1
|
Uo T, Ojo KK, Sprenger CC, Soriano Epilepsia K, Perera BGK, Damodarasamy M, Sun S, Kim S, Hogan HH, Hulverson MA, Choi R, Whitman GR, Barrett LK, Michaels SA, Xu LH, Sun VL, Arnold SL, Pang HJ, Nguyen MM, Vigil ALB, Kamat V, Sullivan LB, Sweet IR, Vidadala R, Maly DJ, Van Voorhis WC, Plymate SR. A Compound That Inhibits Glycolysis in Prostate Cancer Controls Growth of Advanced Prostate Cancer. Mol Cancer Ther 2024; 23:973-994. [PMID: 38507737 PMCID: PMC11219269 DOI: 10.1158/1535-7163.mct-23-0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Nonspecific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small-molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell-cycle, metabolic, and enzymatic assays were used to demonstrate their mechanism of action. A human patient-derived xenograft model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small-molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Takuma Uo
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Kayode K. Ojo
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Cynthia C.T. Sprenger
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Kathryn Soriano Epilepsia
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - B. Gayani K. Perera
- Department of Chemistry, University of Washington; Seattle, Washington 98195, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Shihua Sun
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Soojin Kim
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Hannah H. Hogan
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Matthew A. Hulverson
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Grant R. Whitman
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Lynn K. Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Samantha A. Michaels
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Linda H. Xu
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Vicky L. Sun
- Department of Pharmaceutics, University of Washington; Seattle, Washington 98195, USA
| | - Samuel L.M. Arnold
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
- Department of Pharmaceutics, University of Washington; Seattle, Washington 98195, USA
| | - Haley J. Pang
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Matthew M. Nguyen
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
| | - Anna-Lena B.G. Vigil
- Human Biology Division, Fred Hutchinson Cancer Center; Seattle, Washington 98109, USA
| | - Varun Kamat
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Diabetes Center, University of Washington; Seattle, Washington 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center; Seattle, Washington 98109, USA
- Department of Biochemistry, University of Washington; Seattle, Washington 98195, USA
| | - Ian R. Sweet
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, Diabetes Center, University of Washington; Seattle, Washington 98109, USA
| | - Ram Vidadala
- Department of Chemistry, University of Washington; Seattle, Washington 98195, USA
| | - Dustin J. Maly
- Department of Chemistry, University of Washington; Seattle, Washington 98195, USA
| | - Wesley C. Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington; Seattle, Washington 98109, USA
| | - Stephen R. Plymate
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington; Seattle, Washington 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System; Seattle, Washington 98108, USA
| |
Collapse
|
2
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
3
|
Uo T, Ojo KK, Sprenger CC, Epilepsia KS, Perera BGK, Damodarasamy M, Sun S, Kim S, Hogan HH, Hulverson MA, Choi R, Whitman GR, Barrett LK, Michaels SA, Xu LH, Sun VL, Arnold SLM, Pang HJ, Nguyen MM, Vigil ALBG, Kamat V, Sullivan LB, Sweet IR, Vidadala R, Maly DJ, Van Voorhis WC, Plymate SR. A Compound that Inhibits Glycolysis in Prostate Cancer Controls Growth of Advanced Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.01.547355. [PMID: 37461469 PMCID: PMC10350011 DOI: 10.1101/2023.07.01.547355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Purpose Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.
Collapse
|
4
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
5
|
Li R, Mei S, Ding Q, Wang Q, Yu L, Zi F. A pan-cancer analysis of the role of hexokinase II (HK2) in human tumors. Sci Rep 2022; 12:18807. [PMID: 36335239 PMCID: PMC9637150 DOI: 10.1038/s41598-022-23598-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022] Open
Abstract
More and more evidence show that HK2 is closely related to tumors. But no pan-cancer analysis is available. This paper aimed to explore the potential roles of HK2 across thirty-three tumors based on the datasets of the cancer genome Atlas (TCGA) and gene expression omnibus. HK2 is highly expressed in most tumors and related to the progression of some tumors. HK2 expression was associated with the infiltration of T follicular helper cells for the TCGA tumors of uveal melanoma, breast invasive carcinoma (BRCA), breast invasive carcinoma-luminalA (BRCA-LumA), head and neck squamous cell carcinoma (HNSC), head and neck squamous cell carcinoma with HPV positive (HNSC-HPV+), and cancer-associated fibroblasts for the tumors of brain lower grade glioma and stomach adenocarcinoma. Our first pan-cancer study offers a relatively comprehensive understanding of the roles of HK2 in different tumors.
Collapse
Affiliation(s)
- Ruiqi Li
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Shuchong Mei
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Qiang Ding
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Qingming Wang
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Li Yu
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| | - Fuming Zi
- grid.412455.30000 0004 1756 5980Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Donghu District, Nanchang, 330006 Jiangxi People’s Republic of China ,grid.260463.50000 0001 2182 8825Institute of Hematology, Nanchang University, Nanchang, China ,Key Laboratory of Hematology, Nanchang, 330006 Jiangxi People’s Republic of China
| |
Collapse
|
6
|
Šimčíková D, Gardáš D, Hložková K, Hruda M, Žáček P, Rob L, Heneberg P. Loss of hexokinase 1 sensitizes ovarian cancer to high-dose metformin. Cancer Metab 2021; 9:41. [PMID: 34895333 PMCID: PMC8666047 DOI: 10.1186/s40170-021-00277-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hexokinases (HKs) are well-studied enzymes catalyzing the first step of glycolysis. However, non-canonical regulatory roles of HKs are still incompletely understood. Here, we hypothesized that HKs comprise one of the missing links between high-dose metformin and the inhibition of the respiratory chain in cancer. Methods We tested the isoenzyme-specific regulatory roles of HKs in ovarian cancer cells by examining the effects of the deletions of HK1 and HK2 in TOV-112D ovarian adenocarcinoma cells. We reverted these effects by re-introducing wild-type HK1 and HK2, and we compared the HK1 revertant with the knock-in of catalytically dead HK1 p.D656A. We subjected these cells to a battery of metabolic and proliferation assays and targeted GC×GC-MS metabolomics. Results We found that the HK1 depletion (but not the HK2 depletion) sensitized ovarian cancer cells to high-dose metformin during glucose starvation. We confirmed that this newly uncovered role of HK1 is glycolysis-independent by the introduction of the catalytically dead HK1. The expression of catalytically dead HK1 stimulated similar changes in levels of TCA intermediates, aspartate and cysteine, and in glutamate as were induced by the HK2 deletion. In contrast, HK1 deletion increased the levels of branched amino acids; this effect was completely eliminated by the expression of catalytically dead HK1. Furthermore, HK1 revertants but not HK2 revertants caused a strong increase of NADPH/NADP ratios independently on the presence of glucose or metformin. The HK1 deletion (but not HK2 deletion) suppressed the growth of xenotransplanted ovarian cancer cells and nearly abolished the tumor growth when the mice were fed the glucose-free diet. Conclusions We provided the evidence that HK1 is involved in the so far unknown glycolysis-independent HK1–metformin axis and influences metabolism even in glucose-free conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00277-2.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Third Faculty of Medicine, Charles University, Ruská 87, CZ-100 00, Prague, Czech Republic
| | - Dominik Gardáš
- Third Faculty of Medicine, Charles University, Ruská 87, CZ-100 00, Prague, Czech Republic
| | - Kateřina Hložková
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Hruda
- Third Faculty of Medicine, Charles University, Ruská 87, CZ-100 00, Prague, Czech Republic.,University Hospital Kralovské Vinohrady, Prague, Czech Republic
| | - Petr Žáček
- Faculty of Science, BIOCEV, Charles University, Vestec, Czech Republic
| | - Lukáš Rob
- Third Faculty of Medicine, Charles University, Ruská 87, CZ-100 00, Prague, Czech Republic.,University Hospital Kralovské Vinohrady, Prague, Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Ruská 87, CZ-100 00, Prague, Czech Republic.
| |
Collapse
|
7
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Wang Y, Tang Y, Li J, Wang D, Li W. Human sperm-associated antigen 4 as a potential prognostic biomarker of lung squamous cell carcinoma. J Int Med Res 2021; 49:3000605211032807. [PMID: 34311595 PMCID: PMC8320573 DOI: 10.1177/03000605211032807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Lung cancer (LC) is one of the most prevalent malignant tumors worldwide. As a subtype of LC, lung squamous cell carcinoma (LUSC) has a 5-year survival rate of less than 15%. In this study, we aimed to evaluate the prognostic value of a glycolysis-related gene signature in LUSC patients. METHODS We obtained RNA-Seq data from The Cancer Genome Atlas (TCGA) database. Prognosis-related genes were screened out by Gene Set Enrichment Analysis (GSEA) and Cox proportional regression models. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to verify the mRNA expression levels in relevant tissues. RESULTS We found that sperm-associated antigen 4 (SPAG4) overexpression was an independent risk factor for overall survival (OS) in LUSC. Patients with high-risk scores had higher mortality rates than those with low-risk scores. Moreover, by using RT-qPCR, we validated that SPAG4 mRNA was overexpressed in LUSC tissue samples compared with their paired para-cancerous histological normal tissues. CONCLUSIONS Analysis of aberrantly overexpressed SPAG4 may provide a further useful approach to complement existing methods and predict prognosis in LUSC patients.
Collapse
Affiliation(s)
- Yongheng Wang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Surgical Oncology, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yao Tang
- Department of General Surgery, Xi'an No. 3 Hospital, Xi'an, Shaanxi, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Surgical Oncology, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danfang Wang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Surgical Oncology, The Affiliated Hospital of Xi’an Medical University, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Surgical Oncology, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Lee Y, Joo J, Lee YJ, Lee EK, Park S, Kim TS, Lee SH, Kim SY, Wie GA, Park M, Kim MJ, Lee JS, Han JY. Randomized phase II study of platinum-based chemotherapy plus controlled diet with or without metformin in patients with advanced non-small cell lung cancer. Lung Cancer 2020; 151:8-15. [PMID: 33278671 DOI: 10.1016/j.lungcan.2020.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accumulating evidence indicates anti-diabetic drug metformin has anti-cancer effect by controlling cancer metabolism. We evaluated whether addition of metformin to chemotherapy improved survival of lung cancer patients. MATERIALS AND METHODS This randomized phase II study enrolled 164 patients with chemo-native, EGFR-ALK wild-type, stage IIIB/IV non-small-cell lung cancer (NSCLC). Patients were randomized to receive chemotherapy either with metformin (1000 mg twice daily) or alone every 3 weeks for six cycles. The patients received gemcitabine (1000 mg/m2) on days 1 and 8 and carboplatin (5 area under the curve) on day 1. Exploratory studies included serum metabolic panels, positron-emission tomography (PET) imaging, and genetic mutation tests for metabolism-related genes. RESULTS Metformin group showed no significant difference in the risk of progression and death compared to control group (progression: hazard ratio [HR] = 1.01 [95% confidence interval (CI) = 0.72 - 1.42], P = 0.935; death: HR = 0.95 [95% CI = 0.67-1.34], P = 0.757). Squamous cell carcinoma (SqCC) had significantly higher fluorodeoxyglucose (FDG) uptake on baseline PET image than non-SqCC NSCLC (P = 0.004). In the SqCC with high FDG uptake, the addition of metformin significantly decreased the risk of progression and death (progression: HR = 0.31 [95% CI = 0.12-0.78], P = 0.013; death: HR = 0.42 [95% CI = 0.18-0.94], P = 0.035). The HDL-cholesterol level was significantly increased after the treatment in metformin group compared to control group (P = 0.011). The metformin group showed no survival benefit in the patients with hyperinsulinemia or patients whose insulin level was decreased after treatment. CONCLUSIONS Addition of metformin to chemotherapy provided no survival benefit in unselected NSCLC patients. However, it significantly improved the survival of the selected patients with SqCC showing high FDG uptake. It suggests metformin shows the synergistic anti-tumor effect in the tumor which are highly dependent on glucose metabolism.
Collapse
Affiliation(s)
- Youngjoo Lee
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - You Jin Lee
- Division of Endocrinology, Department of Internal Medicine, National Cancer Center Korea, Goyang, Republic of Korea
| | - Eun Kyung Lee
- Division of Endocrinology, Department of Internal Medicine, National Cancer Center Korea, Goyang, Republic of Korea
| | - Sohyun Park
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Department of Nuclear Medicine, National Cancer Center Korea, Goyang, Republic of Korea
| | - Soo-Hyun Lee
- Department of Radiology, National Cancer Center Korea, Goyang, Republic of Korea
| | - So Young Kim
- Department of Clinical Nutrition, National Cancer Center Korea, Goyang, Republic of Korea
| | - Gyung-Ah Wie
- Department of Clinical Nutrition, National Cancer Center Korea, Goyang, Republic of Korea
| | - Minjoung Park
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea
| | - Mi-Jung Kim
- Division of Medical Oncology, Department of Internal Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Jin Soo Lee
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Republic of Korea.
| |
Collapse
|
10
|
Ni S, Kuang Y, Yuan Y, Yu B. Mitochondrion-mediated iron accumulation promotes carcinogenesis and Warburg effect through reactive oxygen species in osteosarcoma. Cancer Cell Int 2020; 20:399. [PMID: 32831652 PMCID: PMC7437012 DOI: 10.1186/s12935-020-01494-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Iron metabolism disorder is closely associated with several malignant tumors, however the mechanisms underlying iron and the carcinogenesis in osteosarcoma are not yet well understood. Methods Cell proliferation ability of osteosarcoma cell lines was measured by CCK-8, EdU incorporation and colony formation assays. Cell cycle analysis was detected by flow cytometry. The carcinogenesis of osteosarcoma was measured by soft-agar formation, trans-well and Wound healing-scratch assay. Warburg effect was detected by Seahorse respirometry assays. Reactive oxygen species (ROS) level was measured by Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probes. Western blotting was used to measure the expression of mitoferrin 1 (SLC25A37) and mitoferrin 2 (SLC25A28). Iron level in vitro and vivo was detected by iron assay kit. RNAi stable cell lines was generated using shRNA. Results Iron promoted proliferation, carcinogenesis and Warburg effect of osteosarcoma cells. Iron-induced reactive oxygen species (ROS) played an important role in these processes. Iron accumulated more in mitochondrion than in cytoplasm, suggesting mitochondrion-mediated iron accumulation was involved in the development of osteosarcoma. Moreover, iron upregulated the expression of mitoferrin 1 (SLC25A37) and mitoferrin 2 (SLC25A28). Knock-down of mitoferrin 1 (SLC25A37) and mitoferrin 2 (SLC25A28) decreased the production of ROS. In addition, iron increased the expression of Warburg key enzymes HK2 and Glut1, and affected AMPK/mTORC1 signaling axis. Conclusions Mitochondrion-mediated iron accumulation promotes carcinogenesis and Warburg effect of osteosarcoma cells. Meanwhile, iron deprivation might be a novel effective strategy in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399 China
| | - Yanbin Kuang
- Department of Respiratory Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399 China
| |
Collapse
|
11
|
Li YF, Dong L, Li Y, Wei WB. A Review of MicroRNA in Uveal Melanoma. Onco Targets Ther 2020; 13:6351-6359. [PMID: 32669855 PMCID: PMC7335863 DOI: 10.2147/ott.s253946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM) is the most common and aggressive primary intraocular tumor in adults. UM is classified as a malignant tumor with a strong tendency of metastasis, which always leads to poor outcomes. At present, the pathogenesis of UM remains unclear and lacks effective therapies. Recent studies have shown that microRNAs (miRNAs), defined as a group of 21-23 nucleotides single-stranded noncoding RNAs, play a significant role in UM. By binding to the complementary sites within the 3' untranslated region (3'UTR) of message RNAs (mRNAs), miRNAs regulate genes by decaying mRNAs or inhibiting their translation. Thus, miRNAs can modulate various biological behaviors of tumors, including cell proliferation, invasion and metastasis. Furthermore, miRNAs have shown clinical applications by serving as biomarkers for diagnosis and prognosis, regulating immune response, and functioning as epigenetic regulators. It is reasonable to believe that miRNAs have wide application prospects in the early diagnosis and therapy of UM.
Collapse
Affiliation(s)
- Yi Fan Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Li Dong
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|