1
|
Huang K, Yan C, Abdelghany L, Zhang X, Jingu K, Li TS. Nicaraven attenuates the acquired radioresistance of established tumors in mouse models via PARP inhibition. Mol Cell Biochem 2025; 480:341-353. [PMID: 38466467 DOI: 10.1007/s11010-024-04958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 03/13/2024]
Abstract
Nicaraven has been reported to inhibit the activity of poly (ADP-ribose) polymerase (PARP). In this study, we investigated the probable ability of nicaraven to attenuate cancer radioresistance during fractionated radiotherapy. Tumor models were established in C57BL/6 mice and BALB/c nude mice by subcutaneous injection of Lewis mouse lung carcinoma cancer cells and A549 human lung cancer cells, respectively. When the tumors had grown to approximately 100 mm3, we initiated fractionated radiotherapy. Nicaraven or saline was administered immediately after each irradiation exposure. Compared to saline treatment, nicaraven administration significantly induced gamma-H2AX foci formation and cell apoptosis in tumors at 1 or 3 days after an additional challenge exposure to 10 Gy and inhibited tumor growth during the short-term follow-up period, suggesting increased radiosensitivity of cancer cells. Moreover, the expression of PARP in tumor tissue was decreased by nicaraven administration. Our data suggest that nicaraven likely attenuates the acquired radioresistance of cancers through PARP inhibition.
Collapse
Affiliation(s)
- Kai Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aoba Ward, Sendai, Miyagi, 980-0872, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
2
|
Kim TW, Ko SG. Anti-Inflammatory and Anticancer Effects of Kaurenoic Acid in Overcoming Radioresistance in Breast Cancer Radiotherapy. Nutrients 2024; 16:4320. [PMID: 39770941 PMCID: PMC11677055 DOI: 10.3390/nu16244320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in mediating anti-inflammatory and anticancer effects in the tumor microenvironment. Kaurenoic acid (KA), a diterpene compound isolated from Sphagneticola trilobata (L.) Pruski, has been demonstrated to exert anti-inflammatory, anticancer, and antihuman immunodeficiency virus effects. Methods: In this study, we identified KA as a novel activator of PPARγ with potent anti-inflammatory and antitumor effects both in vitro and in vivo. Given the potential of PPARγ regulators in overcoming radioresistance and chemoresistance in cancer therapies, we hypothesized that KA may enhance the efficacy of breast cancer radiotherapy. Results: In a lipopolysaccharide (LPS)-induced mouse inflammation model, KA treatment reduced the levels of pro-inflammatory cytokines, including COX-2, IL-6, IL-1β, and TNFα. In a xenograft mouse mode of breast cancer, KA treatment inhibited tumor growth. Specifically, KA treatment enhanced caspase-3 activity and cytotoxicity against MDA-MB-231 and MCF-7 breast cancer cells. When KA was co-treated with a caspase inhibitor, Z-VAD-FMK, caspase-dependent apoptosis was suppressed in these cells. KA was found to induce the generation of cytosolic calcium ions (Ca2+) and reactive oxygen species (ROS), triggering endoplasmic reticulum (ER) stress via the PERK-ATF4-CHOP axis. Hence, the ER stressor thapsigargin (TG) synergized with KA treatment to enhance apoptosis in these cells, while the loss of the PERK or CHOP function inhibited this phenomenon. KA treatment was shown to induce oxidative stress via the NADPH oxidase 4 (NOX4) and stimulate ROS production. Specifically, NOX4 knockdown (KD) and antioxidant treatment (N-acetyl cysteine or diphenyleneiodonium) suppressed such ER stress-mediated apoptosis by inhibiting KA-enhanced caspase-3 activity, cytotoxicity, and intracellular ROS production in the treated cells. In radioresistant MDA-MB-231R and MCF-7R cells, KA combined with 2 Gy radiation overcame radioresistance by upregulating PPARγ and modulating epithelial-mesenchymal transition (EMT) markers, such as E-cadherin, N-cadherin, and vimentin. In PPARγ KD MDA-MB-231R and MCF-7R cells, this phenomenon was inhibited due to reduced PPARγ and NOX4 expression. Conclusions: In conclusion, these findings demonstrated KA as a novel PPARγ regulator with promising potential to enhance the efficacy of breast cancer radiotherapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
3
|
Kasirzadeh S, Lenjisa JL, Wang S. Targeting CDK2 to combat drug resistance in cancer therapy. Future Oncol 2024; 20:3325-3341. [PMID: 39469865 PMCID: PMC11633421 DOI: 10.1080/14796694.2024.2416382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Drug resistance remains a major obstacle in cancer treatment, leading to treatment failures and high mortality rates. Despite advancements in therapies, overcoming resistance requires a deeper understanding of its mechanisms. This review highlights CDK2's pivotal role in both intrinsic and acquired resistance, and its potential as a therapeutic target. Cyclin E upregulation, which partners with CDK2, is linked to poor prognosis and resistance across various cancers. Specifically, amplifications of CCNE1/CCNE2 are associated with resistance to targeted therapies, immunotherapy, endocrine therapies and chemo/radiotherapy. Given CDK2's involvement in resistance mechanisms, investigating its role presents promising opportunities for developing novel strategies to combat resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Sara Kasirzadeh
- Drug Discovery & Development, Clinical & Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Jimma Likisa Lenjisa
- Drug Discovery & Development, Clinical & Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Shudong Wang
- Drug Discovery & Development, Clinical & Health Sciences, University of South Australia, Adelaide, 5000, Australia
| |
Collapse
|
4
|
Andratschke N, Willmann J, Appelt AL, Day M, Kronborg C, Massaccesi M, Ozsahin M, Pasquier D, Petric P, Riesterer O, De Ruysscher D, M Van der Velden J, Guckenberger M. Reirradiation - still navigating uncharted waters? Clin Transl Radiat Oncol 2024; 49:100871. [PMID: 39444538 PMCID: PMC11497423 DOI: 10.1016/j.ctro.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the emergence of high-precision radiotherapy technologies such as stereotactic ablative radiotherapy (SABR), MR guided brachytherapy, image guided intensity modulated photon and proton radiotherapy and most recently daily adaptive radiotherapy, reirradiation is increasingly recognized as a viable treatment option for many patients. This includes those with recurrent, metastatic or new malignancies post initial radiotherapy. The primary challenge in reirradiation lies in balancing tumor control against the risk of severe toxicity from cumulative radiation doses to previously irradiated normal tissue. Although technology for precise delivery has advanced at a fast pace, clinical practice of reirradiation still mostly relies on individual expertise, as prospective evidence is scarce, the level of reporting in clinical studies is not standardized and of low quality - especially with respect to cumulative doses received by organs at risk. A recent ESTRO/EORTC initiative proposed a standardized definition of reirradiation and formulated general requirements for minimal reporting in clinical studies [1]. As a consequence we found it timely to convene for an international and interdisciplinary meeting with experts in the field to summarize the current evidence, identify knowledge gaps and explore which best practices can be derived for safe reirradiation. The meeting was held on 15.06.2023 in Zurich and was endorsed by the scientific societies SASRO, DEGRO and ESTRO. Here, we report on available evidence and research priorities in the field of reirradiation, as discussed during the meeting.
Collapse
Affiliation(s)
- Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James’s, University of Leeds, UK
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Madalyne Day
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Camilla Kronborg
- Danish Centre for Particle Therapy, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariangela Massaccesi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre O Lambret, Lille, France
- University of Lille, Centrale Lille, CNRS, CRIStAL UMR 9189, Lille, France
| | - Primoz Petric
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | | | - Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro), GROW School and Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Joanne M Van der Velden
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| |
Collapse
|
5
|
Tofolo MV, Berti FCB, Nunes-Souza E, Ruthes MO, Berti LF, Fonseca AS, Rosolen D, Cavalli LR. Non-coding RNAs as modulators of radioresponse in triple-negative breast cancer: a systematic review. J Biomed Sci 2024; 31:93. [PMID: 39354523 PMCID: PMC11445946 DOI: 10.1186/s12929-024-01081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.
Collapse
Affiliation(s)
- Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Fernanda Costa Brandão Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Mayara Oliveira Ruthes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, 81280-340, Brazil
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Luciane Regina Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil.
- Department of Oncology, Lombardi Comprenhensive Cancer Center, Washington, DC, 20007, USA.
| |
Collapse
|
6
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
7
|
Yin L, Hu X, Pei G, Tang M, Zhou Y, Zhang H, Huang M, Li S, Zhang J, Citu C, Zhao Z, Debeb BG, Feng X, Chen J. Genome-wide CRISPR screen reveals the synthetic lethality between BCL2L1 inhibition and radiotherapy. Life Sci Alliance 2024; 7:e202302353. [PMID: 38316463 PMCID: PMC10844523 DOI: 10.26508/lsa.202302353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Radiation therapy (RT) is one of the most commonly used anticancer therapies. However, the landscape of cellular response to irradiation, especially to a single high-dose irradiation, remains largely unknown. In this study, we performed a whole-genome CRISPR loss-of-function screen and revealed temporal inherent and acquired responses to RT. Specifically, we found that loss of the IL1R1 pathway led to cellular resistance to RT. This is in part because of the involvement of radiation-induced IL1R1-dependent transcriptional regulation, which relies on the NF-κB pathway. Moreover, the mitochondrial anti-apoptotic pathway, particularly the BCL2L1 gene, is crucially important for cell survival after radiation. BCL2L1 inhibition combined with RT dramatically impeded tumor growth in several breast cancer cell lines and syngeneic models. Taken together, our results suggest that the combination of an apoptosis inhibitor such as a BCL2L1 inhibitor with RT may represent a promising anticancer strategy for solid cancers including breast cancer.
Collapse
Affiliation(s)
- Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoding Hu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - You Zhou
- Department of Pediatrics Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Citu Citu
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bisrat G Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Takiyama H, Yamada S, Isozaki T, Ikawa H, Shinoto M, Imai R, Koto M. Carbon-Ion Radiation Therapy for Unresectable Locally Recurrent Colorectal Cancer: A Promising Curative Treatment for Both Radiation Therapy: Naïve Cases and Reirradiation Cases. Int J Radiat Oncol Biol Phys 2024; 118:734-742. [PMID: 37776980 DOI: 10.1016/j.ijrobp.2023.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE It is difficult to effectively cure patients with unresectable locally recurrent colorectal cancers (LRCRCs) using conventional chemotherapy or chemoradiation therapy. Furthermore, treatment options vary depending on the patient's history of radiation therapy. Carbon-ion radiation therapy (CIRT) is a potentially curative treatment for these patients. Here, we compare the treatment outcomes of radiation therapy-naïve cases (nRT) and re-irradiation cases (reRT). METHODS AND MATERIALS Patients with LRCRC treated with CIRT at QST Hospital between 2003 and 2019 were eligible. CIRT was administered daily 4 d/wk for 16 fractions. The total irradiated dose was set at 73.6 Gy (relative biologic effectiveness-weighted dose [RBE]) for nRT and 70.4 Gy (RBE) for reRT patients. RESULTS We included 390 nRT cases and 83 reRT cases. The median follow-up period from the initiation of CIRT was 48 (5-208) months. The 3-year overall survival (OS) rates for nRT and reRT were 73% (95% CI, 68%-77%) and 76% (65%-84%), respectively. The 5-year OS rates were 50% (45%-55%) and 50% (38%-61%), respectively. These rates did not differ significantly (P = .55). The 3-year local control (LC) rates for nRT (73.6 Gy) and reRT (70.4 Gy) cases were 80% (75%-84%) and 80% (68%-88%), respectively. The 5-year LC rates were 72% (67%-78%) and 69% (55%-81%), respectively, without a significant difference (P = .56). CONCLUSIONS Our results suggest that CIRT for LRCRC is a very effective and promising treatment for both nRT and reRT cases.
Collapse
Affiliation(s)
- Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuro Isozaki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
9
|
Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks. Mol Cancer 2023; 22:82. [PMID: 37173782 PMCID: PMC10176707 DOI: 10.1186/s12943-023-01775-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Collapse
Affiliation(s)
- Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, 3010, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland.
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland.
| |
Collapse
|
10
|
Zhou T, Zhang LY, He JZ, Miao ZM, Li YY, Zhang YM, Liu ZW, Zhang SZ, Chen Y, Zhou GC, Liu YQ. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol 2023; 14:1133899. [PMID: 36865554 PMCID: PMC9971010 DOI: 10.3389/fimmu.2023.1133899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy is the major treatment of non-small cell lung cancer (NSCLC). The radioresistance and toxicity are the main obstacles that leading to therapeutic failure and poor prognosis. Oncogenic mutation, cancer stem cells (CSCs), tumor hypoxia, DNA damage repair, epithelial-mesenchymal transition (EMT), and tumor microenvironment (TME) may dominate the occurrence of radioresistance at different stages of radiotherapy. Chemotherapy drugs, targeted drugs, and immune checkpoint inhibitors are combined with radiotherapy to treat NSCLC to improve the efficacy. This article reviews the potential mechanism of radioresistance in NSCLC, and discusses the current drug research to overcome radioresistance and the advantages of Traditional Chinese medicine (TCM) in improving the efficacy and reducing the toxicity of radiotherapy.
Collapse
Affiliation(s)
- Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian-Zheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shang-Zu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Yong-Qi Liu,
| |
Collapse
|
11
|
Ovarian Cancer Radiosensitivity: What Have We Understood So Far? LIFE (BASEL, SWITZERLAND) 2022; 13:life13010006. [PMID: 36675955 PMCID: PMC9861683 DOI: 10.3390/life13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Radiotherapy has been increasingly considered as an active treatment to combine with other approaches (i.e., surgery, chemotherapy, and novel target-based drugs) in ovarian cancers to palliate symptoms and/or to prolong chemotherapy-free intervals. This narrative review aimed to summarize the current knowledge of the radiosensitivity/radioresistance of ovarian cancer which remains the most lethal gynecological cancer worldwide. Indeed, considering the high rate of recurrence in and out of the radiotherapy fields, in the era of patient-tailored oncology, elucidating the mechanisms of radiosensitivity and identifying potential radioresistance biomarkers could be crucial in guiding clinical decision-making.
Collapse
|
12
|
Bishnupuri K, Zhang S. Editorial: Regulators of radiosensitivity in colorectal cancer. Front Oncol 2022; 12:1094238. [DOI: 10.3389/fonc.2022.1094238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
|
13
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
14
|
Bhattacharyya T, Koto M, Windisch P, Ikawa H, Hagiwara Y, Tsuji H, Adeberg S. Emerging Role of Carbon Ion Radiotherapy in Reirradiation of Recurrent Head and Neck Cancers: What Have We Achieved So Far? Front Oncol 2022; 12:888446. [PMID: 35677171 PMCID: PMC9167994 DOI: 10.3389/fonc.2022.888446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Administering reirradiation for the treatment of recurrent head and neck cancers is extremely challenging. These tumors are hypoxic and radioresistant and require escalated radiation doses for adequate control. The obstacle to delivering this escalated dose of radiation to the target is its proximity to critical organs at risk (OARs) and possible development of consequent severe late toxicities. With the emergence of highly sophisticated technologies, intensity-modulated radiotherapy (IMRT) and stereotactic body radiotherapy have shown promising outcomes. Proton beam radiotherapy has been used for locally recurrent head and neck cancers because of its excellent physical dose distribution, exploring sharp Bragg peak properties with negligible entrance and exit doses. To further improve these results, carbon ion radiotherapy (CIRT) has been explored in several countries across Europe and Asia because of its favorable physical properties with minimal entrance and exit doses, sharper lateral penumbra, and much higher and variable relative biological efficacy, which cannot be currently achieved with any other form of radiation. Few studies have described the role of CIRT in recurrent head and neck cancers. In this article, we have discussed the different aspects of carbon ions in reirradiation of recurrent head and neck cancers, including European and Asian experiences, different dose schedules, dose constraints of OARs, outcomes, and toxicities, and a brief comparison with proton beam radiotherapy and IMRT.
Collapse
Affiliation(s)
- Tapesh Bhattacharyya
- Department of Radiation Oncology, Tata Medical Centre, Kolkata, India
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Paul Windisch
- Department of Radiation Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuhito Hagiwara
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Sebastian Adeberg
- National Center for Tumor Diseases (NCT), University Hospital Heidelberg (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg (UKHD), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
15
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Zhou Y, Liao L, Su N, Huang H, Yang Y, Yang Y, Wang G, Xu H, Jiang H. TGF-β/Akt/Smad signaling regulates ionizing radiation-induced epithelial-mesenchymal transition in acquired radioresistant lung cancer cells. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Saxby H, Boussios S, Mikropoulos C. Androgen Receptor Gene Pathway Upregulation and Radiation Resistance in Oligometastatic Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094786. [PMID: 35563176 PMCID: PMC9105839 DOI: 10.3390/ijms23094786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 12/20/2022] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) is currently used as a salvage intervention for men with oligometastatic prostate cancer (PC), and increasingly so since the results of the Stereotactic Ablative Body Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers (SABR-COMET) trial reported a significant improvement in overall survival with SABR. The addition of androgen deprivation therapy (ADT) to localised prostate radiotherapy improves survival as it sensitises PC to radiotherapy-induced cell death. The importance of the androgen receptor (AR) gene pathway in the development of resistance to radiotherapy is well established. In this review paper, we will examine the data to determine how we can overcome the upregulation of the AR pathway and suggest a strategy for improving outcomes in men with oligometastatic hormone-sensitive PC.
Collapse
Affiliation(s)
- Helen Saxby
- Torbay & South Devon NHS Healthcare Foundation Trust, Lowes Bridge, Torquay TQ2 7AA, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham Kent ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
- Correspondence: , or
| | - Christos Mikropoulos
- St Lukes Cancer Centre, Royal Surrey County Hospital, Egerton Rd, Guildford GU2 7XX, UK;
| |
Collapse
|
18
|
Ghaderi N, Jung J, Brüningk SC, Subramanian A, Nassour L, Peacock J. A Century of Fractionated Radiotherapy: How Mathematical Oncology Can Break the Rules. Int J Mol Sci 2022; 23:ijms23031316. [PMID: 35163240 PMCID: PMC8836217 DOI: 10.3390/ijms23031316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is involved in 50% of all cancer treatments and 40% of cancer cures. Most of these treatments are delivered in fractions of equal doses of radiation (Fractional Equivalent Dosing (FED)) in days to weeks. This treatment paradigm has remained unchanged in the past century and does not account for the development of radioresistance during treatment. Even if under-optimized, deviating from a century of successful therapy delivered in FED can be difficult. One way of exploring the infinite space of fraction size and scheduling to identify optimal fractionation schedules is through mathematical oncology simulations that allow for in silico evaluation. This review article explores the evidence that current fractionation promotes the development of radioresistance, summarizes mathematical solutions to account for radioresistance, both in the curative and non-curative setting, and reviews current clinical data investigating non-FED fractionated radiotherapy.
Collapse
Affiliation(s)
- Nima Ghaderi
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA; (N.G.); (J.J.)
| | - Joseph Jung
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA; (N.G.); (J.J.)
| | - Sarah C. Brüningk
- Machine Learning & Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
- Swiss Institute for Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA;
| | - Lauren Nassour
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, AL 35205, USA;
| | - Jeffrey Peacock
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, AL 35205, USA;
- Correspondence:
| |
Collapse
|
19
|
Loap P, De Marzi L, Almeida CE, Barcellini A, Bradley J, de Santis MC, Dendale R, Jimenez R, Orlandi E, Kirova Y. Hadrontherapy techniques for breast cancer. Crit Rev Oncol Hematol 2021; 169:103574. [PMID: 34958916 DOI: 10.1016/j.critrevonc.2021.103574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Radiotherapy plays a key role in breast cancer treatment, and recent technical advances have been made to improve the therapeutic window by limiting the risk of radiation-induced toxicity or by increasing tumor control. Hadrontherapy is a form a radiotherapy relying on particle beams; compared with photon beams, particle beams have specific physical, radiobiological and immunological properties, which can be valuable in diverse clinical situations. To date, available hadrontherapy techniques for breast cancer irradiation include proton therapy, carbon ion radiation therapy, fast neutron therapy and boron neutron capture therapy. This review analyzes the current rationale and level of evidence for each hadrontherapy technique for breast cancer.
Collapse
Affiliation(s)
- Pierre Loap
- Proton Therapy Center, Institut Curie, Orsay, France.
| | | | - Carlos Eduardo Almeida
- Department of Radiological Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Julie Bradley
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, United States
| | | | - Remi Dendale
- Proton Therapy Center, Institut Curie, Orsay, France
| | - Rachel Jimenez
- Massachusetts General Hospital, Boston, MA, United States
| | - Ester Orlandi
- National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Youlia Kirova
- Proton Therapy Center, Institut Curie, Orsay, France
| |
Collapse
|
20
|
Bey A, Ma J, Furutani KM, Herman MG, Johnson JE, Foote RL, Beltran CJ. Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study. Int J Part Ther 2021; 8:25-36. [PMID: 35530183 PMCID: PMC9009459 DOI: 10.14338/ijpt-20-00040.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This article presents an in vivo imaging technique based on nuclear fragmentation of carbon ions in irradiated tissues for potential real-time monitoring of carbon-ion radiation therapy (CIRT) treatment delivery and quality assurance purposes in clinical settings. Materials and Methods A proof-of-concept imaging and monitoring system (IMS) was devised to implement the technique. Monte Carlo simulations were performed for a prospective pencil-beam scanning CIRT nozzle. The development IMS benchmark considered a 5×5-cm2 pixelated charged-particle detector stack positioned downstream from a target phantom and list-mode data acquisition. The abundance and production origins, that is, vertices, of the detected fragments were studied. Fragment trajectories were approximated by straight lines and a beam back-projection algorithm was built to reconstruct the vertices. The spatial distribution of the vertices was then used to determine plan relevant markers. Results The IMS technique was applied for a simulated CIRT case, a primary brain tumor. Four treatment plan monitoring markers were conclusively recovered: a depth dose distribution correlated profile, ion beam range, treatment target boundaries, and the beam spot position. Promising millimeter-scale (3-mm, ≤10% uncertainty) beam range and submillimeter (≤0.6-mm precision for shifts <3 cm) beam spot position verification accuracies were obtained for typical therapeutic energies between 150 and 290 MeV/u. Conclusions This work demonstrated a viable online monitoring technique for CIRT treatment delivery. The method's strong advantage is that it requires few signal inputs (position and timing), which can be simultaneously acquired with readily available technology. Future investigations will probe the technique's applicability to motion-sensitive organ sites and patient tissue heterogeneities. In-beam measurements with candidate detector-acquisition systems are ultimately essential to validate the IMS benchmark performance and subsequent deployment in the clinic.
Collapse
Affiliation(s)
- Anissa Bey
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Jiasen Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
21
|
Galeaz C, Totis C, Bisio A. Radiation Resistance: A Matter of Transcription Factors. Front Oncol 2021; 11:662840. [PMID: 34141616 PMCID: PMC8204019 DOI: 10.3389/fonc.2021.662840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, radiation therapy is one of the standard therapies for cancer treatment. Since the first applications, the field of radiotherapy has constantly improved, both in imaging technologies and from a dose-painting point of view. Despite this, the mechanisms of resistance are still a great problem to overcome. Therefore, a more detailed understanding of these molecular mechanisms will allow researchers to develop new therapeutic strategies to eradicate cancer effectively. This review focuses on different transcription factors activated in response to radiotherapy and, unfortunately, involved in cancer cells’ survival. In particular, ionizing radiations trigger the activation of the immune modulators STAT3 and NF-κB, which contribute to the development of radiation resistance through the up-regulation of anti-apoptotic genes, the promotion of proliferation, the alteration of the cell cycle, and the induction of genes responsible for the Epithelial to Mesenchymal Transition (EMT). Moreover, the ROS-dependent damaging effects of radiation therapy are hampered by the induction of antioxidant enzymes by NF-κB, NRF2, and HIF-1. This protective process results in a reduced effectiveness of the treatment, whose mechanism of action relies mainly on the generation of free oxygen radicals. Furthermore, the previously mentioned transcription factors are also involved in the maintenance of stemness in Cancer Stem Cells (CSCs), a subset of tumor cells that are intrinsically resistant to anti-cancer therapies. Therefore, combining standard treatments with new therapeutic strategies targeted against these transcription factors may be a promising opportunity to avoid resistance and thus tumor relapse.
Collapse
Affiliation(s)
- Chiara Galeaz
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Cristina Totis
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
22
|
Waller V, Pruschy M. Combined Radiochemotherapy: Metalloproteinases Revisited. Front Oncol 2021; 11:676583. [PMID: 34055644 PMCID: PMC8155607 DOI: 10.3389/fonc.2021.676583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022] Open
Abstract
Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and intercellular signaling processes, that are part of a multilayered, treatment-induced stress response at the unicellular and tumor pathophysiological level. These processes are intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of ionizing radiation and thereby co-determine the tumor response to radiotherapy. Proteolysis of structural elements and bioactive signaling moieties represents a major class of posttranslational modifications regulating intra- and intercellular communication. Plasma membrane-located and secreted metalloproteinases comprise a family of metal-, usually zinc-, dependent endopeptidases and sheddases with a broad variety of substrates including components of the extracellular matrix, cyto- and chemokines, growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role in matrix remodeling and auto- and paracrine intercellular communication regulating tumor growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently the response to cancer treatment. While metalloproteinases have long been identified as promising target structures for anti-cancer agents, previous pharmaceutical approaches mostly failed due to unwanted side effects related to the structural similarities among the multiple family members. Nevertheless, targeting of metalloproteinases still represents an interesting rationale alone and in combination with other treatment modalities. Here, we will give an overview on the role of metalloproteinases in the irradiated tumor microenvironment and discuss the therapeutic potential of using more specific metalloproteinase inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
- Verena Waller
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
24
|
Ebner DK, Frank SJ, Inaniwa T, Yamada S, Shirai T. The Emerging Potential of Multi-Ion Radiotherapy. Front Oncol 2021; 11:624786. [PMID: 33692957 PMCID: PMC7937868 DOI: 10.3389/fonc.2021.624786] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Research into high linear energy transfer (LET) radiotherapy now spans over half a century, beginning with helium and deuteron treatment in 1952 and today ranging from fast neutrons to carbon-ions. Owing to pioneering work initially in the United States and thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers are in operation, with five under construction and three in planning. While the carbon-ion beam has demonstrated unique and promising suitability in laboratory and clinical trials toward the hypofractionated treatment of hypoxic and/or radioresistant cancer, substantial developmental potential remains. Perhaps most notable is the ability to paint LET in a tumor, theoretically better focusing damage delivery within the most resistant areas. However, the technique may be limited in practice by the physical properties of the beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution, and so a methodology combining the use of multiple ions into a uniform LET distribution within a tumor may allow for even greater treatment potential in radioresistant cancer.
Collapse
Affiliation(s)
- Daniel K Ebner
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taku Inaniwa
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
25
|
Wang Y, Huang J, Wu Q, Zhang J, Ma Z, Ma S, Zhang S. Downregulation of breast cancer resistance protein by long-term fractionated radiotherapy sensitizes lung adenocarcinoma to SN-38. Invest New Drugs 2021; 39:458-468. [PMID: 33475937 DOI: 10.1007/s10637-020-01003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Chemotherapy is usually the subsequent treatment for non-small cell lung cancer patients with acquired radioresistance after long-term fractionated radiotherapy. However, few studies have focused on the selection of chemotherapeutic drugs to treat lung adenocarcinoma patients with radioresistance. Our study compared the sensitivity changes of lung adenocarcinoma cells to conventional chemotherapeutic drugs under radioresistant circumstances by using three lung adenocarcinoma cell models, which were irradiated with fractionated X-rays at a total dose of 60 Gy. The results showed that the toxicities of paclitaxel, docetaxel and SN-38 were increased in radioresistant cells. The IC50 values of docetaxel and SN-38 decreased 0 ~ 3 times and 3 ~ 36 times in radioresistant cells, respectively. Notably, the A549 radioresistant cells were approximately 36 times more sensitive to SN-38 than the parental cells. Further results revealed that the downregulation of the efflux transporter BCRP by long-term fractionated irradiation was an important factor contributing to the increased cytotoxicity of SN-38. In addition, the reported miRNAs and transcriptional factors that regulate BCRP did not participate in the downregulation. In conclusion, these results presented important data on the sensitivity changes of lung adenocarcinoma cells to chemotherapeutic drugs after acquiring radioresistance and suggested that irinotecan (the prodrug of SN-38) might be a promising drug candidate for lung adenocarcinoma patients with acquired radioresistance.
Collapse
Affiliation(s)
- Yuqing Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jie Huang
- Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Qiong Wu
- The fourth College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhiyuan Ma
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shenglin Ma
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
26
|
Kamble D, Mahajan M, Dhat R, Sitasawad S. Keap1-Nrf2 Pathway Regulates ALDH and Contributes to Radioresistance in Breast Cancer Stem Cells. Cells 2021; 10:E83. [PMID: 33419140 PMCID: PMC7825579 DOI: 10.3390/cells10010083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor recurrence after radiotherapy due to the presence of breast cancer stem cells (BCSCs) is a clinical challenge, and the mechanism remains unclear. Low levels of ROS and enhanced antioxidant defenses are shown to contribute to increasing radioresistance. However, the role of Nrf2-Keap1-Bach1 signaling in the radioresistance of BCSCs remains elusive. Fractionated radiation increased the percentage of the ALDH-expressing subpopulation and their sphere formation ability, promoted mesenchymal-to-epithelial transition and enhanced radioresistance in BCSCs. Radiation activated Nrf2 via Keap1 silencing and enhanced the tumor-initiating capability of BCSCs. Furthermore, knockdown of Nrf2 suppressed ALDH+ population and stem cell markers, reduced radioresistance by decreasing clonogenicity and blocked the tumorigenic ability in immunocompromised mice. An underlying mechanism of Keap1 silencing could be via miR200a, as we observed a significant increase in its expression, and the promoter methylation of Keap1 or GSK-3β did not change. Our data demonstrate that ALDH+ BCSC population contributes to breast tumor radioresistance via the Nrf2-Keap1 pathway, and targeting this cell population with miR200a could be beneficial but warrants detailed studies. Our results support the notion that Nrf2-Keap1 signaling controls mesenchymal-epithelial plasticity, regulates tumor-initiating ability and promotes the radioresistance of BCSCs.
Collapse
Affiliation(s)
| | | | | | - Sandhya Sitasawad
- Redox Biology Lab, National Centre for Cell Science (NCCS), Pune 411007, India; (D.K.); (M.M.); (R.D.)
| |
Collapse
|
27
|
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:244-263. [PMID: 34337349 PMCID: PMC8323830 DOI: 10.20517/cdr.2020.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
- Correspondence Address: Dr. Jac A. Nickoloff, Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Ft. Collins, CO 80523-1681, USA. E-mail:
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| |
Collapse
|
28
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020; 9:cells9071651. [PMID: 32660072 PMCID: PMC7407195 DOI: 10.3390/cells9071651] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| |
Collapse
|
29
|
miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther 2020; 5:85. [PMID: 32528035 PMCID: PMC7290026 DOI: 10.1038/s41392-020-0182-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy remains one of the major treatments for non-small cell lung cancer (NSCLC) patients; whereas intrinsic or acquired radioresistance limits its efficacy. Nevertheless, most studies so far have only focused on acquired resistance. The exact mechanisms of intrinsic radioresistance in NSCLC are still unclear. A few studies have suggested that epithelial–mesenchymal transition (EMT) is associated with radioresistance in NSCLC. However, little is known about whether the abnormal expression of specific microRNAs induces both EMT and radioresistance. We previously found that miR-410 has multiple roles as an oncomiRNA in NSCLC. In this study, we revealed that miR-410 overexpression promoted EMT and radioresistance, accompanied by enhanced DNA damage repair both in vitro and in vivo. Conversely, knockdown of miR-410 showed the opposite effects. We further demonstrated that PTEN was a direct target of miR-410 by using bioinformatic tools and dual-luciferase reporter assays, and the miR-410-induced EMT and radioresistance were reversed by PI3K, Akt, and mTOR inhibitors or by restoring the expression of PTEN in NSCLC cells. In addition, we preliminarily found that the expression of miR-410 was positively correlated with EMT and negatively associated with the expression of PTEN in NSCLC specimens. In summary, these results demonstrated that miR-410 is an important regulator on enhancing both NSCLC EMT and radioresistance by targeting the PTEN/PI3K/mTOR axis. The findings suggest that miR-410-induced EMT might significantly contribute to the enhanced radioresistance. Therefore, miR-410 may serve as a potential biomarker or therapeutic target for NSCLC radiotherapy.
Collapse
|
30
|
The p53-53BP1-Related Survival of A549 and H1299 Human Lung Cancer Cells after Multifractionated Radiotherapy Demonstrated Different Response to Additional Acute X-ray Exposure. Int J Mol Sci 2020; 21:ijms21093342. [PMID: 32397297 PMCID: PMC7246764 DOI: 10.3390/ijms21093342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the main methods of treating patients with non-small cell lung cancer (NSCLC). However, the resistance of tumor cells to exposure remains the main factor that limits successful therapeutic outcome. To study the molecular/cellular mechanisms of increased resistance of NSCLC to ionizing radiation (IR) exposure, we compared A549 (p53 wild-type) and H1299 (p53-deficient) cells, the two NSCLC cell lines. Using fractionated X-ray irradiation of these cells at a total dose of 60 Gy, we obtained the survived populations and named them A549IR and H1299IR, respectively. Further characterization of these cells showed multiple alterations compared to parental NSCLC cells. The additional 2 Gy exposure led to significant changes in the kinetics of γH2AX and phosphorylated ataxia telangiectasia mutated (pATM) foci numbers in A549IR and H1299IR compared to parental NSCLC cells. Whereas A549, A549IR, and H1299 cells demonstrated clear two-component kinetics of DNA double-strand break (DSB) repair, H1299IR showed slower kinetics of γH2AX foci disappearance with the presence of around 50% of the foci 8 h post-IR. The character of H2AX phosphorylation in these cells was pATM-independent. A decrease of residual γH2AX/53BP1 foci number was observed in both A549IR and H1299IR compared to parental cells post-IR at extra doses of 2, 4, and 6 Gy. This process was accompanied with the changes in the proliferation, cell cycle, apoptosis, and the expression of ATP-binding cassette sub-family G member 2 (ABCG2, also designated as CDw338 and the breast cancer resistance protein (BCRP)) protein. Our study provides strong evidence that different DNA repair mechanisms are activated by multifraction radiotherapy (MFR), as well as single-dose IR, and that the enhanced cellular survival after MFR is reliant on both p53 and 53BP1 signaling along with non-homologous end-joining (NHEJ). Our results are of clinical significance as they can guide the choice of the most effective IR regimen by analyzing the expression status of the p53–53BP1 pathway in tumors and thereby maximize therapeutic benefits for the patients while minimizing collateral damage to normal tissue.
Collapse
|
31
|
Xu J, Saklatvala R, Mittal S, Deshmukh S, Procopio A. Recent Progress of Potentiating Immune Checkpoint Blockade with External Stimuli-an Industry Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903394. [PMID: 32328428 PMCID: PMC7175294 DOI: 10.1002/advs.201903394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Indexed: 05/14/2023]
Abstract
The past decade has seen the materialization of immune checkpoint blockade as an emerging approach to cancer treatment. However, the overall response and patient survival are still modest. Various efforts to study the "cancer immunogram" have highlighted complex biology that necessitates a multipronged approach. This includes increasing the antigenicity of the tumor, strengthening the immune infiltration in the tumor microenvironment, removing the immunosuppressive mechanisms, and reducing immune cell exhaustion. The coordination of these approaches, as well as the ability to enhance them through delivery, is evaluated. Due to their success in multiple preclinical models, external-stimuli-responsive nanoparticles have received tremendous attention. Several studies report success in distantly located tumor regression, metastases, and reoccurrence in preclinical mouse models. However, clinical translation in this space remains low. Herein, the recent advancement in external-stimuli-responsive nanoconstruct-synergized immune checkpoint blockade is summarized, offering an industry perspective on the limitations of current academic innovations and discussing challenges in translation from a technical, manufacturing, and regulatory perspective. These limitations and challenges will need to be addressed to establish external-stimuli-based therapeutic strategies for patients.
Collapse
Affiliation(s)
- Jun Xu
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Robert Saklatvala
- Discovery Pharmaceutical SciencesMRLMerck & Co., Inc.33 Avenue Louis PasteurBostonMA02115USA
| | - Sachin Mittal
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Smeet Deshmukh
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Adam Procopio
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| |
Collapse
|