-2106. Patients with a comorbidity score of ≥2 had a significantly lower rate of immunotherapy utilization versus those without comorbidities (aOR=0.85; 95% CI, 0.78-0.93; P-trend<0.01). In subgroup analysis by age, association patterns were similar among patients younger than 65 and those aged 65-74 years. There were no significant differences in subgroup analysis by race/ethnicity, although statistical significance was only observed for white patients (comorbidity score ≥2 vs. 0: aOR=0.85; 95% CI, 0.77-0.93; P-trend<0.01). In conclusion, mNSCLC patients with a high burden of comorbidities are less likely to receive immunotherapy.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Epidemiology, University of Florida College of Public Health and Health Professions, Gainesville, FL
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC
- University of Florida Health Cancer Center, Gainesville, FL
| | - Tina Tailor
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - Chul Kim
- Department of Oncology, Georgetown University School of Medicine, Washington, DC
| | - Michael Atkins
- Department of Oncology, Georgetown University School of Medicine, Washington, DC
| | - Dejana Braithwaite
- Department of Epidemiology, University of Florida College of Public Health and Health Professions, Gainesville, FL
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Tomi Akinyemiju
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC
| |
Collapse
|
19
|
Galvano A, Gristina V, Malapelle U, Pisapia P, Pepe F, Barraco N, Castiglia M, Perez A, Rolfo C, Troncone G, Russo A, Bazan V. The prognostic impact of tumor mutational burden (TMB) in the first-line management of advanced non-oncogene addicted non-small-cell lung cancer (NSCLC): a systematic review and meta-analysis of randomized controlled trials. ESMO Open 2021; 6:100124. [PMID: 33940346 PMCID: PMC8111593 DOI: 10.1016/j.esmoop.2021.100124] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of tumor mutational burden (TMB) is still debated for selecting advanced non-oncogene addicted non-small-cell lung cancer (NSCLC) patients who might benefit from immune checkpoint inhibitors (ICIs). Of note, TMB failed to predict a benefit in overall survival (OS) among such patients. MATERIALS AND METHODS The purpose of this meta-analysis was to compare efficacy outcomes among first-line immune-oncology (IO) agents versus standard platinum-based chemotherapy (CT) within two subgroups (TMB-low and TMB-high on either tissue or blood). We collected hazard ratios (HRs) to evaluate the association for progression-free survival (PFS) and OS, with the relative 95% confidence intervals (CIs). Risk ratios (RRs) were used as an association measure for objective response rate (ORR). RESULTS Eight different cohorts of five randomized controlled phase III studies (3848 patients) were analyzed. In TMB-high patients, IO agents were associated with improved ORR (RRs 1.37, 95% CI 1.13-1.66), PFS (HR 0.69, 95% CI 0.61-0.79) and OS (HR 0.67, 95% CI 0.59-0.77) when compared with CT, thus suggesting a possible predictive role of high TMB for IO regimens. In TMB-low patients, the IO strategy did not lead to any significant benefit in survival and activity, whereas the pooled results of both ORR and PFS were intriguingly associated with a statistical significance in favor of CT. CONCLUSIONS This meta-analysis resulted in a proven benefit in OS in favor of IO agents in the TMB-high population. Although more prospective data are warranted, we postulated the hypothesis that monitoring TMB, in addition to the existing programmed death-ligand 1 (PD-L1) expression level, could represent the preferable option for future clinical research in the first-line management of advanced non-oncogene addicted NSCLC patients.
Collapse
Affiliation(s)
- A Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - V Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - U Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - P Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - F Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - N Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - M Castiglia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - A Perez
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - C Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - G Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy.
| | - V Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Gkountakos A, Delfino P, Lawlor RT, Scarpa A, Corbo V, Bria E. Harnessing the epigenome to boost immunotherapy response in non-small cell lung cancer patients. Ther Adv Med Oncol 2021; 13:17588359211006947. [PMID: 34104224 PMCID: PMC8161860 DOI: 10.1177/17588359211006947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The introduction of immune checkpoint inhibitor (ICI)-based therapy for non-oncogene addicted non-small cell lung cancer (NSCLC) has significantly transformed the treatment landscape of the disease. Inhibitors of the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint axis, which were initially considered as a late-line treatment option, gradually became the standard of care as first-line treatment for subgroups of NSCLC patients. However, a significant fraction of patients either fails to respond or progresses after a partial response to ICI treatment. Thus, the identification of mechanisms responsible for innate and acquired resistance to immunotherapy within a rapidly evolving tumor microenvironment (TME) is urgently required, as is the identification of reliable predictive biomarkers beyond PD-L1 expression. The deregulation of the epigenome is a key driver of cancer initiation and progression, and it has also been shown to drive therapeutic resistance. Tumor education of infiltrating myeloid cells towards an immuno-suppressive phenotype as well as induction of T-cell dysfunction in the TME is also driven by epigenome reprogramming. As it stands and, given their dynamic nature, epigenetic changes in cancer and non-cancer cells represent an attractive target to increase immunotherapy activity in NSCLC. Accordingly, clinical trials of combinatorial immuno-epigenetic drug regimens have been associated with tumor response in previously immunotherapy-resistant NSCLC patients irrespective of their PD-L1 status. Moreover, epigenetic signatures might represent valuable theragnostic biomarkers as they can be assayed easily in liquid biopsy and provide multiple layers of information. In this review, we discuss the current knowledge regarding the dysregulated epigenetic mechanisms contributing to immunotherapy resistance in NSCLC. Although the clinical data are still maturing, we highlight the attractive perspective that the synergistic model of immuno-epigenetic strategies might overcome the current limitations of immunotherapy alone and will be translated into durable clinical benefit for a broader NSCLC population.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, P.le L.A. Scuro 10, Verona, 37134, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical Oncology, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
21
|
Liu J, Zhao Z, Qiu N, Zhou Q, Wang G, Jiang H, Piao Y, Zhou Z, Tang J, Shen Y. Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat Commun 2021; 12:2425. [PMID: 33893275 PMCID: PMC8065121 DOI: 10.1038/s41467-021-22407-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) antibodies are currently used in the clinic to interupt the PD-1/PD-L1 immune checkpoint, which reverses T cell dysfunction/exhaustion and shows success in treating cancer. Here, we report a histone demethylase inhibitor, 5-carboxy-8-hydroxyquinoline (IOX1), which inhibits tumour histone demethylase Jumonji domain-containing 1A (JMJD1A) and thus downregulates its downstream β-catenin and subsequent PD-L1, providing an antibody-independent paradigm interrupting the PD-1/PD-L1 checkpoint. Synergistically, IOX1 inhibits cancer cells’ P-glycoproteins (P-gp) through the JMJD1A/β-catenin/P-gp pathway and greatly enhances doxorubicin (DOX)-induced immune-stimulatory immunogenic cell death. As a result, the IOX1 and DOX combination greatly promotes T cell infiltration and activity and significantly reduces tumour immunosuppressive factors. Their liposomal combination reduces the growth of various murine tumours, including subcutaneous, orthotopic, and lung metastasis tumours, and offers a long-term immunological memory function against tumour rechallenging. This work provides a small molecule-based potent cancer chemo-immunotherapy. Some chemotherapeutic drugs, such as doxorubicin, induce immunogenic cell death (ICD) and promote anti-tumor immune responses. Here the authors report that the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1) reduces the expression of PD-L1 in cancer cells and enhances doxorubicin-induced ICD, promoting T cell infiltration and reducing tumor growth in preclinical models.
Collapse
Affiliation(s)
- Jing Liu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhihao Zhao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Guowei Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| |
Collapse
|
22
|
Pi YN, Xia BR, Jin MZ, Jin WL, Lou G. Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochem Pharmacol 2021; 186:114487. [PMID: 33647264 DOI: 10.1016/j.bcp.2021.114487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Bai-Rong Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
23
|
Arrieta O, Barrón F, Ramírez-Tirado LA, Zatarain-Barrón ZL, Cardona AF, Díaz-García D, Yamamoto Ramos M, Mota-Vega B, Carmona A, Peralta Álvarez MP, Bautista Y, Aldaco F, Gerson R, Rolfo C, Rosell R. Efficacy and Safety of Pembrolizumab Plus Docetaxel vs Docetaxel Alone in Patients With Previously Treated Advanced Non-Small Cell Lung Cancer: The PROLUNG Phase 2 Randomized Clinical Trial. JAMA Oncol 2021; 6:856-864. [PMID: 32271354 DOI: 10.1001/jamaoncol.2020.0409] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance Because of socioeconomic factors, many patients with advanced non-small cell lung cancer (NSCLC) do not receive immunotherapy in the first-line setting. It is unknown if the combination of immunotherapy with chemotherapy can provide clinical benefits in immunotherapy-naive patients with disease progression after treatment with platinum-based chemotherapy. Objective To evaluate the safety and efficacy of the combination of pembrolizumab plus docetaxel in patients with previously treated advanced NSCLC following platinum-based chemotherapy regardless of EGFR variants or programmed cell death ligand 1 status. Design, Setting, and Participants The Pembrolizumab Plus Docetaxel for Advanced Non-Small Cell Lung Cancer (PROLUNG) trial randomized 78 patients with histologically confirmed advanced NSCLC in a 1:1 ratio to receive either pembrolizumab plus docetaxel or docetaxel alone from December 2016 through May 2019. Interventions The experimental arm received docetaxel on day 1 (75 mg/m2) plus pembrolizumab on day 8 (200 mg) every 3 weeks for up to 6 cycles followed by pembrolizumab maintenance until progression or unacceptable toxic effects. The control arm received docetaxel monotherapy. Main Outcomes and Measures The primary end point was overall response rate (ORR). Secondary end points included progression-free survival (PFS), overall survival, and safety. Results Among 78 recruited patients, 32 (41%) were men, 34 (44%) were never smokers, and 25 (32%) had an EGFR/ALK alteration. Forty patients were allocated to receive pembrolizumab plus docetaxel, and 38 were allocated to receive docetaxel. A statistically significant difference in ORR, assessed by an independent reviewer, was found in patients receiving pembrolizumab plus docetaxel vs patients receiving docetaxel (42.5% vs 15.8%; odds ratio, 3.94; 95% CI, 1.34-11.54; P = .01). Patients without EGFR variations had a considerable difference in ORR of 35.7% vs 12.0% (P = .06), whereas patients with EGFR variations had an ORR of 58.3% vs 23.1% (P = .14). Overall, PFS was longer in patients who received pembrolizumab plus docetaxel (9.5 months; 95% CI, 4.2-not reached) than in patients who received docetaxel (3.9 months; 95% CI, 3.2-5.7) (hazard ratio, 0.24; 95% CI, 0.13-0.46; P < .001). For patients without variations, PFS was 9.5 months (95% CI, 3.9-not reached) vs 4.1 months (95% CI, 3.5-5.3) (P < .001), whereas in patients with EGFR variations, PFS was 6.8 months (95% CI, 6.2-not reached) vs 3.5 months (95% CI, 2.3-6.2) (P = .04). In terms of safety, 23% (9 of 40) vs 5% (2 of 38) of patients experienced grade 1 to 2 pneumonitis in the pembrolizumab plus docetaxel and docetaxel arms, respectively (P = .03), while 28% (11 of 40) vs 3% (1 of 38) experienced any-grade hypothyroidism (P = .002). No new safety signals were identified. Conclusions and Relevance In this phase 2 study, the combination of pembrolizumab plus docetaxel was well tolerated and substantially improved ORR and PFS in patients with advanced NSCLC who had previous progression after platinum-based chemotherapy, including NSCLC with EGFR variations. Trial Registration ClinicalTrials.gov Identifier: NCT02574598.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Feliciano Barrón
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | | | - Zyanya Lucia Zatarain-Barrón
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (G-FOX), Universidad el Bosque, Bogotá, Colombia
| | - Diego Díaz-García
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Masao Yamamoto Ramos
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Beatriz Mota-Vega
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Amir Carmona
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Marco Polo Peralta Álvarez
- Thoracic Oncology Unit, Laboratory of Experimental Oncology, National Cancer Institute (INCan), Mexico City, Mexico
| | - Yolanda Bautista
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fernando Aldaco
- Servicio de Oncología Médica, Centro Médico Nacional 20 de Noviembre, Mexico City, Mexico
| | - Raquel Gerson
- Departamento de Oncología, Centro Médico ABC, Mexico City, Mexico
| | - Christian Rolfo
- Thoracic Medical Oncology and Early Clinical Trials, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore
| | - Rafael Rosell
- Molecular and Cellular Oncology Laboratory, Germans Trias i Pujol Research Institute and Hospital (IGTP), Barcelona, Spain
| |
Collapse
|
24
|
Martinez M, Kim S, St Jean N, O'Brien S, Lian L, Sun J, Verona RI, Moon E. Addition of anti-TIM3 or anti-TIGIT Antibodies to anti-PD1 Blockade Augments Human T cell Adoptive Cell Transfer. Oncoimmunology 2021; 10:1873607. [PMID: 33537176 PMCID: PMC7833767 DOI: 10.1080/2162402x.2021.1873607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PD1 blockade to reinvigorate T cells has become part of standard of care for patients with NSCLC across disease stages. However, the majority of patients still do not respond. One potential mechanism of resistance is increased expression of other checkpoint inhibitory molecules on T cells leading to their suppression; however, this phenomenon has not been well studied in tumor-reactive, human T cells. The purpose of this study was to evaluate this compensatory mechanism in a novel model using human effector T cells infiltrating and reactive against human lung cancer. Immunodeficient mice with flank tumors established from a human lung cancer cell line expressing the NYESO1 antigen were treated with activated human T cells expressing a TCR reactive to NYESO1 (Ly95) with or without anti-PD1 alone and with combinations of anti-PD1 plus anti-TIM3 or anti-TIGIT. A month later, the effect on tumor growth and the phenotype and ex vivo function of the TILs were analyzed. Anti-PD1 and Ly95 T cells led to greater tumor control than Ly95 T cells alone; however, tumors continued to grow. The ex-vivo function of PD1-blocked Ly95 TILs was suppressed and was associated with increased T cell expression of TIM3/TIGIT. Administering combinatorial blockade of PD1+ TIM3 or PD1+ TIGIT with Ly95 T cells led to greater tumor control than blocking PD1 alone. In our model, PD1 blockade was suboptimally therapeutic alone. The effect of TIM3 and TIGIT was upregulated on T cells in response to PD1 blockade and anti-tumor activity could be enhanced when these inhibitory receptors were also blocked with antibodies in combination with anti-PD1 therapy.
Collapse
Affiliation(s)
- Marina Martinez
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Soyeon Kim
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Naomi St Jean
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Shaun O'Brien
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Lurong Lian
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| | | | - Edmund Moon
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
25
|
Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol 2020; 157:103194. [PMID: 33316418 DOI: 10.1016/j.critrevonc.2020.103194] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular testing has become a mandatory component of the non-small cell lung cancer (NSCLC) management. The detection of EGFR, BRAF and MET mutations as well as the analysis of ALK, ROS1, RET and NTRK translocations have already been incorporated in the NSCLC diagnostic standards, and the inhibitors of these kinases are in routine clinical use. There are emerging biomarkers, e.g., KRAS G12C substitutions and HER2 activating alterations, which are likely to enter NSCLC guidelines upon the approval of the corresponding drugs. In addition to genetic examination, NSCLCs are usually subjected to the analysis of PD-L1 protein expression in order to direct the use of immune checkpoint inhibitors. Comprehensive NSCLC testing for multiple predictive markers requires the analysis of distinct biological molecules (DNA, RNA, proteins) and, therefore, the involvement of different analytical platforms (PCR, DNA sequencing, immunohistochemistry, FISH). There are ongoing efforts aimed at the integration of multiple NSCLC molecular assays into a single diagnostic pipeline.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| | - Evgeny V Levchenko
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia; Department of Thoracic Oncology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| |
Collapse
|
26
|
Bulat V, Likic R, Bradic L, Speeckaert R, Azdajic MD. Pembrolizumab-induced vitiligo in a patient with lung adenocarcinoma: A case report. Br J Clin Pharmacol 2020; 87:2614-2618. [PMID: 33217043 DOI: 10.1111/bcp.14663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Pembrolizumab is an immune checkpoint inhibitor designed to block the interaction between programmed cell death-1 and programmed cell death-ligands 1 and 2. It shows efficacy in the treatment of patients with advanced nonsmall-cell lung cancer, among others. Side effects may involve immune-related adverse events, including vitiligo. We hereby present a 63-year-old Caucasian female with metastatic nonsmall-cell lung cancer. Immunohistochemical analysis showed programmed death-ligand 1 expression on 100% of tumour cells. The patient was eligible for immunotherapy and received pembrolizumab every 3 weeks as the first-line treatment. Three months after initiation of immunotherapy with pembrolizumab, depigmentation appeared on her upper right thoracic area of the skin overlying the affected lung lobe. Immunotherapy was generally well tolerated. Excellent response in our subject with complete remission during 16 months of follow-up potentially indicates that cutaneous immune-related adverse events, such as vitiligo, might be associated with increased efficacy of pembrolizumab in metastatic lung adenocarcinoma.
Collapse
Affiliation(s)
- Vedrana Bulat
- Department of Dermatology and Venereology, University Hospital Centre Sestre Milosrdnice, Vinogradska cesta, Zagreb, 29, Croatia
| | - Robert Likic
- University of Zagreb School of Medicine, Zagreb, Croatia.,Associate Professor, Division for Clinical Pharmacology and Therapeutics, Department of Internal Medicine University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Lada Bradic
- Department of Cardiology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital; De Pintelaan 185, Ghent, Belgium
| | - Marija Delas Azdajic
- Department of Dermatology and Venereology, University Hospital Centre Sestre Milosrdnice, Vinogradska cesta, Zagreb, 29, Croatia
| |
Collapse
|
27
|
Hudson K, Cross N, Jordan-Mahy N, Leyland R. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front Immunol 2020; 11:568931. [PMID: 33193345 PMCID: PMC7609400 DOI: 10.3389/fimmu.2020.568931] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint inhibitor that binds to its receptor PD-1 expressed by T cells and other immune cells to regulate immune responses; ultimately preventing exacerbated activation and autoimmunity. Many tumors exploit this mechanism by overexpressing PD-L1 which often correlates with poor prognosis. Some tumors have also recently been shown to express PD-1. On tumors, PD-L1 binding to PD-1 on immune cells promotes immune evasion and tumor progression, primarily by inhibition of cytotoxic T lymphocyte effector function. PD-1/PD-L1-targeted therapy has revolutionized the cancer therapy landscape and has become the first-line treatment for some cancers, due to their ability to promote durable anti-tumor immune responses in select patients with advanced cancers. Despite this clinical success, some patients have shown to be unresponsive, hyperprogressive or develop resistance to PD-1/PD-L1-targeted therapy. The exact mechanisms for this are still unclear. This review will discuss the current status of PD-1/PD-L1-targeted therapy, oncogenic expression of PD-L1, the new and emerging tumor-intrinisic roles of PD-L1 and its receptor PD-1 and how they may contribute to tumor progression and immunotherapy responses as shown in different oncology models.
Collapse
Affiliation(s)
| | | | | | - Rebecca Leyland
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
28
|
Williams SG, Mollaeian A, Katz JD, Gupta S. Immune checkpoint inhibitor-induced inflammatory arthritis: identification and management. Expert Rev Clin Immunol 2020; 16:771-785. [PMID: 32772596 DOI: 10.1080/1744666x.2020.1804362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have proved to be groundbreaking in the field of oncology. However, immune system overactivation from ICIs has introduced a novel medical entity known as immune-related adverse events (irAEs), that can affect any organ or tissue. ICI-induced inflammatory arthritis (ICI-IIA) is the most common musculoskeletal irAE and can lead to significant morbidity and limitation in anti-cancer therapy. AREAS COVERED In this review, the authors focus on ICI-IIA. Relevant articles were identified through PubMed searches, spanning 2010 to the present. The authors detail the current understanding of its pathogenesis, diagnostic evaluation, and management strategies. EXPERT OPINION ICI-IIA is a complex irAE that we are just beginning to understand mechanistically and pathologically. It often presents later in the disease course than other irAEs and, due to various reasons, is under-recognized. In some patients, ICI-IIA may become a chronic disease, which distinguishes it from most irAEs that resolve after ICI discontinuation. Multiple important questions still demand further research including which patients may develop ICI-IIA? What are possible diagnostic and prognostic markers? Do anti-arthritis therapies interfere with the anti-tumor response? and when should steroid-sparing agents be initiated? Close collaboration and shared decision-making between oncologists, rheumatologists, and the patient are essential when managing this particular irAE.
Collapse
Affiliation(s)
- Sandra G Williams
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH) , Bethesda, MD, USA
| | - Arash Mollaeian
- Department of Medicine, MedStar Health Internal Medicine Residency Program , Baltimore, MD, USA
| | - James D Katz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH) , Bethesda, MD, USA
| | - Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH) , Bethesda, MD, USA
| |
Collapse
|
29
|
Yao L, Jia G, Lu L, Bao Y, Ma W. Factors affecting tumor responders and predictive biomarkers of toxicities in cancer patients treated with immune checkpoint inhibitors. Int Immunopharmacol 2020; 85:106628. [PMID: 32474388 DOI: 10.1016/j.intimp.2020.106628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
|
30
|
Mehra NS, Ho TP, Herrera Hernandez L, Quevedo JF, Costello BA, Pagliaro LC. Penile cancer with visceral metastasis and p16/human papillomavirus positivity: An unusual case of long-term survival. Urol Case Rep 2020; 33:101278. [PMID: 32489901 PMCID: PMC7260682 DOI: 10.1016/j.eucr.2020.101278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/26/2022] Open
Abstract
Squamous cell carcinoma (SCC) of the penis is a rare cancer in the industrialized countries, including the United States. Risk factors for these cancers include inflammatory conditions as well as infection with the human papilloma virus (HPV). Treatment modalities are based on TNM staging and may include surgical management or chemoradiation. Patients with local or some regional disease can have a favorable prognosis; however, with extranodal metastasis, survival decreases sharply. Here, we present a case of long-term disease-free survival in a patient with widely metastatic SCC of the penis. Penile cancer is a rare malignancy associated with high mortality when metastatic. HPV-related cancer accounts for nearly half of all cases and may respond differently to therapy. New evidence suggests that patients with HPV-related penile cancer have better survival outcomes. Aggressive and persistent treatment may be appropriate for carefully selected patients. We suggest that HPV could serve as a biomarker to help select patients for more aggressive treatment.
Collapse
Affiliation(s)
- Nandini S Mehra
- Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thanh P Ho
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - J Fernando Quevedo
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Brian A Costello
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lance C Pagliaro
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
31
|
Pisani P, Airoldi M, Allais A, Aluffi Valletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, Landolfo V, Lanza GV, Magnano M, Mancuso M, Maroldi R, Masini L, Merlano MC, Piemonte M, Pisani S, Prina-Mello A, Prioglio L, Rugiu MG, Scasso F, Serra A, Valente G, Zannetti M, Zigliani A. Metastatic disease in head & neck oncology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2020; 40:S1-S86. [PMID: 32469009 PMCID: PMC7263073 DOI: 10.14639/0392-100x-suppl.1-40-2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The head and neck district represents one of the most frequent sites of cancer, and the percentage of metastases is very high in both loco-regional and distant areas. Prognosis refers to several factors: a) stage of disease; b) loco-regional relapses; c) distant metastasis. At diagnosis, distant metastases of head and neck cancers are present in about 10% of cases with an additional 20-30% developing metastases during the course of their disease. Diagnosis of distant metastases is associated with unfavorable prognosis, with a median survival of about 10 months. The aim of the present review is to provide an update on distant metastasis in head and neck oncology. Recent achievements in molecular profiling, interaction between neoplastic tissue and the tumor microenvironment, oligometastatic disease concepts, and the role of immunotherapy have all deeply changed the therapeutic approach and disease control. Firstly, we approach topics such as natural history, epidemiology of distant metastases and relevant pathological and radiological aspects. Focus is then placed on the most relevant clinical aspects; particular attention is reserved to tumours with distant metastasis and positive for EBV and HPV, and the oligometastatic concept. A substantial part of the review is dedicated to different therapeutic approaches. We highlight the role of immunotherapy and the potential effects of innovative technologies. Lastly, we present ethical and clinical perspectives related to frailty in oncological patients and emerging difficulties in sustainable socio-economical governance.
Collapse
Affiliation(s)
- Paolo Pisani
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Mario Airoldi
- Medical Oncology, Città della Salute e della Scienza, Torino, Italy
| | | | - Paolo Aluffi Valletti
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | | | - Marco Benazzo
- SC Otorinolaringoiatria, Fondazione IRCCS Policlinico “S. Matteo”, Università di Pavia, Italy
| | | | | | - Salvatore Cocuzza
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Andrea Colombo
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Laura della Vecchia
- Unit of Otorhinolaryngology General Hospital “Macchi”, ASST dei Settelaghi, Varese, Italy
| | - Nerina Denaro
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
| | | | - Danilo Galizia
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Massimiliano Garzaro
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Marco Krengli
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | | | - Giovanni Vittorio Lanza
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | | | - Maurizio Mancuso
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| | - Laura Masini
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
| | - Marco Carlo Merlano
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Marco Piemonte
- ENT Unit, University Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Pisani
- Immunology and Transplantation Laboratory Fondazione IRCCS Policlinico “S. Matteo”, Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Luca Prioglio
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | | | - Felice Scasso
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | - Agostino Serra
- University of Catania, Italy
- G.B. Morgagni Foundation, Catania, Italy
| | - Guido Valente
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Micol Zannetti
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Angelo Zigliani
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| |
Collapse
|
32
|
Rkman D, Likić R, Bebek M, Gnjidić M, Gamulin M. Skin autoimmunity might be associated with increased efficacy of atezolizumab in metastatic urothelial carcinoma: a case report. Croat Med J 2020. [PMID: 31894921 PMCID: PMC6952903 DOI: 10.3325/cmj.2019.60.552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Atezolizumab is a monoclonal antibody immune checkpoint inhibitor that binds to programmed death ligand 1 to selectively prevent its interaction with programmed cell death-1 (PD-1) and B7.1 (CD80) receptors. We present a case of a 61-year-old man with metastatic urothelial carcinoma of the right ureter and urinary bladder. After gemcitabine/cisplatin as the first-line chemotherapy and surgery, the patient received atezolizumab 1200 mg i.v. q3w. Following the first atezolizumab administration, he noted vitiligo periorally, on his hands, legs, and the scalp. The patient’s overall survival (OS) of >26 months and continuing response to atezolizumab treatment is considerably better than median OS in the SAUL study of 8.7 months (IMvigor211-like patients’ OS 10.0 months). This case indicates that increased efficacy of atezolizumab can be associated with cutaneous immune related adverse events, reflecting the known Th17 polarization of these diseases and showing that individuals with cutaneous adverse events could benefit from PD-1 checkpoint blockade in the therapy of metastatic urothelial carcinoma.
Collapse
Affiliation(s)
| | - Robert Likić
- Robert Likić, University Hospital Centre Zagreb, Department of Internal Medicine, Unit of Clinical Pharmacology, Kispaticeva 12, 10000 Zagreb, Croatia,
| | | | | | | |
Collapse
|
33
|
Morrissey SM, Yan J. Exosomal PD-L1: Roles in Tumor Progression and Immunotherapy. Trends Cancer 2020; 6:550-558. [PMID: 32610067 DOI: 10.1016/j.trecan.2020.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022]
Abstract
The use of immune checkpoint therapies targeting programmed death-1 (PD-1) and its ligand (PD-L1) continue to show limited durable success in clinical cases despite widespread application. While some patients achieve complete responses and disease remission, others are completely resistant to the therapy. Recent evidence in the field suggests that tumor-derived exosomes could be responsible for mediating systemic immunosuppression that antagonizes anti-PD-1 checkpoint therapy. In this Opinion article, we discuss our claim that endogenous tumor exosomal PD-L1 and tumor-derived exosome-induced PD-L1 are two of the most notable mechanisms of exosome-mediated resistance against antitumor immunity and we discuss how this resistance could directly influence immune checkpoint therapy failure.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr, MD Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
34
|
Serafini M, Torre E, Aprile S, Grosso ED, Gesù A, Griglio A, Colombo G, Travelli C, Paiella S, Adamo A, Orecchini E, Coletti A, Pallotta MT, Ugel S, Massarotti A, Pirali T, Fallarini S. Discovery of Highly Potent Benzimidazole Derivatives as Indoleamine 2,3-Dioxygenase-1 (IDO1) Inhibitors: From Structure-Based Virtual Screening to in Vivo Pharmacodynamic Activity. J Med Chem 2020; 63:3047-3065. [PMID: 32150677 DOI: 10.1021/acs.jmedchem.9b01809] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, a successful medicinal chemistry campaign that exploited virtual, biophysical, and biological investigations led to the identification of a novel class of IDO1 inhibitors based on a benzimidazole substructure. This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. The tight packing of selected compounds within the enzyme contributes to the strong binding interaction with IDO1, to the inhibitory potency at the low nanomolar level in several tumoral settings, and to the selectivity toward IDO1 over TDO and CYPs. Notably, a significant reduction of L-Kyn levels in plasma, together with a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma, was observed, pointing to this class of molecules as a valuable template for boosting the antitumor immune system.
Collapse
Affiliation(s)
- Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Enza Torre
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Alessandro Gesù
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Alessia Griglio
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università degli Studi di Pavia, Pavia 27100, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona 37134, Italy
| | - Annalisa Adamo
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona37126, Italy
| | - Elena Orecchini
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Alice Coletti
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, Perugia 06132, Italy
| | | | - Stefano Ugel
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona37126, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
35
|
A Robust Signature Based on Autophagy-Associated LncRNAs for Predicting Prognosis in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3858373. [PMID: 32190662 PMCID: PMC7072108 DOI: 10.1155/2020/3858373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
Objective To construct a predictive signature based on autophagy-associated lncRNAs for predicting prognosis in lung adenocarcinoma (LUAD). Materials and Methods. Differentially expressed autophagy genes (DEAGs) and differentially expressed lncRNAs (DElncRNAs) were screened between normal and LUAD samples at thresholds of ∣log2Fold Change∣ > 1 and P value < 0.05. Univariate Cox regression analysis was conducted to identify overall survival- (OS-) associated DElncRNAs. The total cohort was randomly divided into a training group (n = 229) and a validation group (n = 229) and a validation group ( Results A total of 30 DEAGs and 2997 DElncRNAs were identified between 497 LUAD tissues and 54 normal tissues; however, only 1183 DElncRNAs were related to the 30 DEAGs. A signature consisting of 13 DElncRNAs was built to predict OS in lung adenocarcinoma, and the survival analysis indicated a significant OS advantage of the low-risk group over the high-risk group in the training group, with a 5-year OS AUC of 0.854. In the validation group, survival analysis also indicated a significantly favorable OS for the low-risk group over the high-risk group, with a 5-year OS AUC of 0.737. Univariate and multivariate Cox regression analyses indicated that only positive surgical margin (vs negative surgical margin) and high-risk group (vs low-risk group) based on the predictive signature were independent risk factors predictive of overall mortality in LUAD. Conclusions This study investigated the association between autophagy-associated lncRNAs and prognosis in LUAD and built a robust predictive signature of 13 lncRNAs to predict OS.
Collapse
|
36
|
Rébé C, Demontoux L, Pilot T, Ghiringhelli F. Platinum Derivatives Effects on Anticancer Immune Response. Biomolecules 2019; 10:E13. [PMID: 31861811 PMCID: PMC7022223 DOI: 10.3390/biom10010013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Along with surgery and radiotherapy, chemotherapeutic agents belong to the therapeutic arsenal in cancer treatment. In addition to their direct cytotoxic effects, these agents also impact the host immune system, which might enhance or counteract their antitumor activity. The platinum derivative compounds family, mainly composed of carboplatin, cisplatin and oxaliplatin, belongs to the chemotherapeutical arsenal used in numerous cancer types. Here, we will focus on the effects of these molecules on antitumor immune response. These compounds can induce or not immunogenic cell death (ICD), and some strategies have been found to induce or further enhance it. They also regulate immune cells' fate. Platinum derivatives can lead to their activation. Additionally, they can also dampen immune cells by selective killing or inhibiting their activity, particularly by modulating immune checkpoints' expression.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - Lucie Demontoux
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - Thomas Pilot
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, F-21000 Dijon, France
- University of Bourgogne-Franche-Comté, F-21000 Dijon, France; (L.D.); (T.P.); (F.G.)
- INSERM LNC-UMR1231, F-21000 Dijon, France
| |
Collapse
|
37
|
Abstract
Introduction: Lung cancer is a devastating disease with poor overall survival. Despite significant advances in the treatment of lung cancers using radiochemotherapy, targeted therapies and/or immune therapies prognosis remains poor. The capacity of natural killer (NK) cells to provide a first line of defense that can bridge and orchestrate innate and 'downstream' adaptive immune responses renders them to be an ideal platform on which to base new cancer therapeutics.Areas covered: We provide an overview of the mechanisms controlling the effector functions of NK cells, tumor-directed immune escape, the impact and influence of NK cells on the development of effective, protective anti-tumor immunity and the therapeutic potential of combined cytokine-, complement-dependent- and antibody-dependent cellular cytotoxicity (CDC/ADCC), NK-92-, KIR mismatch- and CAR-NK cell-based therapies.Expert opinion: Despite promising results of immuno-oncological approaches, a relevant proportion of patients do not profit from these therapies, partly due to an ineffective NK cell activation, a lack of tumor-specific NK cells, an upregulated expression of checkpoint pathways, and a low mutational burden, which hinders the development of long-term adaptive immunity. Strategies that re-activate NK cells in combination with other therapies are therefore likely to be beneficial for the clinical outcome of patients with lung cancer.Abbreviations: ADCC: antibody-dependent cell-mediated cytotoxicity; ALK: anaplastic lymphoma kinase; CAR: chimeric antigen receptor; CDC: complement-dependent cytotoxicity; CEACAM-1: carcinoembryonic antigen-related cell adhesion molecule 1; DC: dendritic cell; DNAM: activating, maturation receptor; EGFR, epidermal growth factor receptor; EMT: epithelial-to-mesenchymal transition; EpCAM: epithelial cell adhesion molecule; GM-CSF: granulocyte monocyte colony stimulating factor; HIF: hypoxia inducible factor; IDO, indoleamine 2,3-dioxygenase; IFN: interferon; IL: interleukin; ITIM/ITAM: immune tyrosine-based inhibitory/activatory motif; KIR: killer cell immunoglobulin-like receptor; LAG-3: lymphocyte activation gene 3; MDSC: myeloid derived suppressor cells; MICA/B: MHC class I-related proteins A/B; MHC: major histocompatibility complex; mTOR: mechanistic target of rapamycin; NCAM: neuronal adhesion molecule; NCR: natural cytotoxicity receptor; NK: natural killer; NSCLC: non-small cell lung cancer; PD-1: programmed cell death 1; PS: phosphatidylserine; SCLC: small cell lung cancer; STAT: signal transducer and activator of transcription; TAM: tumor-associated M2 macrophages; TCR: T cell receptor; TIGIT: T cell immunoglobulin and ITIM domain; Tim-3: T cell immunoglobulin- and mucin domain-containing 3; TNF: tumor necrosis factor; ULBP: UL16-binding protein.
Collapse
Affiliation(s)
- A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Peter Vaupel
- Campus Klinikum rechts der Isar, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Munich, Germany
| | - Gabriele Multhoff
- Campus Klinikum rechts der Isar, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Munich, Germany
| |
Collapse
|
38
|
Omballi M, Fernandez-Bussy S, Patel PP, Jantz MA, Becnel D, Patel NM, Mehta HJ. Surveillance Imaging After Curative Intent Therapy for Lung Cancer. Semin Roentgenol 2019; 55:60-69. [PMID: 31964482 DOI: 10.1053/j.ro.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mohamed Omballi
- Division of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL
| | | | - Priya P Patel
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Michael A Jantz
- Division of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL
| | - David Becnel
- Division of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL
| | - Neal M Patel
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Jacksonville, FL
| | - Hiren J Mehta
- Division of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, FL.
| |
Collapse
|
39
|
Fan FS, Yang CF, Chang CL. Nivolumab plus Carboplatin and Paclitaxel as the First-line Therapy for Advanced Squamous Cell Carcinoma of the Lung with Strong Programmed Death-ligand 1 Expression: A Case Report. Cureus 2019; 11:e5881. [PMID: 31772851 PMCID: PMC6837275 DOI: 10.7759/cureus.5881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
An 80-year-old male patient was diagnosed to have squamous cell carcinoma of the lung which had a high level of programmed death-ligand 1 (PD-L1) expression. He was prescribed with intravenously administered nivolumab combined with carboplatin and paclitaxel as the first-line therapy. A rapid remission was achieved with nearly total necrosis and cavitation of the original tumor. However, the successful treatment result was accompanied with pneumonitis most likely as an adverse effect of nivolumab. After discontinuation of nivolumab and starting prednisolone treatment, the pneumonitis was soon brought under control. During the treatment course, temporary exacerbation of the disease status led to an interesting differential diagnosis between hyperprogression and pseudoprogression. Tremendous efficacy of combination immunochemotherapy as the first-line treatment for squamous non-small cell lung cancer (NSCLC) with highly expressed PD-L1 has been well demonstrated in this case.
Collapse
Affiliation(s)
- Frank S Fan
- Haematology and Oncology, Changhua Hospital, Ministry of Health and Welfare, Chang-Hua County, TWN
| | - Chung-Fan Yang
- Pathology, Changhua Hospital, Ministry of Health and Welfare, Chang-Hua County, TWN
| | - Chia-Lin Chang
- Haematology and Oncology, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung City, TWN
| |
Collapse
|
40
|
Roy SF, Louie AV, Liberman M, Wong P, Bahig H. Pathologic response after modern radiotherapy for non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:S124-S134. [PMID: 31673516 PMCID: PMC6795577 DOI: 10.21037/tlcr.2019.09.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022]
Abstract
In non-small cell lung cancer (NSCLC), pathologic complete response (pCR) following radiotherapy treatment has been shown to be an independent prognostic factor for long-term survival, progression-free survival and locoregional control. PCR is considered a surrogate to therapeutic efficacy, years before survival data are available, and therefore can be used to guide treatment plans and additional therapeutic interventions post-surgical resection. Given the extensive fibrotic changes induced by radiotherapy in the lung, radiological assessment of response can potentially misrepresent pathologic response. The optimal timing for assessment of pathologic response after conventionally fractionated radiotherapy and stereotactic ablative radiotherapy (SABR) remains poorly understood. In this review, we summarize recent literature on pathologic response after radiotherapy for early stage and locally advanced NSCLC, we discuss current controversies around radiobiological considerations, and we present upcoming trials that will provide insight into current knowledge gaps.
Collapse
Affiliation(s)
- Simon F. Roy
- Department of Pathology, University of Montreal, Montreal, QC, Canada
| | - Alexander V. Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Moishe Liberman
- Division of Thoracic Surgery, Department of Surgery, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Philip Wong
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Houda Bahig
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
41
|
Zhu X, Li H, Li S, Zhou M. Isolated Rare Urethral Metastasis From Primary Lung Adenocarcinoma: Case Report and Literature Review. Front Oncol 2019; 9:784. [PMID: 31482069 PMCID: PMC6710319 DOI: 10.3389/fonc.2019.00784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/02/2019] [Indexed: 01/27/2023] Open
Abstract
Background: Lung adenocarcinoma is a common respiratory malignancy, however urethral metastasis of lung adenocarcinoma has not yet been reported. This study aims to present a rare case of isolated urethral metastasis in a male patient with a history of primary lung adenocarcinoma. Case Presentation: A 69 year-old male patient was admitted complaining of dysuria and nocturia for 3 months, with a history of lung adenocarcinoma after surgery. The patient was diagnosed as benign prostatic hyperplasia (BPH) and received holmium laser enucleation of the prostate, an effective transurethral procedure to treat bladder outflow obstruction due to BPH. Four months after surgery for BPH, the patient had no improvement in symptoms and continued to complain of dysuria and perineum pain. An MRI of the pelvis indicated posterior urethral mass without any regional lymphadenopathy or other sites of lesion. Urethrocystoscopy found the mass in the membranous urethra near the verumontanum, and pathology combined with immunohistochemical staining confirmed the isolated urethral metastasis of lung adenocarcinoma. The further therapeutic regimen consisting of chemotherapy (pemetrexed combined with nedaplatin) and bevacizumab was well-tolerated, and obviously relieved the patient from dysuria and perineum pain. Conclusion: This study reported the first case of isolated rare urethral metastasis from primary lung adenocarcinoma and underlined the necessity for clinicians to remain vigilant to metastasis during follow-up of primary cancer.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heqiu Li
- Department of Pathology, Molecular Medicine Testing Center, Chongqing Medical University, Chongqing, China
| | - Shuang Li
- Department of General Surgery, Jinshan Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Solinas C, Migliori E, De Silva P, Willard-Gallo K. LAG3: The Biological Processes That Motivate Targeting This Immune Checkpoint Molecule in Human Cancer. Cancers (Basel) 2019; 11:E1213. [PMID: 31434339 PMCID: PMC6721578 DOI: 10.3390/cancers11081213] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
The programmed cell death 1 (PD-1) pathway is an important regulator of immune responses in peripheral tissues, including abnormal situations such as the tumor microenvironment. This pathway is currently the principal target for immunotherapeutic compounds designed to block immune checkpoint pathways, with these drugs improving clinical outcomes in a number of solid and hematological tumors. Medical oncology is experiencing an immune revolution that has scientists and clinicians looking at alternative, non-redundant inhibitory pathways also involved in regulating immune responses in cancer. A variety of targets have emerged for combinatorial approaches in immune checkpoint blockade. The main purpose of this narrative review is to summarize the biological role of lymphocyte activation gene 3 (LAG3), an emerging targetable inhibitory immune checkpoint molecule. We briefly discuss its role in infection, autoimmune disease and cancer, with a more detailed analysis of current data on LAG3 expression in breast cancer. Current clinical trials testing soluble LAG3 immunoglobulin and LAG3 antagonists are also presented in this work.
Collapse
Affiliation(s)
- Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Azienda Unità Sanitaria Locale Valle d'Aosta, Regional Hospital of Aosta, 11100 Aosta, Italy
| | - Edoardo Migliori
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Columbia University Medical Center, Columbia Center for Translational Immunology, NY 10032, USA
| | - Pushpamali De Silva
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium.
| |
Collapse
|
43
|
Pacheco JM, Gao D, Camidge DR. Extended follow-up on KEYNOTE-024 suggests significant survival benefit for pembrolizumab in patients with PD-L1 ≥50%, but unanswered questions remain. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S127. [PMID: 31576334 DOI: 10.21037/atm.2019.05.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jose M Pacheco
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Cancer Center, Aurora, Colorado, USA
| | - Dexiang Gao
- School of Medicine and Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - D Ross Camidge
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Cancer Center, Aurora, Colorado, USA
| |
Collapse
|