1
|
Wang Z, Jin X, Yong X. Identification of ferroptosis-related LncRNAs as potential targets for improving immunotherapy in glioblastoma. Comput Methods Biomech Biomed Engin 2025:1-13. [PMID: 39743840 DOI: 10.1080/10255842.2024.2448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/22/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
The effect of ferroptosis-related long non-coding RNAs (lncRNAs) in predicting immunotherapy response to glioblastoma (GBM) remains obscure. This study established a 11-lncRNAs prognostic signature. Differential gene expression analysis, univariate and multivariate Cox regression analyses and the least absolute shrinkage and selection operator (LASSO) regression algorithm were used to identify prognostic ferroptosis-related genes and establish a nomogram model of risk score. Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis were used to evaluate the prognostic accuracy of the model in the TCGA-GBM cohort. To verify the expression of these signatures, we analyzed the expression levels of three lncRNAs (AGAP2-AS1, OSMR-AS1, UNC5B-AS1) in LN229 and U87 cells. The ROC analysis showed that the area under curve (AUC) of this signature is 0.814, suggesting that it has a promising performance on GBM prognostic prediction. Kaplan-Meier analysis showed that the survival rate of GBM patients in high-risk group was significantly lower than low-risk group, and the performance of this signature on GBM prognostic prediction was superior to conventional clinicopathological factors. Further qRT-PCR experiment also confirmed our prediction of lncRNA signatures. These ferroptosis-related lncRNAs might be therapeutic targets for glioblastoma, and targeting these lncRNAs can also improve the efficacy of immunotherapy, especially immune checkpoint inhibitors. Mechanistically, these findings might attribute to N6-methyladenosine (m6A) mRNA modification on lncRNAs.
Collapse
Affiliation(s)
- Zhaochen Wang
- Department of Neurosurgery, Northwest University Xi'an No1 Hospital, Xi'an, China
| | - Xiao Jin
- The Personnel Department, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoli Yong
- Department of Neurology, Chang'An Hospital, Economic and Technological Development District, Xi'an, China
| |
Collapse
|
2
|
Dai YJ, Tang HD, Jiang GQ, Xu ZY. The immunological landscape and silico analysis of key paraptosis regulator LPAR1 in gastric cancer patients. Transl Oncol 2024; 49:102110. [PMID: 39182362 PMCID: PMC11388017 DOI: 10.1016/j.tranon.2024.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
This study aims to identify key regulators of paraptosis in gastric cancer (GC) and explore their potential in guiding therapeutic strategies, especially in stomach adenocarcinoma (STAD). Genes associated with paraptosis were identified from the references and subjected to Cox regression analysis in the TCGA-STAD cohort. Using machine learning models, LPAR1 consistently ranked highest in feature importance. Multiple sequencing data showed that LPAR1 was significantly overexpressed in cancer-associated fibroblasts (CAFs). LPAR1 expression was significantly higher in normal tissues, and ROC analysis demonstrated its discriminative ability. Copy number alterations and microsatellite instability were significantly associated with LPAR1 expression. High LPAR1 expression correlated with advanced tumor grades and specific cancer immune subtypes, and multivariate analysis confirmed LPAR1 as an independent predictor of poor prognosis. LPAR1 expression was associated with different immune response metrics, including immune effector activation and upregulated chemokine secretion. High LPAR1 expression also correlated with increased sensitivity to compounds, such as BET bromodomain inhibitors I-BET151 and RITA, suggesting LPAR1 as a biomarker for predicting drug activity. FOXP2 showed a strong positive correlation with LPAR1 transcriptional regulation, while increased methylation of LPAR1 promoter regions was negatively correlated with gene expression. Knockdown of LPAR1 affected cell growth in most tumor cell lines, and in vitro experiments demonstrated that LPAR1 influenced extracellular matrix (ECM) contraction and cell viability in the paraptosis of CAFs. These findings suggest that LPAR1 is a critical regulator of paraptosis in GC and a potential biomarker for drug sensitivity and immunotherapy response. This underscores the role of CAFs in mediating tumorigenic effects and suggests that targeting LPAR1 could be a promising strategy for precision medicine in GC.
Collapse
Affiliation(s)
- Ya-Jie Dai
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Hao-Dong Tang
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Guang-Qing Jiang
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhai-Yue Xu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| |
Collapse
|
3
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Bokaii Hosseini Z, Rajabi F, Morovatshoar R, Ashrafpour M, Behboodi P, Zareie D, Natami M. Downregulation of LPAR1 Promotes Invasive Behavior in Papillary Thyroid Carcinoma Cells. Cancer Inform 2024; 23:11769351241277012. [PMID: 39253536 PMCID: PMC11382228 DOI: 10.1177/11769351241277012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Background Lysophosphatidic acid receptor 1 (LPAR1) has been identified as a biomarker in various cancer types. However, its biological function in papillary thyroid carcinoma (PTC) remains unknown. Methods LPAR1 was identified as a key regulator of epithelial-mesenchymal transition (EMT) in PTC cells through bioinformatics analysis of TCGA and GEO datasets. PPI analysis and correlation with immune infiltrates were also conducted. LPAR1 expression was evaluated using Gepia2 and GTEx, and miRNA target gene prediction was done with multiMiR. To assess the expression of LPAR1, we extracted total RNA from both the BCPAP cell line and the normal human thyroid epithelial cell line Nthy-ori 3-1. The levels of LPAR1 expression were then measured using quantitative real-time polymerase chain reaction (qRT-PCR) in the BCPAP cell line, with a comparison to the Nthy-ori 3-1 cell line. Results 1081 genes were upregulated, and 544 were downregulated compared to normal tissue. LPAR1 was identified as a key candidate by analyzing the TCGA and GEO datasets. PPI data analysis showed interactions with metastasis-related proteins. Functional enrichment analysis indicated involvement in signaling pathways like phospholipase D and actin cytoskeleton regulation. LPAR1 expression correlated positively with immune infiltrates such as CD4+ T cells, macrophages, neutrophils, and myeloid dendritic cells but negatively with B cells. Additionally, miR-221-5p was predicted to target LPAR1 in PTC. Furthermore, our experimental data demonstrated that LPAR1 was under-expressed in the PTC cell line compared to the nonmalignant one (P < .01). Conclusion LPAR1 suppresses metastasis and is linked to EMT, as evidenced by the decreased LPAR1 expression and increased miR-221-5p in PTC. This suggests its potential as a biomarker for diagnosis and prognosis and as a therapeutic target for EMT.
Collapse
Affiliation(s)
| | - Fatemeh Rajabi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Dorsa Zareie
- School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
5
|
Song J, Xie D, Wei X, Liu B, Yao F, Ye W. A cuproptosis-related lncRNAs signature predicts prognosis and reveals pivotal interactions between immune cells in colon cancer. Heliyon 2024; 10:e34586. [PMID: 39114018 PMCID: PMC11305305 DOI: 10.1016/j.heliyon.2024.e34586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Copper-mediated cell death presents distinct pathways from established apoptosis processes, suggesting alternative therapeutic approaches for colon cancer. Our research aims to develop a predictive framework utilizing long-noncoding RNAs (lncRNAs) related to cuproptosis to predict colon cancer outcomes while examining immune interactions and intercellular signaling. We obtained colon cancer-related human mRNA expression profiles and clinical information from the Cancer Genome Atlas repository. To isolate lncRNAs involved in cuproptosis, we applied Cox proportional hazards modeling alongside the least absolute shrinkage and selection operator technique. We elucidated the underlying mechanisms by examining the tumor mutational burden, the extent of immune cell penetration, and intercellular communication dynamics. Based on the model, drugs were predicted and validated with cytological experiments. A 13 lncRNA-cuproptosis-associated risk model was constructed. Two colon cancer cell lines were used to validate the predicted representative mRNAs with high correlation coefficients with copper-induced cell death. Survival enhancement in the low-risk cohort was evidenced by the trends in Kaplan-Meier survival estimates. Analysis of immune cell infiltration suggested that survival was induced by the increased infiltration of naïve CD4+ T cells and a reduction of M2 macrophages within the low-risk faction. Decreased infiltration of naïve B cells, resting NK cells, and M0 macrophages was significantly associated with better overall survival. Combined single-cell analysis suggested that CCL5-ACKR1, CCL2-ACKR1, and CCL5-CCR1 pathways play key roles in mediating intercellular dialogues among immune constituents within the neoplastic microhabitat. We identified three drugs with a high sensitivity in the high-risk group. In summary, this discovery establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to assess the prognosis, unravel the immune mechanisms and cell communication, and improve treatment options, which may provide a new idea for treating colon cancer.
Collapse
Affiliation(s)
- Jingru Song
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Dong Xie
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xia Wei
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Binbin Liu
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Fang Yao
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Wei Ye
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| |
Collapse
|
6
|
Qi Y, Wang Y, Yuan J, Xu Y, Pan H. Unveiling the therapeutic promise: exploring Lysophosphatidic Acid (LPA) signaling in malignant bone tumors for novel cancer treatments. Lipids Health Dis 2024; 23:204. [PMID: 38943207 PMCID: PMC11212261 DOI: 10.1186/s12944-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Yichen Qi
- Huankui Academy, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Jinping Yuan
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yufei Xu
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Haili Pan
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China.
| |
Collapse
|
7
|
Wei G, Zhang X, Liu S, Hou W, Dai Z. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep 2024; 14:11688. [PMID: 38778150 PMCID: PMC11111877 DOI: 10.1038/s41598-024-62256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.
Collapse
Affiliation(s)
- Guanyun Wei
- Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Xu Zhang
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Siyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Wanxin Hou
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China
| | - Zao Dai
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China.
| |
Collapse
|
8
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Ma Y, Jin J, Xue Z, Zhao J, Cai W, Zhang W. Integrated multi-omics analysis and machine learning developed a prognostic model based on mitochondrial function in a large multicenter cohort for Gastric Cancer. J Transl Med 2024; 22:381. [PMID: 38654380 PMCID: PMC11040813 DOI: 10.1186/s12967-024-05109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common and aggressive type of cancer worldwide. Despite recent advancements in its treatment, the prognosis for patients with GC remains poor. Understanding the mechanisms of cell death in GC, particularly those related to mitochondrial function, is crucial for its development and progression. However, more research is needed to investigate the significance of the interaction between mitochondrial function and GC cell death. METHODS We employed a robust computational framework to investigate the role of mitochondria-associated proteins in the progression of GC in a cohort of 1,199 GC patients. Ten machine learning algorithms were utilized and combined into 101 unique combinations. Ultimately, we developed a Mitochondrial-related-Score (MitoScore) using the machine learning model that exhibited the best performance. We observed the upregulation of LEMT2 and further explored its function in tumor progression. Mitochondrial functions were assessed by measuring mitochondrial ATP, mitochondrial membrane potential, and levels of lactate, pyruvate, and glucose. RESULTS MitoScore showed significant correlations with GC immune and metabolic functions. The higher MitoScore subgroup exhibited enriched metabolic pathways and higher immune activity. Overexpression of LETM2 (leucine zipper and EF-hand containing transmembrane protein 2) significantly enhanced tumor proliferation and metastasis. LETM2 plays a role in promoting GC cell proliferation by activating the mTOR pathway, maintaining mitochondrial homeostasis, and promoting glycolysis. CONCLUSION The powerful machine learning framework highlights the significant potential of MitoScore in providing valuable insights and accurate assessments for individuals with GC. This study also enhances our understanding of LETM2 as an oncogene signature in GC. LETM2 may promote tumor progression by maintaining mitochondrial health and activating glycolysis, offering potential targets for diagnosis, treatment, and prognosis of GC.
Collapse
Affiliation(s)
- Yimeng Ma
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Jin
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Zixuan Xue
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jungang Zhao
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Weiyang Cai
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wanli Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
10
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
11
|
Samare-Najaf M, Kouchaki H, Moein Mahini S, Saberi Rounkian M, Tavakoli Y, Samareh A, Karim Azadbakht M, Jamali N. Prostate cancer: Novel genetic and immunologic biomarkers. Clin Chim Acta 2024; 555:117824. [PMID: 38316287 DOI: 10.1016/j.cca.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Prostate cancer (PCa) is considered one of the most prevalent male malignancies worldwide with a global burden estimated to increase over the next two decades. Due to significant mortality and debilitation of survival, early diagnosis has been described as key. Unfortunately, current diagnostic serum-based strategies have low specificity and sensitivity. Histologic examination is invasive and not useful for treatment and monitoring purposes. Hence, a plethora of studies have been conducted to identify and validate an efficient noninvasive approach in the diagnosis, staging, and prognosis of PCa. These investigations may be categorized as genetic (non-coding biomarkers and gene markers), immunologic (immune cells, interleukins, cytokines, antibodies, and auto-antibodies), and heterogenous (PSA-related markers, PHI-related indices, and urinary biomarkers) subgroups. This review examines current approaches and potential strategies using biomarker panels in PCa.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Moein Mahini
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
12
|
Wang X, Wang X, Liu Z, Liu L, Zhang J, Jiang D, Huang G. Identification of inflammation-related biomarkers in keloids. Front Immunol 2024; 15:1351513. [PMID: 38444850 PMCID: PMC10912164 DOI: 10.3389/fimmu.2024.1351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Background The relationship between inflammation-related genes (IRGs) and keloid disease (KD) is currently unclear. The aim of this study was to identify a new set of inflammation-related biomarkers in KD. Methods GSE145725 and GSE7890 datasets were used in this study. A list of 3026 IRGs was obtained from the Molecular Signatures Database. Differentially expressed inflammation-related genes (DEGs) were obtained by taking the intersection of DEGs between KD and control samples and the list of IRGs. Candidate genes were selected using least absolute shrinkage and selection operator (LASSO) regression analysis. Candidate genes with consistent expression differences between KD and control in both GSE145725 and GSE7890 datasets were screened as biomarkers. An alignment diagram was constructed and validated, and in silico immune infiltration analysis and drug prediction were performed. Finally, RT-qPCR was performed on KD samples to analyze the expression of the identified biomarkers. Results A total of 889 DEGs were identified from the GSE145725 dataset, 169 of which were IRGs. Three candidate genes (TRIM32, LPAR1 and FOXF1) were identified by the LASSO regression analysis, and expression validation analysis suggested that FOXF1 and LPAR1 were down-regulated in KD samples and TRIM32 was up-regulated. All three candidate genes had consistent changes in expression in both the GSE145725 and GSE7890 datasets. An alignment diagram was constructed to predict KD. Effector memory CD4 T cells, T follicular helper cell, Myeloid derived suppressor cell, activated dendritic cell, Immature dendritic cell and Monocyte were differentially expressed between the KD and control group. Sixty-seven compounds that may act on FOXF1, 108 compounds that may act on LPAR1 and 56 compounds that may act on TRIM32 were predicted. Finally, RT-qPCR showed that the expression of LPAR1 was significantly lower in KD samples compared to normal samples whereas TRIM32 was significantly higher, while there was no difference in the expression of FOXF1. Conclusion This study provides a new perspective to study the relationship between IRGs and KD.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoyang Wang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenzhong Liu
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jixun Zhang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Duyin Jiang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guobao Huang
- Burn Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
13
|
Meng F, Yin Z, Lu F, Wang W, Zhang H. Disruption of LPA-LPAR1 pathway results in lung tumor growth inhibition by downregulating B7-H3 expression in fibroblasts. Thorac Cancer 2024; 15:316-326. [PMID: 38124403 PMCID: PMC10834189 DOI: 10.1111/1759-7714.15193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Lysophosphatidic acids (LPAs) belong to a class of bioactive lysophospholipids with multiple functions including immunomodulatory roles in tumor microenvironment (TME). LPA exerts its biological effects via its receptors that are highly expressed in fibroblasts among other cell types. As cancer-associated fibroblasts (CAFs) are a key component of the TME, it is important to understand LPA signaling and regulation of receptors in fibroblasts or CAFs and associated regulatory roles on immunomodulation-related molecules. METHODS Cluster analysis, immunoblotting, real-time quantitative-PCR, CRISPR-Cas9 gene editing system, immunohistochemical staining, coculture model, and in vivo xenograft model were used to investigate the effects of LPA-LPAR1 on B7-H3 in tumor promotion of CAFs. RESULTS In this study, we found that LPAR1 and CD276 (B7-H3) were generally highly expressed in fibroblasts with good expression correlation. LPA induced B7-H3 up-expression through LPAR1, and stimulated fibroblasts proliferation that could be inhibited by silencing LPAR1 or B7-H3 as well as small molecule LPAR1 antagonist (Ki16425). Using engineered fibroblasts and non-small cell lung carcinoma (NSCLC) cell lines, subsequent investigations demonstrated that CAFs promoted the proliferation of NSCLC in vitro and in vivo, and such effect could be inhibited by knocking out LPAR1 or B7-H3. CONCLUSION The present study provided new insights for roles of LPA in CAFs, which could lead to the development of innovative therapies targeting CAFs in the TME. It is also reasonable to postulate a combinatory approach to treat malignant fibrous tumors (such as NSCLC) with LPAR1 antagonists and B7-H3 targeting therapies.
Collapse
Affiliation(s)
- Fanyi Meng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhiyue Yin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Feifei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Guo S, Xing N, Du Q, Luo B, Wang S. Deciphering hepatocellular carcinoma pathogenesis and therapeutics: a study on anoikis, ceRNA regulatory network and traditional Chinese medicine. Front Pharmacol 2024; 14:1325992. [PMID: 38283837 PMCID: PMC10811069 DOI: 10.3389/fphar.2023.1325992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is responsible for approximately 90% of liver malignancies and is the third most common cause of cancer-related mortality worldwide. However, the role of anoikis, a programmed cell death mechanism crucial for maintaining tissue equilibrium, is not yet fully understood in the context of HCC. Methods: Our study aimed to investigate the expression of 10 anoikis-related genes (ARGs) in HCC, including BIRC5, SFN, UBE2C, SPP1, E2F1, etc., and their significance in the disease. Results: Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we discovered that these ARGs are involved in important processes such as tissue homeostasis, ion transport, cell cycle regulation, and viral infection pathways. Furthermore, we found a significant correlation between the prognostic value of five ARGs and immune cell infiltrates. Analysis of clinical datasets revealed a strong association between BIRC5 expression and HCC pathological progression, including pathological stage, T stage, overall survival (OS), and race. By constructing a competing endogenous RNA (ceRNA) network and using molecular docking, we identified ten bioactive compounds from traditional Chinese medicine (TCM) that could potentially modulate BIRC5. Subsequent in vitro experiments confirmed the influence of platycodin D, one of the identified compounds, on key elements within the ceRNA network. Discussion: In conclusion, our study presents a novel framework for an anoikis-centered prognostic model and an immune-involved ceRNA network in HCC, revealing potential regulatory targets. These insights contribute to our understanding of HCC pathology and may lead to improved therapeutic interventions.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Luo
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
15
|
Ling L, Li B, Wu H, Zhang K, Li S, Ke B, Zhu Z, Liu T, Liu P, Zhang B. Construction and validation of molecular subtype and signature of immune cell-related telomeric genes and prediction of prognosis and immunotherapy efficacy in ovarian cancer patients. J Gene Med 2024; 26:e3606. [PMID: 38282157 DOI: 10.1002/jgm.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers. METHODS ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation. RESULTS WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS. CONCLUSIONS ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.
Collapse
Affiliation(s)
- Lele Ling
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Wu
- Department of Medical Affairs, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siwen Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boliang Ke
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Song Z, Su M, Li X, Xie J, Han F, Yao J. A novel endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune response evaluation in Stomach adenocarcinoma. BMC Gastroenterol 2023; 23:432. [PMID: 38066437 PMCID: PMC10709857 DOI: 10.1186/s12876-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a significant contributor to cancer-related mortality worldwide. Although previous research has identified endoplasmic reticulum stress (ERS) as a regulator of various tumor-promoting properties of cancer cells, the impact of ERS-related long non-coding RNAs (lncRNAs) on STAD prognosis has not yet been investigated. Therefore, our study aims to develop and validate an ERS-related lncRNA signature that can accurately predict the prognosis of STAD patients. METHODS We collected RNA expression profiles and clinical data of STAD patients from The Cancer Genome Atlas (TCGA) and identified ERS-related genes from the Molecular Signature Database (MSigDB). Co-expression analysis enabled us to identify ERS-related lncRNAs, and we applied univariate Cox, least absolute shrinkage, and selection operator (LASSO), and multivariate Cox regression analyses to construct a predictive signature comprising of 9 ERS-related lncRNAs. We assessed the prognostic accuracy of our signature using Kaplan-Meier survival analysis, and validated our predictive signature in an independent gene expression omnibus (GEO) cohort. We also performed tumor mutational burden (TMB) and tumor immune microenvironment (TIME) analyses. Enrichment analysis was used to investigate the functions and biological processes of the signature, and we identified two distinct STAD patient subgroups through consensus clustering. Finally, we performed drug sensitivity analysis and immunologic efficacy analysis to explore further insights. RESULTS The 9 ERS related-lncRNAs signature demonstrated satisfactory predictive performance as an independent prognostic marker and was significantly associated with STAD clinicopathological characteristics. Furthermore, patients in the high-risk group displayed a worse STAD prognosis than those in the low-risk group. Notably, gene set enrichment analysis (GSEA) revealed significant enrichment of extracellular matrix pathways in the high-risk group, indicating their involvement in STAD progression. Additionally, the high-risk group exhibited significantly lower TMB expression levels than the low-risk group. Consensus clustering revealed two distinct STAD patient subgroups, with Cluster 1 exhibiting higher immune cell infiltration and more active immune functions. Drug sensitivity analysis suggested that the low-risk group was more responsive to oxaliplatin, epirubicinl, and other drugs. CONCLUSION Our study highlights the crucial regulatory roles of ERS-related lncRNAs in STAD, with significant clinical implications. The 9-lncRNA signature we have constructed represents a reliable prognostic indicator that has the potential to inform more personalized treatment decisions for STAD patients. These findings shed new light on the pathogenesis of STAD and its underlying molecular mechanisms, offering opportunities for novel therapeutic strategies to be developed for STAD patients.
Collapse
Affiliation(s)
- Zhaoxiang Song
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Su
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Li
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Xie
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Han
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianning Yao
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Hong JM, Lee JW, Seen DS, Jeong JY, Huh WK. LPA1-mediated inhibition of CXCR4 attenuates CXCL12-induced signaling and cell migration. Cell Commun Signal 2023; 21:257. [PMID: 37749552 PMCID: PMC10518940 DOI: 10.1186/s12964-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND G protein-coupled receptor heteromerization is believed to exert dynamic regulatory impact on signal transduction. CXC chemokine receptor 4 (CXCR4) and its ligand CXCL12, both of which are overexpressed in many cancers, play a pivotal role in metastasis. Likewise, lysophosphatidic acid receptor 1 (LPA1) is implicated in cancer cell proliferation and migration. In our preliminary study, we identified LPA1 as a prospective CXCR4 interactor. In the present study, we investigated in detail the formation of the CXCR4-LPA1 heteromer and characterized the unique molecular features and function of this heteromer. METHODS We employed bimolecular fluorescence complementation, bioluminescence resonance energy transfer, and proximity ligation assays to demonstrate heteromerization between CXCR4 and LPA1. To elucidate the distinctive molecular characteristics and functional implications of the CXCR4-LPA1 heteromer, we performed various assays, including cAMP, BRET for G protein activation, β-arrestin recruitment, ligand binding, and transwell migration assays. RESULTS We observed that CXCR4 forms heteromers with LPA1 in recombinant HEK293A cells and the human breast cancer cell line MDA-MB-231. Coexpression of LPA1 with CXCR4 reduced CXCL12-mediated cAMP inhibition, ERK activation, Gαi/o activation, and β-arrestin recruitment, while CXCL12 binding to CXCR4 remained unaffected. In contrast, CXCR4 had no impact on LPA1-mediated signaling. The addition of lysophosphatidic acid (LPA) further hindered CXCL12-induced Gαi/o recruitment to CXCR4. LPA or alkyl-OMPT inhibited CXCL12-induced migration in various cancer cells that endogenously express both CXCR4 and LPA1. Conversely, CXCL12-induced calcium signaling and migration were increased in LPAR1 knockout cells, and LPA1-selective antagonists enhanced CXCL12-induced Gαi/o signaling and cell migration in the parental MDA-MB-231 cells but not in LPA1-deficient cells. Ultimately, complete inhibition of cell migration toward CXCL12 and alkyl-OMPT was only achieved in the presence of both CXCR4 and LPA1 antagonists. CONCLUSIONS The presence and impact of CXCR4-LPA1 heteromers on CXCL12-induced signaling and cell migration have been evidenced across various cell lines. This discovery provides crucial insights into a valuable regulatory mechanism of CXCR4 through heteromerization. Moreover, our findings propose a therapeutic potential in combined CXCR4 and LPA1 inhibitors for cancer and inflammatory diseases associated with these receptors, simultaneously raising concerns about the use of LPA1 antagonists alone for such conditions. Video Abstract.
Collapse
Affiliation(s)
- Jong Min Hong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Seung Seen
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc, Gwanak-Gu, Seoul, 08790, Republic of Korea.
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Qin H, Abulaiti A, Maimaiti A, Abulaiti Z, Fan G, Aili Y, Ji W, Wang Z, Wang Y. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med 2023; 21:588. [PMID: 37660060 PMCID: PMC10474752 DOI: 10.1186/s12967-023-04468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.
Collapse
Affiliation(s)
- Hu Qin
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Guofeng Fan
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Wenyu Ji
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China.
| |
Collapse
|
19
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
20
|
Li W, Xiong Y, Zhu J, Jin X, Meng J, He W. Establishing a prognostic model with ferroptosis-related long non-coding RNAs in bladder cancer. Transl Cancer Res 2023; 12:2023-2032. [PMID: 37701097 PMCID: PMC10493782 DOI: 10.21037/tcr-23-194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Background Ferroptosis is a distinct form of cell death that has the potential to supersede the drug resistance that is commonly observed with current chemotherapeutic agents. As a result, ferroptosis presents a new and innovative therapeutic pathway for cancer treatment. The current understanding regarding the expression of genes associated with ferroptosis in bladder cancer (BLCA) and their prognostic implications remains unclear. Consequently, this study aimed to examine the potential prognostic value of ferroptosis-associated long non-coding RNAs (lncRNAs) in BLCA. Methods The Cancer Genome Atlas (TCGA) was accessed to download RNA sequencing data and clinicopathological features of BLCA while accessing the FerrDb database to download ferroptosis-associated genes. The study calculated risk scores for ferroptosis-associated lncRNAs, and subsequently divided patients with BLCA into two groups, namely high- and low-risk, on the basis of the median risk score. Moreover, Kaplan-Meier (K-M) curves, Cox regression analysis, and column plots were utilized for evaluating the risk score prognostic value. Subsequently, the involvement of ferroptosis-associated mRNA, N6-methyladenosine (m6A) mRNA status, and immune responses was investigated for BLCA prognosis. Results Thirty-six lncRNAs were identified to be differently expressed and linked to the prognosis of BLCA. The findings from the K-M curve analysis indicated a significant association between a high-risk lncRNA profile and poor BLCA prognosis. The area under curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.810. The risk assessment model exhibited superior performance in predicting prognosis for BLCA compared to conventional clinicopathological features. Conclusions Thirty-six lncRNAs were found to be linked to ferroptosis for the prognosis of patients with BLCA, and these results may provide new insights for treating BLCA.
Collapse
Affiliation(s)
- Weisheng Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Department of Urology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Xiong
- Henan University of Chinese Medicine, Zhengzhou, China
- Department of Urology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junlei Zhu
- Henan University of Chinese Medicine, Zhengzhou, China
- Department of Urology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoxiao Jin
- Department of Urology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin Meng
- Department of Urology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenqiang He
- Department of Urology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Jiang S, Yang H, Li M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int J Mol Sci 2023; 24:12524. [PMID: 37569902 PMCID: PMC10419859 DOI: 10.3390/ijms241512524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that regulates physiological and pathological processes in numerous cell biological functions, including cell migration, apoptosis, and proliferation. Macrophages are found in most human tissues and have multiple physiological and pathological functions. There is growing evidence that LPA signaling plays a significant role in the physiological function of macrophages and accelerates the development of diseases caused by macrophage dysfunction and inflammation, such as inflammation-related diseases, cancer, atherosclerosis, and fibrosis. In this review, we summarize the roles of LPA in macrophages, analyze numerous macrophage- and inflammation-associated diseases triggered by LPA, and discuss LPA-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Shufan Jiang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huili Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
22
|
Li S, Wang X, Liu Y, Xiao J, Yi J. The implication of necroptosis-related lncRNAs in orchestrating immune infiltration and predicting therapeutic efficacy in colon adenocarcinoma: an integrated bioinformatic analysis with preliminarily experimental validation. Front Genet 2023; 14:1170640. [PMID: 37600653 PMCID: PMC10433646 DOI: 10.3389/fgene.2023.1170640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Necroptosis contributes significantly to colon adenocarcinoma (COAD). We aim to assess the relationship between immunoinfiltration and stemness in COAD patients through the development of a risk score profile using necroptosis-related long noncoding RNAs (NRLs). Methods: Our study was based on gene expression data and relevant clinical information from The Cancer Genome Atlas (TCGA). Necroptosis-related genes (NRGs) were obtained from the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Pearson correlation analysis, Cox regression, and least absolute shrinkage and selection operator (LASSO) regression were used to determine the NRL prognositic signature (NRLPS). NRLs expression was examined using qRT-PCR method. Several algorithms were used to identify relationships between immune cell infiltration and NRLPS risk scores. Further analysis of somatic mutations, tumor stemness index (TSI), and drug sensitivity were also explored. Results: To construct NRLPS, 15 lncRNAs were investigated. Furthermore, NRLPS patients with high-risk subgroups had lower survival rates than that of patients with low-risk subgroups. Using GSEA analysis, NRL was found to be enriched in Notch, Hedgehog and Smoothened pathways. Immune infiltration analysis showed significant differences in CD8+ T cells, dendritic cell DCs, and CD4+ T cells between the two risk groups. In addition, our NRLPS showed a relevance with the regulation of tumor microenvironment, tumor mutation burden (TMB) and stemness. Finally, NRLPS demonstrated potential applications in predicting the efficacy of immunotherapy and chemotherapy in patients with COAD. Conclusion: Based on NRLs, a prognostic model was developed for COAD patients that allows a personalized tailoring immunotherapy and chemotherapy to be tailored.
Collapse
Affiliation(s)
- Shizhe Li
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Xiaotong Wang
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Yajun Liu
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Junbo Xiao
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Jun Yi
- Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
23
|
Yao G, Deng L, Long X, Zhou Y, Zhou X. An integrated bioinformatic investigation of focal adhesion-related genes in glioma followed by preliminary validation of COL1A2 in tumorigenesis. Aging (Albany NY) 2023; 15:6225-6254. [PMID: 37354488 PMCID: PMC10373961 DOI: 10.18632/aging.204834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Focal adhesions (FAs) allow cells to contact the extracellular matrix, helping to maintain tension and enabling signal transmission in cell migration, differentiation, and apoptosis. In addition, FAs are associated with changes in the tumor microenvironment (TME) that lead to malignant progression and drug resistance in tumors. However, there are still few studies on the comprehensive analysis of focal adhesion-related genes (FARGs) in glioma. Expression data and clinical information of glioma samples were downloaded from public databases. Two distinct molecular subtypes were identified based on FARGs using an unsupervised consensus clustering algorithm. A scoring system consisting of nine FARGs was constructed using integrated LASSO regression and multivariate Cox regression. It not only has outstanding prognostic value but also can guide immunotherapy of glioma patients, which was verified in TCGA, CGGA, GSE16011, and IMvigor210 cohorts. The results of bioinformatics analysis, immunohistochemistry staining, and western blotting all revealed that the expression of COL1A2 was up-regulated in glioblastoma and related to poor prognosis outcomes in patients from public datasets. COL1A2 promotes the proliferation, migration, and invasion of glioblastoma cells. A positive correlation between COL1A2 and CD8 was determined in GBM specimens from eight patients. Moreover, the results of cell co-cultured assay showed that COL1A2 participated in the killing of GBM cells by Jurkat cells. Our study indicates that the FARGs have prominent application value in the identification of molecular subtypes and prediction of survival outcomes in glioma patients. Bioinformatics analysis and experimental verification provide a direction for further research on FARGs.
Collapse
Affiliation(s)
- Guojun Yao
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| | - Ling Deng
- College of Nursing and Rehabilitation, Fuzhou Medical College of Nanchang University, Fuzhou 344099, Jiangxi, P.R. China
| | - Xinquan Long
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| | - Yufan Zhou
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| | - Xiang Zhou
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| |
Collapse
|
24
|
Tian M, Zhi JY, Pan F, Chen YZ, Wang AZ, Jia HY, Huang R, Zhong WH. Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1048856. [PMID: 37251674 PMCID: PMC10215986 DOI: 10.3389/fendo.2023.1048856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is a serious complication in Diabetes Mellitus (DM) patients and the underlying mechanism is yet unclear. Ferroptosis has been recently intensively researched as a key process in the pathogenesis of diabetes but there yet has been no related bioinformatics-based studies in the context of DPN. Methods We used data mining and data analysis techniques to screen differentially expressed genes (DEGs) and immune cell content in patients with DPN, DM patients and healthy participants (dataset GSE95849). These DEGs were then intersected with the ferroptosis dataset (FerrDb) to obtain ferroptosis DEGs and the associated key molecules and miRNAs interactions were predicted. Results A total of 33 ferroptosis DEGs were obtained. Functional pathway enrichment analysis revealed 127 significantly related biological processes, 10 cellular components, 3 molecular functions and 30 KEGG signal pathways. The biological processes that were significantly enriched were in response to extracellular stimulus and oxidative stress. Key modules constructed by the protein-protein interaction network analysis led to the confirmation of the following genes of interest: DCAF7, GABARAPL1, ACSL4, SESN2 and RB1. Further miRNA interaction prediction revealed the possible involvement of miRNAs such as miR108b-8p, miR34a-5p, mir15b-5p, miR-5838-5p, miR-192-5p, miR-222-3p and miR-23c. Immune-environment content of samples between DM and DPN patients revealed significant difference in the levels of endothelial cells and fibroblasts, which further speculates their possible involvement in the pathogenesis of DPN. Conclusion Our findings could provide insight for investigations about the role of ferroptosis in the development of DPN.
Collapse
Affiliation(s)
- Ming Tian
- Burns Department, Shanghai Jiao Tong University Affiliated Ruijin Hospital, Shanghai, China
| | - Jin Yong Zhi
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Pan
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Zhu Chen
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ai Zhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Ying Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic (PR) China, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Hui Zhong
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Identification of a novel Immune-Related prognostic model for patients with colorectal cancer based on 3 subtypes. Immunobiology 2023; 228:152352. [PMID: 36827833 DOI: 10.1016/j.imbio.2023.152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND The mechanism of immunity in the development of colorectal cancer (CRC) has been studied in-depth, but knowledge of its role in the treatment of CRC is limited. OBJECTIVE This study aimed to classify CRC based on immunology and construct an immune-related prognostic model. METHODS Nine expression profile datasets of CRC, comprising 1640 samples, were downloaded from the NCBI GEO database. Immune infiltration of CRC was estimated using 5 algorithms. Based on the relative infiltration level of immune cells, immune score, and stromal score, immunosubtype analysis of tumors was conducted. Differentially expressed genes (DEGs) between the two subtypes were screened, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Hematoxylin eosin (HE) staining, immunohistochemical (IHC) staining and qPCR were used to verify the correlation between DEGs and differentiation degree of cancer and the expression of Ki67. Subsequently, a risk signature was constructed based on the least absolute shrinkage and selection operator (LASSO) model. RESULTS Based on the infiltration level, immune score, and stromal score of each immune cell, CRC was divided into three immune cell subtypes. Most immune checkpoint genes showed highly significant differences among the three cell subtypes, and most of the co-stimulatory and co-inhibitory molecules were lower in cluster 1 and the highest in cluster 3. Next, 50 common DEGs were determined from the intersections of the different subtypes. Among these common DEGs, 25 were identified to be relevant to the prognosis of CRC patients. The mRNA expressions of C5orf46, CYP1B1, MIR100HG, SFRP2 and CXCL13 was related to clinical prognostic indicators. Finally, these 5 DEGs were included in a prognostic risk signature model, which effectively identified high-risk groups among CRC patients in both the training and validation sets. CONCLUSION In this study, CRCs were divided into three subtypes based on immunology, and the different subtypes led to different prognosis. Additionally, a prognostic model was constructed based on five immune-related DEGs to distinguish the three subtypes.
Collapse
|
26
|
Construction and Verification of the Molecular Subtype and a Novel Prognostic Signature Based on Inflammatory Response-Related Genes in Uveal Melanoma. J Clin Med 2023; 12:jcm12030861. [PMID: 36769510 PMCID: PMC9918108 DOI: 10.3390/jcm12030861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The significance of inflammation in tumorigenesis and progression has become prominent. This study aimed to construct and validate the molecular subtype and a novel prognostic signature based on inflammatory response-related genes in uveal melanoma (UM). Patients from the TCGA, GSE84976, and GSE22138 UM cohorts were enrolled. According to the consensus cluster analysis, patients were divided into two molecular subtypes, namely IC1 and IC2. Survival curves showed that patients in IC1 had a better prognosis. The IC2 subgroup had higher levels of immune cell infiltration and more enriched immunological pathways. There were statistical differences in the immune-inflammation microenvironment, immune checkpoint genes expression, and drug sensitivity. The prognostic signature constructed based on inflammatory response-related genes exhibited a stable predictive power. Multivariate analysis confirmed that the signature was a prognostic factor independent of clinical characteristics. Functional analyses showed that the high-risk group was associated with immunological response, inflammatory cell activation, and tumor-related signal pathways. The riskscore had a negative relationship with tumor purity and was positively correlated with immune and stromal scores. Furthermore, the prognostic signature could sensitively predict the response to drug treatments. In conclusion, the prognostic signature might aid in stratifying patients at risk premised on the prognosis and immunotherapy sensitivity.
Collapse
|
27
|
Liu S, Miao M, Kang L. Upregulation of MAD2L1 mediated by ncRNA axis is associated with poor prognosis and tumor immune infiltration in hepatocellular carcinoma: A review. Medicine (Baltimore) 2023; 102:e32625. [PMID: 36637946 PMCID: PMC9839239 DOI: 10.1097/md.0000000000032625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The mortality rate and prognosis of patients with hepatocellular carcinoma (HCC) are well known. A variety of highly malignant human cancers express mitotic arrest deficient 2 like 1 (MAD2L1), a transcription factor that plays a critical role in their development and progression. However, MAD2L1's particular mechanisms and effects on HCC remain uncertain. METHODS We performed a pan-cancer analysis for MAD2L1 prognosis and expression using The Cancer Genome Atlas and Genotype-Tissue Expression data in the present study. MAD2L1 may act as an oncogene in HCC, and a combination of in silico analyses, including expression, survival, and correlation analyses, were performed to identify non-coding ribonucleic acids (ncRNAs) that contribute to MAD2L1 overexpression. RESULTS In conclusion, MAD2L1 is most likely regulated by HCP5/miRNA-139-5p/MAD2L1 in HCC based on its upstream ncRNA-related pathway. A significant positive association was also found between MAD2L1 levels and tumor immune cell infiltration, immune cell biomarkers, and immune checkpoint expression. CONCLUSION Our findings demonstrate that ncRNA-mediated upregulation of MAD2L1 in HCC is closely related to poor prognosis and tumor infiltration.
Collapse
Affiliation(s)
- Sizhe Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- * Correspondence: Mingsan Miao, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, No. 156, Jinshuidong Road, Zhengzhou, Henan 450046, China (e-mail: )
| | - Le Kang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
28
|
Wang L, Liu X. An oxidative stress-related signature for predicting the prognosis of liver cancer. Front Genet 2023; 13:975211. [PMID: 36685933 PMCID: PMC9845401 DOI: 10.3389/fgene.2022.975211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: This study aimed to screen for oxidative stress-related genes (OSRGs) and build an oxidative stress-related signature to predict the prognosis of liver cancer. Methods: OSRGs with a protein domain correlation score ≥ 6 were downloaded from the GeneCards database and intersected with The Cancer Genome Atlas (TCGA) data for subsequent analyses. Differential immune cells (DICs) and immune and stromal scores between the normal and tumor samples were determined, followed by unsupervised hierarchical cluster analysis. Immune-related OSRGs were identified using weighted gene co-expression network analysis. An OSRG-related risk signature was then built, and the GSE14520 dataset was used for validation. A nomogram evaluation model was used to predict prognosis. Results: Nine DICs were determined between the normal and tumor groups, and three subtypes were obtained: clusters 1, 2, and 3. Cluster 1 had the best prognosis among the clusters. One hundred thirty-eight immune-related OSRGs were identified, and seven prognosis-related OSRGs were used to build the OSRG score prognostic model. Patients in the high OSRG score group had a poorer prognosis than those in the low OSRG score group. Six immune cell infiltration and enrichment scores of the 16 immune gene sets showed significant differences between the high and low OSRG score groups. Moreover, a nomogram was constructed based on the prognostic signature and clinicopathological features and had a robust predictive performance and high accuracy. Conclusion: The OSRG-related risk signature and the prognostic nomogram accurately predicted patient survival.
Collapse
|
29
|
Leng J, Xing Z, Li X, Bao X, Zhu J, Zhao Y, Wu S, Yang J. Assessment of Diagnosis, Prognosis and Immune Infiltration Response to the Expression of the Ferroptosis-Related Molecule HAMP in Clear Cell Renal Cell Carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:913. [PMID: 36673667 PMCID: PMC9858726 DOI: 10.3390/ijerph20020913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hepcidin antimicrobial peptide (HAMP) is a key factor in maintaining iron metabolism, which may induce ferroptosis when upregulated. However, its prognostic value and relation to immune infiltrating cells remains unclear. METHODS This study analyzed the expression levels of HAMP in the Oncomine, Timer and Ualcan databases, and examined its prognostic potential in KIRC with R programming. The Timer and GEPIA databases were used to estimate the correlations between HAMP and immune infiltration and the markers of immune cells. The intersection genes and the co-expression PPI network were constructed via STRING, R programming and GeneMANIA, and the hub genes were selected with Cytoscape. In addition, we analyzed the gene set enrichment and GO/KEGG pathways by GSEA. RESULTS Our study revealed higher HAMP expression levels in tumor tissues including KIRC, which were related to poor prognosis in terms of OS, DSS and PFI. The expression of HAMP was positively related to the immune infiltration level of macrophages, Tregs, etc., corresponding with the immune biomarkers. Based on the intersection genes, we constructed the PPI network and used the 10 top hub genes. Further, we performed a pathway enrichment analysis of the gene sets, including Huntington's disease, the JAK-STAT signaling pathway, ammonium ion metabolic process, and so on. CONCLUSION In summary, our study gave an insight into the potential prognosis of HAMP, which may act as a diagnostic biomarker and therapeutic target related to immune infiltration in KIRC.
Collapse
Affiliation(s)
- Jing Leng
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Zixuan Xing
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiang Li
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinyue Bao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Junzheya Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yunhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Shaobo Wu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiao Yang
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
30
|
Novel pyroptosis-associated genes signature for predicting the prognosis of sarcoma and validation. Biosci Rep 2022; 42:231859. [PMID: 36155774 DOI: 10.1042/bsr20221053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sarcoma is a rare mesenchymal malignant tumor. Recently, pyroptosis has been reported to be a mode of programmed cell death. Nonetheless, levels of pyroptosis-associated genes in sarcoma and its relevance to prognostic outcomes are yet to be elucidated. RESULTS Sarcoma cases were classified into two subtypes with regards to differentially expressed genes. We established a profile composed of seven genes and classified the sarcoma patients into low- and high-risk groups through least absolute shrinkage and selection operator Cox regression. Survival rate of low-risk sarcoma patients was markedly higher, relative to high-risk group (P<0.001). In combination with clinical features, the risk score was established to be an independent predictive factor for OS of sarcoma patients. Chemotherapeutic drug sensitivity response analysis found 65 drugs with higher drug sensitivity in low-risk, than in high-risk group and 14 drugs with higher drug sensitivity in the high-risk patient group, compared with low-risk patient group. In addition, functional enrichment, pathway and gene mutation of the two modules were analyzed. Finally, we used qRT-PCR to detect the expression of seven pyroptosis-related genes in tumor cells, and human skeletal muscle cells, compared with human skeletal muscle cells, PODXL2, LRRC17, GABRA3, SCUBE3 and RFLNB genes show high expression levels in tumor cells, while IGHG2 and hepatic leukemia factor show low expression levels in tumor cells. CONCLUSIONS Our research suggest that pyroptosis is closely associated with sarcoma, and these findings confirm that pyroptosis-associated seven genes have a critical role in sarcoma and are potential prognostic factors for sarcoma.
Collapse
|
31
|
Bu F, Yin S, Guan R, Xiao Y, Zeng S, Zhao Y. Ferroptosis-related long non-coding RNA signature predicts the prognosis of hepatocellular carcinoma: A Review. Medicine (Baltimore) 2022; 101:e31747. [PMID: 36451456 PMCID: PMC9704963 DOI: 10.1097/md.0000000000031747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a liver cancer. In contrast, ferroptosis is a novel iron-dependent and ROS reliant type of cell death that is observed under various disease conditions. METHODS AND ANALYSIS RNA sequencing data from HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Ferroptosis-related long non-coding RNAs (lncRNAs) were screened by Pearson correlation analysis. Patients were randomized into training or testing sets in a 1:1 ratio. They were constructed in the training set using univariate-Lasso and multivariate Cox regression analysis and further tested for prognostic values in the testing set. Four lncRNAs were identified. Kaplan-Meier analysis showed that patients in the high-risk group had a worse prognosis than those in the low-risk group. Following differentially expressed genes analysis of these two groups. Functional analysis showed association with oxidative stress response. Cox regression analyses showed that risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) and decision curve analysis demonstrated the accuracy of prediction. Four ferroptosis-related lncRNAs based on differential expression of HCC were screened by bioinformatic methods to construct a prognostic risk model and accurately predict the prognosis of HCC patients. Four lncRNAs may have a potential role in the anti-tumor immune process and serve as therapeutic targets for HCC. To lay the foundation for subsequent studies.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province 150040, China (e-mail: )
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Ruiqian Guan
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Yao Xiao
- Heilongjiang University of Chinese Medicine, Haerbin, China
| | - ShuLin Zeng
- Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, China
| |
Collapse
|
32
|
Ping S, Gong R, Lei K, Qing G, Zhang G, Chen J. Development and validation of a ferroptosis-related lncRNAs signature to predict prognosis and microenvironment for melanoma. Discov Oncol 2022; 13:125. [PMID: 36371574 PMCID: PMC9653531 DOI: 10.1007/s12672-022-00581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis plays an important role in cancer. However, studies about ferroptosis-related lncRNAs (FRLs) in skin cutaneous melanoma (SKCM) are scarce. Moreover, the relationship between prognostic FRLs and tumor microenvironment (TME) in melanoma remains unclear. This study investigates the potential prognostic value of FRLs and their association with TME in SKCM. The RNA-sequencing data of SKCM were downloaded from The Cancer Genome Atlas (TCGA) database. Melanoma patients were randomly divided into training and testing groups in a 1:1 ratio. A signature composed of 19 FRLs was developed by the least absolute shrinkage and selection operator (LASSO) regression analysis to divide patients into a low-risk group with a better prognosis and a high-risk group with a poor prognosis. Multivariate Cox regression analysis suggested that the risk score was an independent prognostic factor. The Area Under Curve (AUC) value of the risk score reached 0.768 in the training group and 0.770 in the testing group. Subsequent analysis proved that immune-related signaling pathways were significantly enriched in the low-risk group. The tumor immune cell infiltration analysis demonstrated that melanoma in the high-risk group tended to be immunologically "cold". We identified a novel FRLs signature which could accurately predict the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Shuai Ping
- Department of Gastroenterology, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Ruining Gong
- Department of Gastroenterology, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Ke Lei
- Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Gong Qing
- Department of Gastroenterology, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077 China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| |
Collapse
|
33
|
Identification of the Immune Status of Hypertrophic Cardiomyopathy by Integrated Analysis of Bulk- and Single-Cell RNA Sequencing Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7153491. [PMID: 36238494 PMCID: PMC9553329 DOI: 10.1155/2022/7153491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Objectives Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy and immune infiltration is considered an indispensable factor involved in its pathogenesis. In this study, we attempted to combine bulk sequencing and single-cell sequencing to map the immune infiltration-related genes in hypertrophic cardiomyopathy. Methods The GSE36961, GSE160997, and GSE122930 datasets were obtained from the Gene Expression Omnibus database. The compositional patterns of the 18 types of immune cell fraction and pathway enrichment score in control and HCM patients were estimated based on the GSE36961 cohort using xCell algorithm. The Weighted Gene Coexpression Network Analysis (WGCNA) was performed to identify genes associated with immune infiltration for hypertrophic cardiomyopathy. The area under the curve (AUC) value was obtained and used to evaluate the discriminatory ability of common immune-related DEGs. “NetworkAnalyst” platform was used to identify TF-gene and TF-miRNA interaction with identified common genes. Heat map was used to determine the association between common DEGs and various immune cells. Results Immune infiltration analysis by the xCell algorithm showed a higher level of CD8+ naive T cells, CD8+ T cells, as well as a lower level of activated dendritic cells (aDC), dendritic cells (DC), immature dendritic cells (iDC), conventional dendritic cells (cDC), macrophages, M1 macrophages, monocytes, and NKT cell in HCM compared with the control group in GSE36961 dataset. aDC, macrophages, and M1 macrophages were the top three discriminators between HCM and control groups with the area under the curve (AUC) of 0.907, 0.867, and 0.941. WGCNA analysis showed that 1258 immune-related genes were included in four different modules. Of these modules, the turquoise module showed a pivotal correlation with HCM. 13 common immune-related DEGs were found by intersecting common DEGs in GSE36961 and GSE160997 datasets with genes from the genes in turquoise module. 5 hub immune-related genes (S100A9, TYROBP, FCER1G, CD14, and S100A8) were identified by protein interaction network. Through analysis of single-cell sequencing data, S100a9, TYROBP, FCER1G, and S100a8 were mainly expressed by infiltrated M1 proinflammatory cells, especially Ccr2-M1 proinflammatory macrophage cells in the heart immune microenvironment while Cd14 was expressed by infiltrated M1 proinflammatory macrophage cells and M2 macrophages in transverse aortic constriction (TAC) mice at 1 week. Higher M2 macrophage and M1 proinflammatory macrophage infiltration as well as lower Ccr2-M1 proinflammatory macrophage and dendritic cells were shown in TAC 1week mice compared with sham mice. Conclusions There was a difference in immune infiltration between HCM patients and normal groups. aDC, macrophages, and M1 macrophages were the top three discriminator immune cell subsets between HCM and control groups. S100A9, TYROBP, FCER1G, CD14, and S100A8 were identified as potential biomarkers to discriminate HCM from the control group. S100a9, TYROBP, FCER1G, and S100a8 were mainly expressed by infiltrated M1 proinflammatory cells, especially Ccr2-M1 proinflammatory cells in the heart immune microenvironment while Cd14 was expressed by M2 macrophages in transverse aortic constriction (TAC) mice at 1 week.
Collapse
|
34
|
Identification of immune and stromal cell infiltration-related gene signature for prognosis prediction in acute lymphoblastic leukemia. Aging (Albany NY) 2022; 14:7470-7504. [PMID: 36126190 PMCID: PMC9550239 DOI: 10.18632/aging.204292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common and life-threatening hematologic malignancy, its occurrence and progression are closely related to immune/stromal cell infiltration in the bone marrow (BM) microenvironment. However, no studies have described an immune/stromal cell infiltration-related gene (ISCIRG)-based prognostic signature for ALL. A total of 444 patients involving 437 bulk and 7 single-cell RNA-seq datasets were included in this study. Eligible datasets were searched and reviewed from the database of TCGA, TARGET project and GEO. Then an integrated bioinformatics analysis was performed to select optimal prognosis-related genes from ISCIRGs, construct a nomogram model for predicting prognosis, and assess the predictive power. After LASSO and multivariate Cox regression analyses, a seven ISCIRGs-based signature was proved to be able to significantly stratify patients into high- and low-risk groups in terms of OS. The seven genes were confirmed that directly related to the composition and status of immune/stromal cells in BM microenvironment by analyzing bulk and single-cell RNA-seq datasets. The calibration plot showed that the predicted results of the nomogram were consistent with the actual observation results of training/validation cohort. This study offers a reference for future research regarding the role of ISCIRGs in ALL and the clinical care of patients.
Collapse
|
35
|
Wu Z, Huang X, Cai M, Huang P. Potential biomarkers for predicting the overall survival outcome of kidney renal papillary cell carcinoma: an analysis of ferroptosis-related LNCRNAs. BMC Urol 2022; 22:152. [PMID: 36104680 PMCID: PMC9476343 DOI: 10.1186/s12894-022-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Kidney renal papillary cell carcinoma (KIRP) is a dangerous cancer, which accounts for 15–20% of all kidney malignancies. Ferroptosis is a rare kind of cell death that overcomes medication resistance. Ferroptosis-related long non-coding RNAs (LNCRNAs) in KIRP, remain unknown. Method We wanted to express how ferroptosis-related LNCRNAs interact with immune cell infiltration in KIRP. Gene set enrichment analysis in the GO and KEGG databases were used to explore gene expression enrichment. The prognostic model was constructed using Lasso regression. In addition, we also analyzed the modifications in the tumor microenvironment (TME) and immunological association. Result The expression of LNCRNA was closely connected to the ferroptosis, according to co-expression analyses. CASC19, AC090197.1, AC099850.3, AL033397.2, LINC00462, and B3GALT1-AS1 were found to be significantly increased in the high-risk group, indicating that all of these markers implicates the malignancy processes for KIRP patients and may be cancer-promoting variables. LNCTAM34A and AC024022.1 were shown to be significantly elevated in the low-risk group; these might represent as the KIRP tumor suppressor genes. According to the TCGA, CCR, and inflammation-promoting genes were considered to be significantly different between the low-risk and high-risk groups. The expression of CD160, TNFSF4, CD80, BTLA, and TNFRSF9 was different in the two risk groups. Conclusion LNCRNAs associated with ferroptosis were linked to the occurrence and progression of KIRP. Ferroptosis-related LNCRNAs and immune cell infiltration in the TME may be potential biomarkers in KIRP that should be further investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01037-0.
Collapse
|
36
|
Zhao H, Xie R, Zhang C, Lu G, Kong H. Pan-cancer analysis of prognostic and immunological role of DTYMK in human tumors. Front Genet 2022; 13:989460. [PMID: 36159971 PMCID: PMC9493117 DOI: 10.3389/fgene.2022.989460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Deoxythymidylate kinase (DTYMK) has been reported to correlate with the progression of hepatocellular carcinoma. However, the role of DTYMK in human cancers is not studied. In this study, we studied the prognostic value, functional states, and correlations with immune infiltration of DTYMK in human cancers. Methods: The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), UALCAN, Clinical Proteomic Tumor Analysis Consortium (CPTAC), the search tool for the retrieval of interacting genes (STRING), GeneMANIA, cBioPortal, Cancer Single-cell State Atlas (CancerSEA), and Tumor IMmune Estimation Resource (TIMER) databases were utilized to analyze DTYMK in cancers. Results: In general, DTYMK is abnormally expressed between most human cancer and normal tissues from a pan-cancer perspective. DTYMK can be used as a diagnostic biomarker to differentiate tumor tissues from normal tissues in most tumors. Upregulation of DTYMK predicted poor survival status in most cancer types in TCGA. Moreover, DTYMK expression was correlated with the T stage in ACC, BRCA, KIRC, LIHC, and LUAD, with the N stage in BLCA, HNSC, KICH, KIRC, LUAD, LUSC, and THCA, with the M stage in ACC, KIRC, KIRP, and LUAD, with TNM stage in ACC, KIRC, LIHC, LUAD, and LUSC. In addition, based on single-cell sequencing data, we concluded that the expression of DTYMK was correlated with the functional status of the cell cycle, DNA damage, DNA repair, invasion, EMT, and proliferation. Finally, DTYMK expression was correlated with six infiltrating immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells by investigating TIMER. Conclusion: Our findings suggested that abnormally expressed DTYMK was correlated with poor survival, malignant functional status, and immune infiltrates. DTYMK might be served as a potential biomarker for diagnosis and poor prognosis in various cancer types. DTYMK might act as a potential target for immune therapy.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Guojun Lu, ; Hui Kong,
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Guojun Lu, ; Hui Kong,
| |
Collapse
|
37
|
Cai J, Ji Z, Wu J, Chen L, Zheng D, Chen Y, Zhang X, Xie W, Huang J, Chen M, Lin R, Lin W, Chen Y, Li Z. Development and validation of a novel endoplasmic reticulum stress-related lncRNA prognostic signature and candidate drugs in breast cancer. Front Genet 2022; 13:949314. [PMID: 36092873 PMCID: PMC9452962 DOI: 10.3389/fgene.2022.949314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC), the most common malignancy in women, has a high cancer-related mortality. Endoplasmic reticulum stress (ERS), a response to the accumulation of unfolded proteins, has emerging roles in tumorigenesis, including invasion, metastasis, immune escape, etc. However, few studies have focused on the correlation between ERS with long non-coding RNAs (lncRNAs) in BC. We attempted to construct an ERS-related lncRNA prognostic signature and study its value in BC from tumor mutational burden (TMB), tumor immune microenvironment (TIME), cluster, clinical treatment, and so on. In the present study, transcriptomic and clinical data of BC patients were extracted from The Cancer Genome Atlas (TCGA) database. Correlation test, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) method were performed to determine an ERS-related lncRNA prognostic signature. Survival and predictive performance were analyzed according to Kaplan-Meier curves and receiver operating characteristic (ROC) curves, while nomograms and calibration curves were established. Then, an enrichment analysis was performed to study the functions and biological processes of ERS-related lncRNAs. TMB and TIME were also analyzed to assess the mutational status and immune status. Additionally, by using consensus cluster analysis, we compared differences among tumor subtypes. Drug sensitivity analysis and immunologic efficacy evaluations were performed together for further exploration. We identified a novel prognostic signature consisting of 9 ERS-related lncRNAs. High-risk patients had worse prognoses. The signature had a good predictive performance as an independent prognostic indicator and was significantly associated with clinicopathological characteristics. Enrichment analysis showed that metabolic pathways were enriched in high-risk patients, while immune pathways were more active in low-risk patients. Low-risk patients had lower TMB, higher immune scores, and stronger immune functions. Cluster analysis clarified that cluster 2 had the most active immune functions and was sensitive to more drugs, which may have the best clinical immunological efficacy. A clinical efficacy evaluation revealed that patients in the low-risk group may benefit more from chemotherapy, targeted therapy, and immunotherapy. The novel signature has significant clinical implications in prognosis prediction for BC. Our study clarifies that there is a potential connection between the ERS-related lncRNAs and BC, which may provide new treatment guidelines for BC.
Collapse
Affiliation(s)
- Jiehui Cai
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zeqi Ji
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jinyao Wu
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | | | | | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
38
|
Zhou Y, Zheng J, Bai M, Gao Y, Lin N. Effect of Pyroptosis-Related Genes on the Prognosis of Breast Cancer. Front Oncol 2022; 12:948169. [PMID: 35957895 PMCID: PMC9357945 DOI: 10.3389/fonc.2022.948169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Backgrounds Pyroptosis, a newly pattern of specific programmed cell death, has been reported to participate in several cancers. However, the value of pyroptosis in breast cancer (BRCA) is still not clear. Methods Herein, we analyzed the data of BRCA from both The Cancer Genome Atlas (TCGA) and GSEA MSigDB database. Based on the obtained pyroptosis-related genes (PRGs), we searched the interactions by STRING. After that, we performed clustering analysis by ConsensusClusterPlus. The PRGs with significant prognostic value were then screened through univariate cox regression and further evaluate by constructing a risk model by least absolute shrinkage and selection operator (LASSO) Cox regression. The immune and sensitivity to drugs were also predicted by comprehensive algorithms. Finally, real-time quantitative PCR (qPCR) was performed on two of the screened signature PRGs. Results A total of 49 PRGs were obtained from public database and 35 of them were significantly differentially expressed genes (DEGs). Cluster analysis was then performed to explore the relationship between DEGs with overall survival. After that, 6 optimal PRGs (GSDMC, IL-18, CHMP3, TP63, GZMB and CHMP6) were screened out to construct a prognostic signature, which divide BRCA patients into two risk groups. Risk scores were then confirmed to be independent prognostic factors in BRCA. Functional enrichment analyses showed that the signature were obviously associated with tumor-related and immune-associated pathways. 79 microenvironmental cells and 11 immune checkpoint genes were found disparate in two groups. Besides, tumor immune dysfunction and exclusion (TIDE) scores revealed that patients with higher risk scores are more sensitive to immune checkpoint blockade treatment. Patients in the low-risk group were more sensitive to Cytarabine, Docetaxel, Gefitinib, Paclitaxel, and Vinblastine. Inversely, patients in the high-risk group were more sensitive to Lapatinib. Finally, we found that, CHMP3 were down-regulated in both BRCA tissues and cell lines, while IL-18 were up-regulated. Conclusion PRGs play important roles in BRCA. Our study fills the gaps of 6 selected PRGs in BRCA, which were worthy for the further study as predict potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Mengru Bai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Nengming Lin,
| |
Collapse
|
39
|
Xiao J, Wang X, Liu Y, Liu X, Yi J, Hu J. Lactate Metabolism-Associated lncRNA Pairs: A Prognostic Signature to Reveal the Immunological Landscape and Mediate Therapeutic Response in Patients With Colon Adenocarcinoma. Front Immunol 2022; 13:881359. [PMID: 35911752 PMCID: PMC9328180 DOI: 10.3389/fimmu.2022.881359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Lactate metabolism is critically involved in the tumor microenvironment (TME), as well as cancer progression. It is important to note, however, that lactate metabolism-related long non-coding RNAs (laRlncRNAs) remain incredibly understudied in colon adenocarcinoma (COAD). Methods A gene expression profile was obtained from the Cancer Genome Atlas (TCGA) database to identify laRlncRNA expression in COAD patients. A risk signature with prognostic value was identified from TCGA and Gene Expression Omnibus (GEO) cohort based on laRlncRNA pairs by the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses. Quantitative real-time polymerase chain reaction (qRT-PCR) and functional experiments were carried out to verify the expression of laRlncRNAs in COAD. The relationship of laRlncRNA pairs with immune landscape as well as the sensitivity of different therapies was explored. Results In total, 2378 laRlncRNAs were identified, 1,120 pairs of which were studied to determine their prognostic validity, followed by a risk signature established based on the screened 5 laRlncRNA pairs. The laRlncRNA pairs-based signature provided a better overall survival (OS) prediction than other published signatures and functioned as a prognostic marker for COAD patients. According to the calculated optimal cut-off point, patients were divided into high- and low-risk groups. The OS of COAD patients in the high-risk group were significantly shorter than that of those in the low-risk group (P=4.252e-14 in the TCGA cohort and P=2.865-02 in the GEO cohort). Furthermore, it remained an effective predictor of survival in strata of gender, age, TNM stage, and its significance persisted after univariate and multivariate Cox regressions. Additionally, the risk signature was significantly correlated with immune cells infiltration, tumor mutation burden (TMB), microsatellite instability (MSI) as well as immunotherapeutic efficacy and chemotherapy sensitivity. Finally, one of the laRlncRNA, LINC01315, promotes proliferation and migration capacities of colon cancer cells. Conclusion The newly identified laRlncRNAs pairs-based signature exhibits potential effects in predicting prognosis, deciphering patients’ immune landscape, and mediating sensitivity to immunotherapy and chemotherapy. Findings in our study may provide evidence for the role of laRlncRNAs pairs as novel prognostic biomarkers and potentially individualized therapy targets for COAD patients.
Collapse
Affiliation(s)
- Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaotong Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajun Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Jun Yi, ; Jiuye Hu,
| | - Jiuye Hu
- Department of Gastroenterology, Affiliated Hospital of Xiangnan University, Chenzhou, China
- *Correspondence: Jun Yi, ; Jiuye Hu,
| |
Collapse
|
40
|
Reduction of LPAR1 Expression in Neuroblastoma Promotes Tumor Cell Migration. Cancers (Basel) 2022; 14:cancers14143346. [PMID: 35884407 PMCID: PMC9322936 DOI: 10.3390/cancers14143346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. Tumor metastasis in high-risk NB patients is an essential problem that impairs the survival of patients. In this study, we aimed to use a comprehensive bioinformatics analysis to identify differentially expressed genes between NB and control cells, and to explore novel prognostic markers or treatment targets in tumors. In this way, FN1, PIK3R5, LPAR6 and LPAR1 were screened out via KEGG, GO and PPI network analysis, and we verified the expression and function of LPAR1 experimentally. Our research verified the decreased expression of LPAR1 in NB cells, and the tumor migration inhibitory effects of LPA on NB cells via LPAR1. Moreover, knockdown of LPAR1 promoted NB cell migration and abolished the migration-inhibitory effects mediated by LPA-LPAR1. The tumor-suppressing effects of the LPA-LPAR1 axis suggest that LPAR1 might be a potential target for future treatment of NB.
Collapse
|
41
|
Clinicopathological and Prognostic Value of Necroptosis-Associated lncRNA Model in Patients with Kidney Renal Clear Cell Carcinoma. DISEASE MARKERS 2022; 2022:5204831. [PMID: 35664432 PMCID: PMC9157284 DOI: 10.1155/2022/5204831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Background. Necroptosis, a recently identified type of programmed necrotic cell death, is closely related to the tumorigenesis and development of cancer. However, it remains unclear whether necroptosis-associated long noncoding RNAs (lncRNAs) can be used to predict the prognosis of kidney renal clear cell carcinoma (KIRC). This work was designed to probe the possible prognostic worth of necroptosis-associated lncRNAs along with their impact on the tumor microenvironment (TME) in KIRC. Methods. The Cancer Genome Atlas (TCGA) database was used to extract KIRC gene expression and clinicopathological data. Pearson correlation analysis was used to evaluate necroptosis-associated lncRNAs against 159 known necroptosis-associated genes. To define molecular subtypes, researchers used univariate Cox regression analysis and consensus clustering, as well as clinical significance, TME, and tumor immune cells in each molecular subtype. We develop the necroptosis-associated lncRNA prognostic model using univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Patients were divided into high- and low-risk groups according to prognostic model. Moreover, comprehensive analyses, including prognostic value, gene set enrichment analysis (GSEA), immune infiltration, and immune checkpoint gene expression, were performed between the two risk groups. Finally, anticancer drug sensitivity analyses were employed for assessing associations for necroptosis-associated lncRNA expression profile and anticancer drug chemosensitivity. Results. Through univariate analysis, sixty-nine necroptosis-associated lncRNAs were found to have a significant relationship with KIRC prognosis. Two molecular clusters were identified, and significant differences were found with respect to clinicopathological features and prognosis. The segregation of patients into two risk groups was done by the constructed necroptosis-associated lncRNA model. The survival prognosis, clinical features, degree of immune cell infiltration, and expression of immune checkpoint genes of high-risk and low-risk groups were all shown to vary. Conclusions. Our study identified a model of necroptosis-associated lncRNA signature and revealed its prognostic role in KIRC. It is expected to provide a reference for the screening of KIRC prognostic markers and the evaluation of immune response.
Collapse
|
42
|
Xu Y, Chen Y, Niu Z, Xing J, Yang Z, Yin X, Guo L, Zhang Q, Qiu H, Han Y. A Novel Pyroptotic and Inflammatory Gene Signature Predicts the Prognosis of Cutaneous Melanoma and the Effect of Anticancer Therapies. Front Med (Lausanne) 2022; 9:841568. [PMID: 35492358 PMCID: PMC9053829 DOI: 10.3389/fmed.2022.841568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe purpose of this study was to construct a gene signature comprising genes related to both inflammation and pyroptosis (GRIPs) to predict the prognosis of patients with cutaneous melanoma patients and the efficacy of immunotherapy, chemotherapy, and targeted therapy in these patients.MethodsGene expression profiles were collected from The Cancer Genome Atlas. Weighted gene co-expression network analysis was performed to identify GRIPs. Univariable Cox regression and Lasso regression further selected key prognostic genes. Multivariable Cox regression was used to construct a risk score, which stratified patients into high- and low-risk groups. Areas under the ROC curves (AUCs) were calculated, and Kaplan-Meier analyses were performed for the two groups, following validation in an external cohort from Gene Expression Omnibus (GEO). A nomogram including the GRIP signature and clinicopathological characteristics was developed for clinical use. Gene set enrichment analysis illustrated differentially enriched pathways. Differences in the tumor microenvironment (TME) between the two groups were assessed. The efficacies of immune checkpoint inhibitors (ICIs), chemotherapeutic agents, and targeted agents were predicted for both groups. Immunohistochemical analyses of the GRIPs between the normal and CM tissues were performed using the Human Protein Atlas data. The qRT-PCR experiments validated the expression of genes in CM cell lines, Hacat, and PIG1 cell lines.ResultsA total of 185 GRIPs were identified. A novel gene signature comprising eight GRIPs (TLR1, CCL8, EMP3, IFNGR2, CCL25, IL15, RTP4, and NLRP6) was constructed. The signature had AUCs of 0.714 and 0.659 for predicting 3-year overall survival (OS) in the TCGA entire and GEO validation cohorts, respectively. Kaplan-Meier analyses revealed that the high-risk group had a poorer prognosis. Multivariable Cox regression showed that the GRIP signature was an independent predictor of OS with higher accuracy than traditional clinicopathological features. The nomogram showed good accuracy and reliability in predicting 3-year OS (AUC = 0.810). GSEA and TME analyses showed that the high-risk group had lower levels of pyroptosis, inflammation, and immune response, such as lower levels of CD8+ T-cell infiltration, CD4+ memory-activated T-cell infiltration, and ICI. In addition, low-risk patients whose disease expressed PD-1 or CTLA-4 were likely to respond better to ICIs, and several chemotherapeutic and targeted agents. Immunohistochemical analysis confirmed the distinct expression of five out of the eight GRIPs between normal and CM tissues.ConclusionOur novel 8-GRIP signature can accurately predict the prognosis of patients with CM and the efficacies of multiple anticancer therapies. These GRIPs might be potential prognostic biomarkers and therapeutic targets for CM.
Collapse
Affiliation(s)
- Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zehao Niu
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng Yang
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Haixia Qiu
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Yan Han
| |
Collapse
|
43
|
SNAP25 is a potential prognostic biomarker for prostate cancer. Cancer Cell Int 2022; 22:144. [PMID: 35392903 PMCID: PMC8991690 DOI: 10.1186/s12935-022-02558-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most lethal cancers in male individuals. The synaptosome associated protein 25 (SNAP25) gene is a key mediator of multiple biological functions in tumors. However, its significant impact on the prognosis in PCa remains to be elucidated. METHODS We performed a comprehensive analysis of the Cancer Genome Atlas dataset (TCGA) to identify the differentially expressed genes between PCa and normal prostate tissue. We subjected the differentially expressed genes to gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes functional analysis, and constructed a protein-protein interaction network. We then screened for pivotal genes to identify the hub genes of prognostic significance by performing Cox regression analysis. We identified SNAP25 as one such gene and analyzed the relationship between its expression in PCa to poor prognosis using GEPIA interactive web server. RESULTS TCGA database demonstrated that SNAP25 was significantly downregulated in PCa. The progressive decrease in SNAP25 expression with the increase in the clinical staging and grading of PCa demonstrates that reduced SNAP25 expression considerably exacerbates the clinical presentation. Our findings confirm that SNAP25 expression strongly correlates with overall survival, which was determined using the Gleason score. We also validated the role of SNAP25 expression in the prognosis of patients with PCa. We used Gene Set Enrichment and Gene Ontology analyses to evaluate the function of SNAP25 and further explored the association between SNAP25 expression and tumor-infiltrating immune cells using the Tumor Immune Assessment Resource database. We found for the first time that SNAP25 is involved in the activation, differentiation, and migration of immune cells in PCa. Its expression was positively correlated with immune cell infiltration, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, macrophages, and natural killer cells. SNAP25 expression also positively correlated with chemokines/chemokine receptors, suggesting that SNAP25 may regulate the migration of immune cells. In addition, our experimental results verified the low expression of SNAP25 in PCa cells. CONCLUSION Our findings indicate a relationship between SNAP25 expression and PCa, demonstrating that SNAP25 is a potential prognostic biomarker due to its vital role in immune infiltration.
Collapse
|
44
|
Inflammatory Response-Related Long Non-Coding RNA Signature Predicts the Prognosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9917244. [PMID: 35342418 PMCID: PMC8947866 DOI: 10.1155/2022/9917244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 01/08/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a high mortality malignant tumor with genetic and phenotypic heterogeneity, making predicting prognosis challenging. Meanwhile, the inflammatory response is an indispensable player in the tumorigenesis process and regulates the tumor microenvironment, which can affect the prognosis of tumor patients. Methods Using HCC samples in the TCGA-LIHC dataset, we explored lncRNA expression profiles associated with the inflammatory response. The inflammatory response-related lncRNA signature was constructed by univariate Cox regression, LASSO regression, and multivariate Cox regression methods based on inflammatory response-related differentially expressed lncRNAs in HCC. Results Seven inflammatory response-related lncRNA signatures were identified in predicting HCC prognosis. Kaplan–Meier (K-M) survival analysis indicated that high-risk group HCC patients were associated with poor prognosis. The utility of the inflammatory response-related lncRNA signatures was proved by the AUC and DCA analysis. The nomogram further confirmed the accuracy of the novel signature in predicting HCC patients' prognoses. In validation, our novel signature is more accurate than traditional clinicopathological performance for prognosis prediction of HCC patients. GSEA analysis further elucidated the underlying mechanisms and pathways of HCC progression in the low- and high-risk groups. Moreover, immune cells infiltration responses and immune function analyses revealed a significant difference between high- and low-risk groups in cytolytic activity, MHC class I, type I INF response, type II INF response, inflammation-promoting, and T cell coinhibition. Finally, HHLA2, NRP1, CD276, TNFRSF9, TNFSF4, CD80, and VTCN1 were expressed higher in high-risk groups in the immune checkpoint analysis. Conclusions A novel inflammatory response-related lncRNA signature (AC145207.5, POLHAS1, AL928654.1, MKLN1AS, AL031985.3, PRRT3AS1, and AC023157.2) is capable of predicting the prognosis of HCC patients and providing new immune targeted therapies insight.
Collapse
|
45
|
Guo C, Liu Z, Cao C, Zheng Y, Lu T, Yu Y, Wang L, Liu L, Liu S, Hua Z, Han X, Li Z. Development and Validation of Ischemic Events Related Signature After Carotid Endarterectomy. Front Cell Dev Biol 2022; 10:794608. [PMID: 35372347 PMCID: PMC8969028 DOI: 10.3389/fcell.2022.794608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Ischemic events after carotid endarterectomy (CEA) in carotid artery stenosis patients are unforeseeable and alarming. Therefore, we aimed to establish a novel model to prevent recurrent ischemic events after CEA. Methods: Ninety-eight peripheral blood mononuclear cell samples were collected from carotid artery stenosis patients. Based on weighted gene co-expression network analysis, we performed whole transcriptome correlation analysis and extracted the key module related to ischemic events. The biological functions of the 292 genes in the key module were annotated via GO and KEGG enrichment analysis, and the protein-protein interaction (PPI) network was constructed via the STRING database and Cytoscape software. The enrolled samples were divided into train (n = 66), validation (n = 28), and total sets (n = 94). In the train set, the random forest algorithm was used to identify critical genes for predicting ischemic events after CEA, and further dimension reduction was performed by LASSO logistic regression. A diagnosis model was established in the train set and verified in the validation and total sets. Furthermore, fifty peripheral venous blood samples from patients with carotid stenosis in our hospital were used as an independent cohort to validation the model by RT-qPCR. Meanwhile, GSEA, ssGSEA, CIBERSORT, and MCP-counter were used to enrichment analysis in high- and low-risk groups, which were divided by the median risk score. Results: We established an eight-gene model consisting of PLSCR1, ECRP, CASP5, SPTSSA, MSRB1, BCL6, FBP1, and LST1. The ROC-AUCs and PR-AUCs of the train, validation, total, and independent cohort were 0.891 and 0.725, 0.826 and 0.364, 0.869 and 0.654, 0.792 and 0.372, respectively. GSEA, ssGSEA, CIBERSORT, and MCP-counter analyses further revealed that high-risk patients presented enhanced immune signatures, which indicated that immunotherapy may improve clinical outcomes in these patients. Conclusion: An eight-gene model with high accuracy for predicting ischemic events after CEA was constructed. This model might be a promising tool to facilitate the clinical management and postoperative surveillance of carotid artery stenosis patients.
Collapse
Affiliation(s)
- Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Can Cao
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Youyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yin Yu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shirui Liu
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Hua
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaohui Hua, ; Xinwei Han, ; Zhen Li,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaohui Hua, ; Xinwei Han, ; Zhen Li,
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaohui Hua, ; Xinwei Han, ; Zhen Li,
| |
Collapse
|
46
|
Bi Y, Wu ZH, Cao F. Prognostic value and immune relevancy of a combined autophagy-, apoptosis- and necrosis-related gene signature in glioblastoma. BMC Cancer 2022; 22:233. [PMID: 35241019 PMCID: PMC8892733 DOI: 10.1186/s12885-022-09328-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prognostic implications in GBM patients. Methods Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognostic signature. Kaplan–Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external validation. Finally, we investigated the differences in the immune microenvironment between different prognostic groups and predicted potential compounds targeting each group. Results A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of PDCD1LG2, CD86, CD48 and IDO1. Conclusion Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide patients’ selection for preferential use of immunotherapy in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09328-3.
Collapse
Affiliation(s)
- Ying Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
47
|
Zhang S, Li X, Zhang X, Zhang S, Tang C, Kuang W. The Pyroptosis-Related Gene Signature Predicts the Prognosis of Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:781427. [PMID: 35047554 PMCID: PMC8762168 DOI: 10.3389/fmolb.2021.781427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a genetically and phenotypically heterogeneous tumor, and the prediction of its prognosis remains a challenge. In the past decade, studies elucidating the mechanisms that induce tumor cell pyroptosis has rapidly increased. The elucidation of their mechanisms is essential for the clinical development optimal application of anti-hepatocellular carcinoma therapeutics. Methods: Based on the different expression profiles of pyroptosis-related genes in HCC, we constructed a LASSO Cox regression pyroptosis-related genes signature that could more accurately predict the prognosis of HCC patients. Results: We identified seven pyroptosis-related genes signature (BAK1, CHMP4B, GSDMC, NLRP6, NOD2, PLCG1, SCAF11) in predicting the prognosis of HCC patients. Kaplan Meier survival analysis showed that the pyroptosis-related high-risk gene signature was associated with poor prognosis HCC patients. Moreover, the pyroptosis-related genes signature performed well in the survival analysis and ICGC validation group. The hybrid nomogram and calibration curve further demonstrated their feasibility and accuracy for predicting the prognosis of HCC patients. Meanwhile, the evaluation revealed that our novel signature predicted the prognosis of HCC patients more accurately than traditional clinicopathological features. GSEA analysis further revealed the novel signature associated mechanisms of immunity response in high-risk groups. Moreover, analysis of immune cell subsets with relevant functions revealed significant differences in aDCs, APC co-stimulation, CCR, check-point, iDCs, Macrophages, MHC class-I, Treg, and type II INF response between high- and low-risk groups. Finally, the expression of Immune checkpoints was enhanced in high-risk group, and m6A-related modifications were expressed differently between low- and high-risk groups. Conclusion: The novel pyroptosis-related genes signature can predict the prognosis of patients with HCC and insight into new cell death targeted therapies.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
48
|
Zheng J, Guo J, Wang Y, Zheng Y, Zhang K, Tong J. Bioinformatic Analyses of the Ferroptosis-Related lncRNAs Signature for Ovarian Cancer. Front Mol Biosci 2022; 8:735871. [PMID: 35127813 PMCID: PMC8807408 DOI: 10.3389/fmolb.2021.735871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Both ferroptosis and lncRNAs are significant for ovarian cancer (OC). Whereas, the study of ferroptosis-related lncRNAs (FRLs) still few in ovarian cancer. We first constructed an FRL-signature for patients with OC in the study. A total of 548 FRLs were identified for univariate Cox regression analysis, and 21 FRLs with significant prognosis were identified. The prognostic characteristics of nine FRLs was constructed and validated, showing opposite prognosis in two subgroups based on risk scores. The multivariate Cox regression analysis and nomogram further verified the prognostic value of the risk model. By calculating ferroptosis score through ssGSEA, we found that patients with higher risk scores exhibited higher ferroptosis scores, and high ferroptosis score was a risk factor. There were 40 microenvironment cells with significant differences in the two groups, and the difference of Stromal score between the two groups was statistically significant. Six immune checkpoint genes were expressed at different levels in the two groups. In addition, five m6A regulators (FMR1, HNRNPC, METTL16, METTL3, and METTL5) were higher expressed in the low-risk group. GSEA revealed that the risk model was associated with tumor-related pathways and immune-associated pathway. We compared the sensitivity of chemotherapy drugs between the two risk groups. We also explored the co-expression, ceRNA relation, cis and trans interaction of ferroptosis-related genes and lncRNAs, providing a new idea for the regulatory mechanisms of FRLs. Moreover, the nine FRLs were selected for detecting their expression levels in OC cells and tissues.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jialu Guo
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, China
| | - Yahui Wang
- Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Yingling Zheng
- Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - Ke Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Jinyi Tong
- Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, China
- *Correspondence: Jinyi Tong,
| |
Collapse
|
49
|
Dang R, Jin M, Nan J, Jiang X, He Z, Su F, Li D. A Novel Ferroptosis-Related lncRNA Signature for Prognosis Prediction in Patients with Papillary Renal Cell Carcinoma. Int J Gen Med 2022; 15:207-222. [PMID: 35023959 PMCID: PMC8747765 DOI: 10.2147/ijgm.s341034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Papillary renal cell carcinoma (PRCC) is a common renal cell carcinoma. Recent studies have reported that ferroptosis is involved in the occurrence and development of tumors. Long non-coding RNAs can be used as independent biomarkers for the diagnosis and prognosis of a variety of tumors. Methods Gene expression profile and clinical information of patients with PRCC were obtained from The Cancer Genome Atlas (TCGA) database. Lasso penalized Cox regression and univariate Cox regression analysis were utilized for model construction. The Kaplan–Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature. Immune cell infiltration and immune function were compared between the high-risk and low-risk groups. Chemotherapy sensitivity analysis was also performed. Results We constructed a prognostic signature consisting of 15 ferroptosis-related lncRNAs. The K-M curves validated the fine predictive accuracy of the prognostic signature (p < 0.001). The area under the curve (AUC) of the lncRNA signature was 0.930, exhibiting robust prognostic capacity. The high-risk group had a greater degree of immune cell infiltration than the low-risk group. Significant differences in inflammation promotion, parainflammation, and type I IFN response were noted between the low-risk and high-risk groups (p < 0.01). The expression levels of immune checkpoints including CD80, IDO1, and LAG3 were significantly higher in the high-risk group than in the low-risk group (p < 0.05). Chemotherapy sensitivity analysis showed that MNX1-AS1, ZFAS1, MIR4435-2HG, and ADAMTS9-AS1 were significantly correlated with the sensitivity of some chemotherapy drugs (p < 0.05). Conclusion We demonstrated that a ferroptosis-related lncRNA prognostic signature could be a novel biomarker for PRCC.
Collapse
Affiliation(s)
- Ruijie Dang
- Department of Oncology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Meiling Jin
- Department of Nephrology, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Jingzhu Nan
- Department of Clinical Laboratory, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xuege Jiang
- Respiratory Diseases Department, Second Medical Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Zheng He
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Fang Su
- Aeronautical Physiological Identification Training Laboratory, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Diangeng Li
- Department of Scientific Research, Beijing-Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| |
Collapse
|
50
|
Li N, Shen J, Qiao X, Gao Y, Su HB, Zhang S. Long Non-Coding RNA Signatures Associated with Ferroptosis Predict Prognosis in Colorectal Cancer. Int J Gen Med 2022; 15:33-43. [PMID: 35018112 PMCID: PMC8742603 DOI: 10.2147/ijgm.s331378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Currently, colorectal cancer has become a common gastrointestinal malignancy that usually occurs in the colon and rectum, and ferroptosis plays a vital role in the pathology and progression of colorectal tumors. Methods A total of 627 patients (51 normal and 644 tumor samples) from The Cancer Genome Atlas (TCGA)-COAD and TCGA-READ were included in the study. Lasso and Cox’s regression was employed to analyze the characteristic lncRNAs in colorectal cancer samples, and a distinctive prognostic model of ferroptosis-related lncRNAs was established. By analyzing the divergence between the high and low-risk groups of ferroptosis-related lncRNAs, 15 characteristic lncRNAs related to the prognosis of colorectal cancer were evaluated. Kaplan–Meier analysis, operation characteristic curve (ROC), nomogram, and gene set enrichment analyses (GSEA) further confirmed the validity of the characteristic prognostic model with ferroptosis-related lncRNAs. Results Kaplan–Meier analysis confirmed a high-risk group of ferroptosis-related lncRNA interrelated with a poor prognosis in colorectal cancer. AUC estimates of 1 -, 3 -, and 5-year survival rates for ferroptosis-related lncRNA characteristic models were 0.745, 0.767 and 0.789. GSEA analysis showed that immune and malignancy-related pathways were active in the high-risk score group. In addition, differential analyses of immune function, including Checkpoint, cytolytic, HLA, and T cell co-inhibition, differed significantly betwixt low - and high-risk groups.CD160, TNFRSF18, CD27, PDCD1, CD200R1, ADORA2A, TNFRSF14, LAIR1, CD244, CD40, TNFRSF4, CD70, TNFSF14, TNFRSF25, CD276, HHLA2, VTCN1, LAG3, TNFSF18, and other immune checkpoints had different expressions betwixt the high- and low-risk group. Conclusion Fifteen kinds of lncRNAs with different expressions (AP003555.1, AC099850.3, AL031985.3, LINC01857, STPG3-AS1, AL137782.1, AC124067.4, AC012313.5, AC083900.1, AC010973.2, ALMS1-IT1, AC013652.1, AC133540.1, AP006621.2, AC018653.3) were closely associated with poor prognosis of colorectal cancer. These indicators were significantly correlated with the overall survival (OS) rate and could be used as prognostic evaluation criteria.
Collapse
Affiliation(s)
- Na Li
- Department of Anorectal Surgery, Xianyang Central Hospital, Xianyang, Shaanxi Province, People's Republic of China
| | - Jiangli Shen
- Department of Anorectal Surgery, Xianyang Central Hospital, Xianyang, Shaanxi Province, People's Republic of China
| | - Ximin Qiao
- Dean's Office, Xianyang Central Hospital, Xianyang, Shaanxi Province, People's Republic of China
| | - Yuan Gao
- Surgery Department, Xianyang Central Hospital, Xianyang, Shaanxi Province, People's Republic of China
| | - Hong-Bo Su
- The Second Ward of the Anorectal Hospital, Xi'an Hospital of TCM, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuai Zhang
- Journal Editorial Board, Hebei University of Chinese Medicine, Hebei, People's Republic of China
| |
Collapse
|