1
|
Huang Q, Chen AT, Chan KY, Sorensen H, Barry AJ, Azari B, Zheng Q, Beddow T, Zhao B, Tobey IG, Moncada-Reid C, Eid FE, Walkey CJ, Ljungberg MC, Lagor WR, Heaney JD, Chan YA, Deverman BE. Targeting AAV vectors to the central nervous system by engineering capsid-receptor interactions that enable crossing of the blood-brain barrier. PLoS Biol 2023; 21:e3002112. [PMID: 37467291 DOI: 10.1371/journal.pbio.3002112] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 07/21/2023] Open
Abstract
Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.
Collapse
Affiliation(s)
- Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Albert T Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Biological and Biomedical Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ken Y Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hikari Sorensen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrew J Barry
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bahar Azari
- Electrical & Computer Engineering Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Binhui Zhao
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Isabelle G Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Cynthia Moncada-Reid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Fatma-Elzahraa Eid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt
| | - Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States of America
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yujia A Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Fevre R, Mary G, Vertti-Quintero N, Durand A, Tomasi RFX, Del Nery E, Baroud CN. Combinatorial drug screening on 3D Ewing sarcoma spheroids using droplet-based microfluidics. iScience 2023; 26:106651. [PMID: 37168549 PMCID: PMC10165258 DOI: 10.1016/j.isci.2023.106651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Culturing and screening cells in microfluidics, particularly in three-dimensional formats, has the potential to impact diverse areas from fundamental biology to cancer precision medicine. Here, we use a platform based on anchored droplets for drug screening. The response of spheroids of Ewing sarcoma (EwS) A673 cells to simultaneous or sequential combinations of etoposide and cisplatin was evaluated. This was done by culturing spheroids of EwS cells inside 500 nL droplets then merging them with secondary droplets containing fluorescent-barcoded drugs at different concentrations. Differences in EwS spheroid growth and viability were measured by microscopy. After drug exposure such measurements enabled estimation of their IC50 values, which were in agreement with values obtained in standard multiwell plates. Then, synergistic drug combination was evaluated. Sequential combination treatment of EwS with etoposide applied 24 h before cisplatin resulted in amplified synergistic effect. As such, droplet-based microfluidics offers the modularity required for evaluation of drug combinations.
Collapse
Affiliation(s)
- Romain Fevre
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gaëtan Mary
- Okomera, iPEPS, the HealthTech Hub, Paris Brain Institute, HôpitalPitiéSalpêtrière, 75013 Paris, France
| | - Nadia Vertti-Quintero
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Aude Durand
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Raphaël F.-X. Tomasi
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
- Okomera, iPEPS, the HealthTech Hub, Paris Brain Institute, HôpitalPitiéSalpêtrière, 75013 Paris, France
| | - Elaine Del Nery
- Biophenics High-Content Screening Laboratory, Translational Research Department, PICT-IBiSA, Institut Curie, PSL Research University, 75005 Paris, France
- Corresponding author
| | - Charles N. Baroud
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
- Corresponding author
| |
Collapse
|
3
|
Puglisi A, Bognanni N, Vecchio G, Bayir E, van Oostrum P, Shepherd D, Platt F, Reimhult E. Grafting of Cyclodextrin to Theranostic Nanoparticles Improves Blood-Brain Barrier Model Crossing. Biomolecules 2023; 13:573. [PMID: 36979508 PMCID: PMC10046162 DOI: 10.3390/biom13030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Core-shell superparamagnetic iron oxide nanoparticles hold great promise as a theranostic platform in biological systems. Herein, we report the biological effect of multifunctional cyclodextrin-appended SPIONs (CySPION) in mutant Npc1-deficient CHO cells compared to their wild type counterparts. CySPIONs show negligible cytotoxicity while they are strongly endocytosed and localized in the lysosomal compartment. Through their bespoke pH-sensitive chemistry, these nanoparticles release appended monomeric cyclodextrins to mobilize over-accumulated cholesterol and eject it outside the cells. CySPIONs show a high rate of transport across blood-brain barrier models, indicating their promise as a therapeutic approach for cholesterol-impaired diseases affecting the brain.
Collapse
Affiliation(s)
- Antonino Puglisi
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Noemi Bognanni
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, 95125 Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, 95125 Catania, Italy
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir 35100, Turkey
| | - Peter van Oostrum
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
4
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
5
|
Rani V, Prabhu A. In vitro blood brain barrier models: Molecular aspects and therapeutic strategies in glioma management. Curr Res Transl Med 2023; 71:103376. [PMID: 36580825 DOI: 10.1016/j.retram.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Glioma management is the most challenging task in clinical oncology due to numerous reasons. One of the major hurdles in glioma therapy is the presence of blood brain barrier which resists the entry of most of the drugs into the brain. However, in case of tumors, blood brain barrier integrity is compromised, which in turn can be advantageous in delivering the drugs, if the therapeutic module is strategically modified. For such improvised therapeutic strategy, it is necessary to understand the molecular composition and profiling of blood brain barrier and blood brain tumor barrier. This review mainly focuses on the composition, markers expressed on the blood brain barrier which will help the readers to understand its basic environment. It also gives a detailed account of the various in vitro models that are used to study the nature of the blood brain barrier and describes various strategies in improvising the drug delivery in glioma management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018 Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018 Karnataka, India.
| |
Collapse
|
6
|
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350:668-687. [PMID: 36057395 PMCID: PMC9884093 DOI: 10.1016/j.jconrel.2022.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kalika Mahato
- College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|
7
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
8
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
9
|
Effect of L- to D-Amino Acid Substitution on Stability and Activity of Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. Int J Mol Sci 2021; 22:ijms22168469. [PMID: 34445175 PMCID: PMC8395111 DOI: 10.3390/ijms22168469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
The study investigates the antitumor effect of two cationic peptides, R-DIM-P-LF11-215 (RDP215) and the D-amino acid variant 9D-R-DIM-P-LF11-215 (9D-RDP215), targeting the negatively charged lipid phosphatidylserine (PS) exposed by cancer cells, such as of melanoma and glioblastoma. Model studies mimicking cancer and non-cancer membranes revealed the specificity for the cancer-mimic PS by both peptides with a slightly stronger impact by the D-peptide. Accordingly, membrane effects studied by DSC, leakage and quenching experiments were solely induced by the peptides when the cancer mimic PS was present. Circular dichroism revealed a sole increase in β-sheet conformation in the presence of the cancer mimic for both peptides; only 9D-RDP215 showed increased structure already in the buffer. Ex vitro stability studies by SDS-PAGE as well as in vitro with melanoma A375 revealed a stabilizing effect of D-amino acids in the presence of serum, which was also confirmed in 2D and 3D in vitro experiments on glioblastoma LN-229. 9D-RDP215 was additionally able to pass a BBB model, whereupon it induced significant levels of cell death in LN-229 spheroids. Summarized, the study encourages the introduction of D-amino acids in the design of antitumor peptides for the improvement of their stable antitumor activity.
Collapse
|
10
|
Abstract
Brain tumors' severity ranges from benign to highly aggressive and invasive. Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments. Here, we first describe the physiology and cellular composition of brain tumors. Then, we discuss the development of three-dimensional tissue models utilizing brain tumor cells. In particular, we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures. Microscale technologies, such as electrospinning and bioprinting, and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues. Lastly, we review current applications and prospects of hydrogels for therapeutic purposes, such as drug delivery and co-administration with other therapies. Through further development, hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.
Collapse
|
11
|
Dundar B, Markwell SM, Sharma NV, Olson CL, Mukherjee S, Brat DJ. Methods for in vitro modeling of glioma invasion: Choosing tools to meet the need. Glia 2020; 68:2173-2191. [PMID: 32134155 DOI: 10.1002/glia.23813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Widespread tumor cell invasion is a fundamental property of diffuse gliomas and is ultimately responsible for their poor prognosis. A greater understanding of basic mechanisms underlying glioma invasion is needed to provide insights into therapies that could potentially counteract them. While none of the currently available in vitro models can fully recapitulate the complex interactions of glioma cells within the brain tumor microenvironment, if chosen and developed appropriately, these models can provide controlled experimental settings to study molecular and cellular phenomena that are challenging or impossible to model in vivo. Therefore, selecting the most appropriate in vitro model, together with its inherent advantages and limitations, for specific hypotheses and experimental questions achieves primary significance. In this review, we describe and discuss commonly used methods for modeling and studying glioma invasion in vitro, including platforms, matrices, cell culture, and visualization techniques, so that choices for experimental approach are informed and optimal.
Collapse
Affiliation(s)
- Bilge Dundar
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Steven M Markwell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nitya V Sharma
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|