1
|
Zhang L, Abro B, Campbell A, Ding Y. TP53 mutations in myeloid neoplasms: implications for accurate laboratory detection, diagnosis, and treatment. Lab Med 2024; 55:686-699. [PMID: 39001691 DOI: 10.1093/labmed/lmae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Genetic alterations that affect the function of p53 tumor suppressor have been extensively investigated in myeloid neoplasms, revealing their significant impact on disease progression, treatment response, and patient outcomes. The identification and characterization of TP53 mutations play pivotal roles in subclassifying myeloid neoplasms and guiding treatment decisions. Starting with the presentation of a typical case, this review highlights the complicated nature of genetic alterations involving TP53 and provides a comprehensive analysis of TP53 mutations and other alterations in myeloid neoplasms. Currently available methods used in clinical laboratories to identify TP53 mutations are discussed, focusing on the importance of establishing a robust testing protocol within clinical laboratories to ensure the delivery of accurate and reliable results. The treatment implications of TP53 mutations in myeloid neoplasms and clinical trial options are reviewed. Ultimately, we hope that this review provides valuable insights into the patterns of TP53 alterations in myeloid neoplasms and offers guidance to establish practical laboratory testing protocols to support the best practices of precision oncology.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, US
| | - Brooj Abro
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, US
| | - Andrew Campbell
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, PA, US
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, PA, US
| |
Collapse
|
2
|
Nzitakera A, Uwamariya D, Kato H, Surwumwe JB, Mbonigaba A, Ndoricyimpaye EL, Uwamungu S, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Watanabe H, Rugwizangoga B, Baba S, Yamada H, Yoshimura K, Sakai Y, Sugimura H, Shinmura K. TP53 mutation status and consensus molecular subtypes of colorectal cancer in patients from Rwanda. BMC Cancer 2024; 24:1266. [PMID: 39394554 PMCID: PMC11468329 DOI: 10.1186/s12885-024-13009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Mutations in the TP53 tumor suppressor gene are well-established drivers of colorectal cancer (CRC) development. However, data on the prevalence of TP53 variants and their association with consensus molecular subtype (CMS) classification in patients with CRC from Rwanda are currently lacking. This study addressed this knowledge gap by investigating TP53 mutation status concerning CMS classification in a CRC cohort from Rwanda. METHODS Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from 51 patients with CRC at the University Teaching Hospital of Kigali, Rwanda. Exons 4 to 11 and their flanking intron-exon boundaries in the TP53 gene were sequenced using Sanger sequencing to identify potential variants. The recently established immunohistochemistry-based classifier was employed to determine the CMS of each tumor. RESULTS Sequencing analysis of cancerous tissue DNA revealed TP53 pathogenic variants in 23 of 51 (45.1%) patients from Rwanda. These variants were predominantly missense types (18/23, 78.3%). The most frequent were c.455dup (p.P153Afs*28), c.524G > A (p.R175H), and c.733G > A (p.G245S), each identified in three tumors. Trinucleotide sequence context analysis of the 23 mutations (20 of which were single-base substitutions) revealed a predominance of the [C > N] pattern among single-base substitutions (SBSs) (18/20; 90.0%), with C[C > T]G being the most frequent mutation (5/18, 27.8%). Furthermore, pyrimidine bases (C and T) were preferentially found at the 5' flanking position of the mutated cytosine (13/18; 72.2%). Analysis of CMS subtypes revealed the following distribution: CMS1 (microsatellite instability-immune) (6/51, 11.8%), CMS2 (canonical) (28/51, 54.9%), CMS3 (metabolic) (9/51, 17.6%), and CMS4 (mesenchymal) (8/51, 15.7%). Interestingly, the majority of TP53 variants were in the CMS2 subgroup (14/23; 60.1%). CONCLUSION Our findings indicate a high frequency of TP53 variants in CRC patients from Rwanda. Importantly, these variants are enriched in the CMS2 subtype. This study, representing the second investigation into molecular alterations in patients with CRC from Rwanda and the first to explore TP53 mutations and CMS classification, provides valuable insights into the molecular landscape of CRC in this understudied population.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - André Mbonigaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Placide Kamali
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - François Ngabonziza
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Tumor Immunology Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SE- 40530, Sweden
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Medicine, 1- 20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
3
|
Alakonya H, Koustoulidou S, Hopkins SL, Veal M, Ajenjo J, Sneddon D, Dias G, Mosley M, Baguña Torres J, Amoroso F, Anderson A, Banham AH, Cornelissen B. Molecular Imaging of p53 in Mouse Models of Cancer Using a Radiolabeled Antibody TAT Conjugate with SPECT. J Nucl Med 2024; 65:1626-1632. [PMID: 39266290 PMCID: PMC11448609 DOI: 10.2967/jnumed.124.267736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first-to our knowledge-method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non-p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse-derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.
Collapse
Affiliation(s)
- Hudson Alakonya
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sofia Koustoulidou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L Hopkins
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mathew Veal
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Javier Ajenjo
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Deborah Sneddon
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Gemma Dias
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia Baguña Torres
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca Amoroso
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Amanda Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Bart Cornelissen
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom;
- Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Zajanckauskaite A, Lingelbach M, Juozapaitė D, Utkus A, Rukšnaitytė G, Jonuškienė G, Gulla A. Utilization of Microfluidic Droplet-Based Methods in Diagnosis and Treatment Methods of Hepatocellular Carcinoma: A Review. Genes (Basel) 2024; 15:1242. [PMID: 39457366 PMCID: PMC11508129 DOI: 10.3390/genes15101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is associated with high morbidity and mortality. One of the main challenges in the management of HCC is late clinical presentation and thus diagnosis of the disease, which results in poor survival. The pathogenesis of HCC is complex and involves chronic liver injury and genetic alterations. Diagnosis of HCC can be made either by biopsy or imaging; however, conventional tissue-based biopsy methods and serological biomarkers such as AFP have limited clinical applications. While hepatocellular carcinoma is associated with a range of molecular alterations, including the activation of oncogenic signaling pathways, such as Wnt-TGFβ, PI3K-AKT-mTOR, RAS-MAPK, MET, IGF, and Wnt-β-catenin and TP53 and TERT promoter mutations, microfluidic applications have been limited. Early diagnosis is crucial for advancing treatments that would address the heterogeneity of HCC. In this context, microfluidic droplet-based methods are crucial, as they enable comprehensive analysis of the genome and transcriptome of individual cells. Single-cell RNA sequencing (scRNA-seq) allows the examination of individual cell transcriptomes, identifying their heterogeneity and cellular evolutionary relationships. Other microfluidic methods, such as Drop-seq, InDrop, and ATAC-seq, are also employed for single-cell analysis. Here, we examine and compare these microfluidic droplet-based methods, exploring their advantages and limitations in liver cancer research. These technologies provide new opportunities to understand liver cancer biology, diagnosis, treatment, and prognosis, contributing to scientific efforts in combating this challenging disease.
Collapse
Affiliation(s)
- Akvilė Zajanckauskaite
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Miah Lingelbach
- School of Osteopathic Medicine, A.T. Still University, Mesa, AZ 85206, USA;
| | - Dovilė Juozapaitė
- Vilnius Santaros Klinikos Biobank, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | | | - Goda Jonuškienė
- Clinic of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, 01513 Vilnius, Lithuania
| | - Aistė Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
- Department of Surgery, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Sahyon HA, Alharbi NS, Asad Z, El Shishtawy MA, Derbala SA. Assessment of the Circulating PD-1 and PD-L1 Levels and P53 Expression as a Predictor of Relapse in Pediatric Patients with Wilms Tumor and Hypernephroma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1035. [PMID: 39334568 PMCID: PMC11430274 DOI: 10.3390/children11091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Background/Objectives: Wilms tumor (WT) is the most common form of pediatric renal tumor, accounting for over 90% of cases followed by hypernephroma. Some pediatric patients with WT (10%) experience relapse or metastasis and have poor survival rates. PD-L1 assists cancer cells in escaping damage from the immune system. P53 mutations are found in relapsed WT tumor samples. We hypothesized that testing circulating PD-1 and PD-L1 and P53 expression levels could offer a simple method to predict patient relapse and explore novel treatments for pediatric WTs and hypernephroma. Methods: Flow cytometric detection of cPD-1, cPD-L1, and P53 expression in relapsed and in-remission WT and hypernephroma before and after one year of chemotherapy was performed. Results: Our data shows increased levels of cPD-L1 in relapsed pediatric patients with WT or hypernephroma before and after chemotherapy. There were also slight and significant increases in cPD-1 levels in relapsed groups before chemotherapy. Additionally, we observed significant decreases in P53 expression after one year of chemotherapy in relapsed pediatric patients. Conclusions: Our study found that circulating PD-L1 can be used as a predictor marker for WT and hypernephroma relapse. In conclusion, these circulating markers can assist in monitoring relapse in WT and hypernephroma patients without the need for several biopsies.
Collapse
Affiliation(s)
- Heba A. Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nadaa S. Alharbi
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
- Ministry of Health, Riyadh 12233, Saudi Arabia
| | - Zummar Asad
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
| | - Mohamed A. El Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Safaa A. Derbala
- Urology, and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
6
|
He J, Kou SH, Li J, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose after the latest human out-of-Africa migration. Front Genet 2024; 15:1408952. [PMID: 38948361 PMCID: PMC11211533 DOI: 10.3389/fgene.2024.1408952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The DNA damage repair (DDR) system in human genome is pivotal in maintaining genomic integrity. Pathogenic variation (PV) in DDR genes impairs their function, leading to genome instability and increased susceptibility to diseases, especially cancer. Understanding the evolution origin and arising time of DDR PV is crucial for comprehending disease susceptibility in modern humans. Methods We used big data approach to identify the PVs in DDR genes in modern humans. We mined multiple genomic databases derived from 251,214 modern humans of African and non-Africans. We compared the DDR PVs between African and non-African. We also mined the DDR PVs in the genomic data derived from 5,031 ancient humans. We used the DDR PVs from ancient humans as the intermediate to further the DDR PVs between African and non-African. Results and discussion We identified 1,060 single-base DDR PVs across 77 DDR genes in modern humans of African and non-African. Direct comparison of the DDR PVs between African and non-African showed that 82.1% of the non-African PVs were not present in African. We further identified 397 single-base DDR PVs in 56 DDR genes in the 5,031 ancient humans dated between 45,045 and 100 years before present (BP) lived in Eurasian continent therefore the descendants of the latest out-of-Africa human migrants occurred 50,000-60,000 years ago. By referring to the ancient DDR PVs, we observed that 276 of the 397 (70.3%) ancient DDR PVs were exclusive in non-African, 106 (26.7%) were shared between non-African and African, and only 15 (3.8%) were exclusive in African. We further validated the distribution pattern by testing the PVs in BRCA and TP53, two of the important genes in genome stability maintenance, in African, non-African, and Ancient humans. Our study revealed that DDR PVs in modern humans mostly emerged after the latest out-of-Africa migration. The data provides a foundation to understand the evolutionary basis of disease susceptibility, in particular cancer, in modern humans.
Collapse
Affiliation(s)
| | | | | | | | - San Ming Wang
- Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, University of Macau, Taipa, China
| |
Collapse
|
7
|
Bai B, An X, Qu Q, Liu X, Liu Y, Wei L. The clinical features and prognostic implications of the co-mutated TP53 gene in advanced non-small cell lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03533-1. [PMID: 38872053 DOI: 10.1007/s12094-024-03533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND TP53 is a frequently mutated oncogene within non-small cell lung cancer (NSCLC). However, the clinical and prognostic significance of co-mutations in TP53 in patients with advanced NSCLC has not been fully elucidated. METHODS A total of 174 patients with advanced NSCLC were enrolled in this study. All patients were subjected to sequencing analysis of tumor-related genes and information such as PD-L1 expression, TMB, and co-mutation changes were collected. Patients were categorized into TP53 mutant and TP53 wild-type groups according to their TP53 mutation status and then statistically analyzed. RESULTS TP53 mutations were the most common among all patients, accounting for 56.32%, followed by epidermal growth factor receptor mutations at 48.27%. The most common mutation sites in the TP53 mutation group were exons 5-8.TP53 mutations were significantly associated with PD-L1 and TMB levels. Univariate Cox analysis showed that gender and EGFR mutation affected the prognosis of TP53-mutated NSCLC patients, and multivariate Cox regression analysis identified EGFR mutation as an independent risk factor. The OS of NSCLC patients in the TP53 mutation group was significantly shorter than that of the TP53wt group. Survival curves in the TP53/EGFR combined mutation group showed that patients with combined EGFR mutation had a lower survival rate. DISCUSSION TP53 mutations are associated with different clinical indicators and have important implications in clinical treatment. TP53 is a poor prognostic factor for NSCLC patients, and TP53/EGFR co-mutation will affect the survival time of patients. TP53/EGFR co-mutation may be a new prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Bing Bai
- Tai'an City Central Hospital (Tai'an Central Hospital Affiliated to Qingdao University, Mount Taishan Medical Center), Tai'an, 271000, Shandong, China
| | - Xia An
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Qinghui Qu
- Yutai County People's Hospital, Jining, 272300, Shandong, China
| | - Xin Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China.
| | - Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| |
Collapse
|
8
|
Beird HC, Lin D, Lazar AJ, Futreal PA. Patterns of structural variants within TP53 introns and relocation of the TP53 promoter: a commentary †. J Pathol 2024; 263:131-134. [PMID: 38482738 DOI: 10.1002/path.6270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/12/2024]
Abstract
Gene disruption from double-strand DNA breaks within introns is a mechanism of inactivating the tumor suppressor TP53. This occurs more frequently in osteosarcoma and biliary adenocarcinoma compared with other cancer types. The patterns of intron breakpoints within TP53 do not correlate with prevalence, intron length, or overall genome-wide levels of rearrangements. Therefore, these breakpoints appear to be selected for reasons other than to disrupt TP53. A recent article published by Saba et al in The Journal of Pathology illustrates a benefit to having breakpoints within intron 1 using high-quality matched genomic and transcriptomic osteosarcoma sequencing data as well as in vitro validation. The authors describe how the rearrangement results in relocation of the TP53 promoter region to regions upstream of genes that encode members of cartilage, growth plate development, osteoclast formation, and other TP53-related pathways. The upregulation of these genes by the TP53 promoter are gain-of-function events that are likely to promote tumor development and growth. Therefore, this article presents a potential new paradigm in which a single mutation would result in both the loss of a tumor suppressor and the gain of an oncogenic program. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitri Lin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Puccio S, Azzarello G, Maffeis V, Laurino L, Mairani E, Conte F, Tessari N, Cazzador D, Zanoletti E, Politi D, Emanuelli E, Spinato G, Ausoni S. Tumor Budding, p53, and DNA Mismatch Repair Markers in Sinonasal Intestinal-Type Adenocarcinoma: A Retrospective Study Supports the Adverse Prognostic Impact of Tumor Budding. Cancers (Basel) 2024; 16:1895. [PMID: 38791973 PMCID: PMC11120584 DOI: 10.3390/cancers16101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Sinonasal intestinal-type adenocarcinoma (ITAC) is a very rare, closely occupational-related tumor with strong histological similarities to colorectal cancer (CRC). In the latter, tumor budding (TB) is widely recognized as a negative prognostic parameter. The aim of this study was to evaluate the prognostic role of TB in ITAC and to correlate it with other established or emerging biomarkers of the disease, such as p53 and deficient DNA mismatch repair (MMR) system status/microsatellite instability (MSI). We retrospectively analyzed 32 consecutive specimens of patients with ITAC diagnosis treated in two institutions in Northern Italy. We reviewed surgical specimens for TB evaluation (low-intermediate/high); p53 expression and MMR proteins were evaluated via immunohistochemistry. Results were retrospectively stratified using clinical data and patients' outcomes. According to bud counts, patients were stratified into two groups: intermediate/high budding (>4 TB) and low budding (≤4 TB). Patients with high TB (>4) have an increased risk of recurrence and death compared to those with low TB, with a median survival of 13 and 54 months, respectively. On multivariate analysis, considering TB, therapy, and stage as covariates, TB emerged as an independent prognostic factor net of the stage of disease or type of therapy received. No impact of p53 status as a biomarker of prognosis was observed and no alterations regarding MMR proteins were identified. The results of the present work provide further significant evidence on the prognostic role of TB in ITAC and underline the need for larger multicenter studies to implement the use of TB in clinical practice.
Collapse
Affiliation(s)
- Sebastiano Puccio
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neuroscience, “Azienda Ospedale Università di Padova” University of Padova, via Giustiniani, 2, 35122 Padova, Italy; (S.P.); (E.M.); (N.T.); (D.C.); (E.Z.)
| | - Giuseppe Azzarello
- Department of Oncology, Local Health Unit 3 Serenissima, Via don Giacobbe Sartor 4, 30035 Venice, Italy;
| | - Valeria Maffeis
- Anatomia Patologica, Azienda Ospedaliera Universitaria Integrata Verona (AOVR), Ospedale Borgo Trento, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
- Department of Pathology, Local Health Unit 2 Marca Trevigiana, Piazzale dell’Ospedale 1, 31100 Treviso, Italy;
| | - Licia Laurino
- Department of Pathology, Local Health Unit 3 Serenissima, Via Paccagnella 11, 30174 Venice, Italy;
| | - Edoardo Mairani
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neuroscience, “Azienda Ospedale Università di Padova” University of Padova, via Giustiniani, 2, 35122 Padova, Italy; (S.P.); (E.M.); (N.T.); (D.C.); (E.Z.)
| | - Federica Conte
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Nicola Tessari
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neuroscience, “Azienda Ospedale Università di Padova” University of Padova, via Giustiniani, 2, 35122 Padova, Italy; (S.P.); (E.M.); (N.T.); (D.C.); (E.Z.)
| | - Diego Cazzador
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neuroscience, “Azienda Ospedale Università di Padova” University of Padova, via Giustiniani, 2, 35122 Padova, Italy; (S.P.); (E.M.); (N.T.); (D.C.); (E.Z.)
| | - Elisabetta Zanoletti
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neuroscience, “Azienda Ospedale Università di Padova” University of Padova, via Giustiniani, 2, 35122 Padova, Italy; (S.P.); (E.M.); (N.T.); (D.C.); (E.Z.)
| | - Doriano Politi
- Department of Otorhinolaryngology, Local Health Unit 3 Serenissima, Via Paccagnella, 11, 30174 Venice, Italy;
| | - Enzo Emanuelli
- Department of Pathology, Local Health Unit 2 Marca Trevigiana, Piazzale dell’Ospedale 1, 31100 Treviso, Italy;
| | - Giacomo Spinato
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neuroscience, “Azienda Ospedale Università di Padova” University of Padova, via Giustiniani, 2, 35122 Padova, Italy; (S.P.); (E.M.); (N.T.); (D.C.); (E.Z.)
| | - Simonetta Ausoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
| |
Collapse
|
10
|
Caponio VCA, Zhurakivska K, Mascitti M, Togni L, Spirito F, Cirillo N, Lo Muzio L, Troiano G. High-risk TP53 mutations predict poor primary treatment response of patients with head and neck squamous cell carcinoma. Oral Dis 2024; 30:2018-2026. [PMID: 37501500 DOI: 10.1111/odi.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) poses a diagnostic and therapeutic challenge worldwide and is associated with a poor survival rate. Due to the variability in the efficacy of treatments for HNSCC, new predictive biomarkers of therapy outcomes are needed. Recently, we developed an algorithm that employs the mutational profile of TP53 as an independent prognostic factor in HNSCC. In this study, we investigated its role as a predictive biomarker of treatment outcomes in HNSCC patients. We also tested the usefulness of two classification systems for TP53 mutational landscapes. MATERIALS AND METHODS Clinical and genomic data were retrieved from The Cancer Genome Atlas database. We built a multivariate stepwise backward binary regression model to assess the role of TP53 mutations in predicting therapeutic outcomes. RESULTS Cases harbouring high-risk-of-death mutations reported an odds ratio of 3.301 for stable or progressive disease compared to wild-type cases, while no significant difference in treatment outcomes was found between cases with low-risk-of-death mutations and wild-type TP53. Our analysis found that older patients with a history of alcohol consumption had a higher risk of stable/progressive disease. CONCLUSIONS This study improves current evidence on the role of TP53 mutations in treatment response in HNSCC patients.
Collapse
Affiliation(s)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Mascitti
- Department of Clinical Specialist and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Lucrezia Togni
- Department of Clinical Specialist and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
- School of Dentistry, University of Jordan, Amman, Jordan
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Castro GA, Almeida JM, Machado-Neto JA, Almeida TA. A decision support system to recommend appropriate therapy protocol for AML patients. Front Artif Intell 2024; 7:1343447. [PMID: 38510471 PMCID: PMC10950921 DOI: 10.3389/frai.2024.1343447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Acute Myeloid Leukemia (AML) is one of the most aggressive hematological neoplasms, emphasizing the critical need for early detection and strategic treatment planning. The association between prompt intervention and enhanced patient survival rates underscores the pivotal role of therapy decisions. To determine the treatment protocol, specialists heavily rely on prognostic predictions that consider the response to treatment and clinical outcomes. The existing risk classification system categorizes patients into favorable, intermediate, and adverse groups, forming the basis for personalized therapeutic choices. However, accurately assessing the intermediate-risk group poses significant challenges, potentially resulting in treatment delays and deterioration of patient conditions. Methods This study introduces a decision support system leveraging cutting-edge machine learning techniques to address these issues. The system automatically recommends tailored oncology therapy protocols based on outcome predictions. Results The proposed approach achieved a high performance close to 0.9 in F1-Score and AUC. The model generated with gene expression data exhibited superior performance. Discussion Our system can effectively support specialists in making well-informed decisions regarding the most suitable and safe therapy for individual patients. The proposed decision support system has the potential to not only streamline treatment initiation but also contribute to prolonged survival and improved quality of life for individuals diagnosed with AML. This marks a significant stride toward optimizing therapeutic interventions and patient outcomes.
Collapse
Affiliation(s)
- Giovanna A. Castro
- Department of Computer Science, Federal University of São Carlos (UFSCar) Sorocaba, São Paulo, Brazil
| | - Jade M. Almeida
- Department of Computer Science, Federal University of São Carlos (UFSCar) Sorocaba, São Paulo, Brazil
| | - João A. Machado-Neto
- Institute of Biomedical Sciences, The University of São Paulo (USP), São Paulo, Brazil
| | - Tiago A. Almeida
- Department of Computer Science, Federal University of São Carlos (UFSCar) Sorocaba, São Paulo, Brazil
| |
Collapse
|
12
|
Rong Y, Tang MZ, Liu SH, Li XF, Cai H. Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer. World J Gastrointest Oncol 2024; 16:436-457. [PMID: 38425388 PMCID: PMC10900145 DOI: 10.4251/wjgo.v16.i2.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM To investigate the disease relevance of COVID-19 in liver cancer. METHODS Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Yao Rong
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ming-Zheng Tang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Song-Hua Liu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Feng Li
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
13
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
14
|
Shin DY. TP53 Mutation in Acute Myeloid Leukemia: An Old Foe Revisited. Cancers (Basel) 2023; 15:4816. [PMID: 37835510 PMCID: PMC10571655 DOI: 10.3390/cancers15194816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION TP53 is the most commonly mutated gene in human cancers and was the first tumor suppressor gene to be discovered in the history of medical science. Mutations in the TP53 gene occur at various genetic locations and exhibit significant heterogeneity among patients. Mutations occurring primarily within the DNA-binding domain of TP53 result in the loss of the p53 protein's DNA-binding capability. However, a complex phenotypic landscape often combines gain-of-function, dominant negative, or altered specificity features. This complexity poses a significant challenge in developing an effective treatment strategy, which eradicates TP53-mutated cancer clones. This review summarizes the current understanding of TP53 mutations in AML and their implications. TP53 mutation in AML: In patients with acute myeloid leukemia (AML), six hotspot mutations (R175H, G245S, R248Q/W, R249S, R273H/S, and R282W) within the DNA-binding domain are common. TP53 mutations are frequently associated with a complex karyotype and subgroups of therapy-related or secondary AML. The presence of TP53 mutation is considered as a poor prognostic factor. TP53-mutated AML is even classified as a distinct subgroup of AML by itself, as TP53-mutated AML exhibits a significantly distinct landscape in terms of co-mutation and gene expression profiles compared with wildtype (WT)-TP53 AML. CLINICAL IMPLICATIONS To better predict the prognosis in cancer patients with different TP53 mutations, several predictive scoring systems have been proposed based on screening experiments, to assess the aggressiveness of TP53-mutated cancer cells. Among those scoring systems, a relative fitness score (RFS) could be applied to AML patients with TP53 mutations in terms of overall survival (OS) and event-free survival (EFS). The current standard treatment, which includes cytotoxic chemotherapy and allogeneic hematopoietic stem cell transplantation, is largely ineffective for patients with TP53-mutated AML. Consequently, most patients with TP53-mutated AML succumb to leukemia within several months, despite active anticancer treatment. Decitabine, a hypomethylating agent, is known to be relatively effective in patients with AML. Numerous trials are ongoing to investigate the effects of novel drugs combined with hypomethylating agents, TP53-targeting agents or immunologic agents. CONCLUSIONS Developing an effective treatment strategy for TP53-mutated AML through innovative and multidisciplinary research is an urgent task. Directly targeting mutated TP53 holds promise as an approach to combating TP53-mutated AML, and recent developments in immunologic agents for AML offer hope in this field.
Collapse
Affiliation(s)
- Dong-Yeop Shin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea; ; Tel.: +82-2-2072-7209; Fax: +82-2-762-9662
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
15
|
Kou SH, Li J, Tam B, Lei H, Zhao B, Xiao F, Wang S. TP53 germline pathogenic variants in modern humans were likely originated during recent human history. NAR Cancer 2023; 5:zcad025. [PMID: 37304756 PMCID: PMC10251638 DOI: 10.1093/narcan/zcad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
TP53 is crucial for maintaining genome stability and preventing oncogenesis. Germline pathogenic variation in TP53 damages its function, causing genome instability and increased cancer risk. Despite extensive study in TP53, the evolutionary origin of the human TP53 germline pathogenic variants remains largely unclear. In this study, we applied phylogenetic and archaeological approaches to identify the evolutionary origin of TP53 germline pathogenic variants in modern humans. In the phylogenic analysis, we searched 406 human TP53 germline pathogenic variants in 99 vertebrates distributed in eight clades of Primate, Euarchontoglires, Laurasiatheria, Afrotheria, Mammal, Aves, Sarcopterygii and Fish, but we observed no direct evidence for the cross-species conservation as the origin; in the archaeological analysis, we searched the variants in 5031 ancient human genomes dated between 45045 and 100 years before present, and identified 45 pathogenic variants in 62 ancient humans dated mostly within the last 8000 years; we also identified 6 pathogenic variants in 3 Neanderthals dated 44000 to 38515 years before present and 1 Denisovan dated 158 550 years before present. Our study reveals that TP53 germline pathogenic variants in modern humans were likely originated in recent human history and partially inherited from the extinct Neanderthals and Denisovans.
Collapse
Affiliation(s)
- Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
16
|
Sengupta S, Singh N, Paul A, Datta D, Chatterjee D, Mukherjee S, Gadhe L, Devi J, Mahesh Y, Jolly MK, Maji SK. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form. J Cell Sci 2023; 136:jcs261017. [PMID: 37622400 PMCID: PMC7615089 DOI: 10.1242/jcs.261017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
p53 (also known as TP53) mutation and amyloid formation are long associated with cancer pathogenesis; however, the direct demonstration of the link between p53 amyloid load and cancer progression is lacking. Using multi-disciplinary techniques and 59 tissues (53 oral and stomach cancer tumor tissue samples from Indian individuals with cancer and six non-cancer oral and stomach tissue samples), we showed that p53 amyloid load and cancer grades are highly correlated. Furthermore, next-generation sequencing (NGS) data suggest that not only mutant p53 (e.g. single-nucleotide variants, deletions, and insertions) but wild-type p53 also formed amyloids either in the nucleus (50%) and/or in the cytoplasm in most cancer tissues. Interestingly, in all these cancer tissues, p53 displays a loss of DNA-binding and transcriptional activities, suggesting that the level of amyloid load correlates with the degree of loss and an increase in cancer grades. The p53 amyloids also sequester higher amounts of the related p63 and p73 (also known as TP63 and TP73, respectively) protein in higher-grade tumor tissues. The data suggest p53 misfolding and/or aggregation, and subsequent amyloid formation, lead to loss of the tumor-suppressive function and the gain of oncogenic function, aggravation of which might determine the cancer grade.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India
| | - Namrata Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ajoy Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debalina Datta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debdeep Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jyoti Devi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yeshwanth Mahesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Samir K. Maji
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Ye B, Wang Q, Zhu X, Zeng L, Luo H, Xiong Y, Li Q, Zhu Q, Zhao S, Chen T, Xie J. Single-cell RNA sequencing identifies a novel proliferation cell type affecting clinical outcome of pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1236435. [PMID: 37601684 PMCID: PMC10433893 DOI: 10.3389/fonc.2023.1236435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly neoplasm, with only a 5-year survival rate of around 9%. The tumor and its microenvironment are highly heterogeneous, and it is still unknown which cell types influence patient outcomes. Methods We used single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST) to identify differences in cell types. We then applied the scRNA-seq data to decompose the cell types in bulk RNA sequencing (bulk RNA-seq) data from the Cancer Genome Atlas (TCGA) cohort. We employed unbiased machine learning integration algorithms to develop a prognosis signature based on cell type makers. Lastly, we verified the differential expression of the key gene LY6D using immunohistochemistry and qRT-PCR. Results In this study, we identified a novel cell type with high proliferative capacity, Prol, enriched with cell cycle and mitosis genes. We observed that the proportion of Prol cells was significantly increased in PDAC, and Prol cells were associated with reduced overall survival (OS) and progression-free survival (PFS). Additionally, the marker genes of Prol cell type, identified from scRNA-seq data, were upregulated and associated with poor prognosis in the bulk RNA-seq data. We further confirmed that mutant KRAS and TP53 were associated with an increased abundance of Prol cells and that these cells were associated with an immunosuppressive and cold tumor microenvironment in PDAC. ST determined the spatial location of Prol cells. Additionally, patients with a lower proportion of Prol cells in PDAC may benefit more from immunotherapy and gemcitabine treatment. Furthermore, we employed unbiased machine learning integration algorithms to develop a Prol signature that can precisely quantify the abundance of Prol cells and accurately predict prognosis. Finally, we confirmed that the LY6D protein and mRNA expression were markedly higher in pancreatic cancer than in normal pancreatic tissue. Conclusions In summary, by integrating bulk RNA-seq and scRNA-seq, we identified a novel proliferative cell type, Prol, which influences the OS and PFS of PDAC patients.
Collapse
Affiliation(s)
- Bicheng Ye
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofeng Zhu
- Department of Neurology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Lingling Zeng
- Department of Gastroenterology, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, China
| | - Huiyuan Luo
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Yan Xiong
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Qin Li
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Qinmei Zhu
- Medical School, Yangzhou Polytechnic College, Yangzhou, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ting Chen
- Department of Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, China
| | - Jingen Xie
- Department of General Medicine, Huai’an Cancer Hospital, Huai’an, China
| |
Collapse
|
18
|
Guo W, Zhang T, Li R, Chen X, Pang J, Bao H, Wu X, Shao Y, Qiu B, Gao S, He J. Molecular risk factors for locoregional recurrence in resected non-small cell lung cancer. Cancer Med 2023; 12:15026-15036. [PMID: 37248810 PMCID: PMC10417202 DOI: 10.1002/cam4.6165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Locoregional recurrence is of high risk and is associated with a poor prognosis in terms of OS for non-small cell lung cancer (NSCLC). Local control is essential for radical cure of NSCLC. Previous studies have investigated the clinicopathological risk factors for locoregional recurrence, but the genomic biomarkers associated with locoregional recurrence have been inadequately studied. METHODS A total of 118 patients who underwent tumor resection with mutation-detected tumor specimens were included. Tumor samples at surgery and pretreatment/postoperative blood samples were collected for mutational profiling. RESULTS Among 48 patients with disease recurrence, 46% developed locoregional recurrence (LR) and 75% developed distant metastasis (DM). The 3-year actuarial risk of LR and DM was 25% and 43%, respectively. The first sites of failure were locoregional only (29%), locoregional and distant (10%), and distant only (61%). Patients with LR showed significantly higher ctDNA level than those with only DM at the time of initial recurrence. On multivariate analysis of baseline risk factors, the presence of allele frequency heterogeneity and baseline ctDNA shedding were found to be independently associated with a higher risk of LR. Patients with disruptive TP53 mutations had significantly lower LR-free survival as compared to patients with wild-type TP53 or nondisruptive mutations. EGFR mutations showed a favorable prognostic value for LR and is not induced by EGFR tyrosine kinase inhibitor therapy. Both disruptive TP53 mutation and EGFR mutation remained the significant prognostic factor after adjustment for histological type, pathologic nodal stage and adjuvant therapy. CONCLUSIONS Nearly half of disease recurrences after surgery for NSCC involved locoregional sites. We identified genomic biomarkers from baseline tumor and ctDNA samples which showed promising prognostic value for LR only. This can help identify patients who had a higher risk of locoregional recurrence regardless of the risk of distant metastasis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Runze Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoxi Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc.NanjingChina
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc.NanjingChina
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc.NanjingChina
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc.NanjingChina
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc.NanjingChina
- School of Public HealthNanjing Medical UniversityNanjingChina
| | - Bin Qiu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
19
|
The higher body mass index is associated with a lower somatic mutation dependency in hepatocellular carcinoma. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
20
|
Fu J, Tong Y, Xu Z, Li Y, Zhao Y, Wang T, Li C, Cang S. Impact of TP53 Mutations on EGFR-Tyrosine Kinase Inhibitor Efficacy and Potential Treatment Strategy. Clin Lung Cancer 2023; 24:29-39. [PMID: 36117108 DOI: 10.1016/j.cllc.2022.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND We investigated the impact of factors that influence TP53 mutations on the efficacy of EGFR-tyrosine kinase inhibitors and potential treatment strategies. MATERIALS AND METHODS Tumor samples were collected to screen gene mutations by next-generation sequencing, as well as the patients' baseline characteristics. The overall response to treatment with TKIs was evaluated based on interval computed tomography scans at each follow-up time point. A Fisher's exact test and log-rank test were used to determine the statistical differences in this study. RESULTS A total of 1134 clinical samples were collected from NSCLC patients, and TP53mut was identified in 644 cases and EGFRmut in 622 cases. A low frequency of TP53mut or more than 50% EGFR co-mutation rate were related to the prognosis of TKI-treated patients. In addition, TP53mut in the region outside of the DB domain had the strongest correlation with TKI resistance, whereas various types of mutations in the DB domain only had an impact on PFS. A grouping study of EGFR-TKI-based treatment revealed that EGFR-TKIs with chemotherapy were associated with more significant survival benefits for patients with prognostic TP53mut, whereas EGFR-TKI therapy was favorable for TP53wt patients. Furthermore, TP53mut could shorten the time to the relapse of postoperative patients, who will also likely respond well to EGFR-TKIs with chemotherapy. CONCLUSION Various characteristics of TP53mut affect the prognosis of TKI-treated patients to varying degrees. EGFR-TKIs with chemotherapy were benefit for patients' survival with prognostic TP53mut, which provides an important reference for treatment management of EGFRmut patients.
Collapse
Affiliation(s)
- Jing Fu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Yuyang Tong
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Ziguang Xu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Yaonan Li
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Ya Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Tao Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China.
| |
Collapse
|
21
|
Duan Y, Du Y, Mu Y, Gu Z, Wang C. Prognostic value, immune signature and molecular mechanisms of the SUMO family in pancreatic adenocarcinoma. Front Mol Biosci 2022; 9:1096679. [PMID: 36589239 PMCID: PMC9798011 DOI: 10.3389/fmolb.2022.1096679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) has a high degree of malignancy and a very poor prognosis, and the 5-year overall survival rate of patients is approximately 7%. To improve the prognosis of patients with PAAD, a more comprehensive and in-depth study of the pathogenesis of PAAD and the identification of new diagnostic markers and treatment targets are urgently needed. Increasing evidence supports that the small ubiquitin-like modifier (SUMO) family is closely related to the occurrence and development of a variety of cancers. However, the function of the SUMO family in PAAD is not clear, and related research is very scarce. Methods: R, Cytoscape, cBioPortal, and other software and online databases were used to comprehensively analyze the expression characteristics, prognostic value, and oncogenic mechanism of the SUMO family in PAAD. Results: SUMO family members are highly expressed in PAAD, and high expression of SUMO family members is significantly associated with poor clinicopathological features and poor prognosis in PAAD patients. In addition, SUMO family members are significantly coexpressed with M6A methylation regulators and various oncogenes and play an activating role in various oncogenic pathways, including EMT. Furthermore, it is worth noting that the close association between SUMO family members and TP53 mutation status and the negative regulatory effect of SUMO1/2 on PAAD immunity may represent the potential mechanism by which SUMO family members promote the development of PAAD. Moreover, the coexpression characteristics of SUMO family members and a variety of cancer-promoting immune checkpoint genes, as well as the positive correlation between SUMO4 expression level and the sensitivity of various targeted or chemotherapeutic drugs, including gemcitabine, paclitaxel, and doxorubicin, suggest future clinical directions of this study. Conclusion: The SUMO family is closely related to the occurrence and development of PAAD and can be used as a new biomarker and therapeutic target for patients with PAAD.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongrun Mu
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Chengfeng Wang,
| |
Collapse
|
22
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
23
|
Shorthouse D, Bradley J, Critchlow SE, Bendtsen C, Hall BA. Heterogeneity of the cancer cell line metabolic landscape. Mol Syst Biol 2022; 18:e11006. [PMID: 36321551 PMCID: PMC9627668 DOI: 10.15252/msb.202211006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The unravelling of the complexity of cellular metabolism is in its infancy. Cancer-associated genetic alterations may result in changes to cellular metabolism that aid in understanding phenotypic changes, reveal detectable metabolic signatures, or elucidate vulnerabilities to particular drugs. To understand cancer-associated metabolic transformation, we performed untargeted metabolite analysis of 173 different cancer cell lines from 11 different tissues under constant conditions for 1,099 different species using mass spectrometry (MS). We correlate known cancer-associated mutations and gene expression programs with metabolic signatures, generating novel associations of known metabolic pathways with known cancer drivers. We show that metabolic activity correlates with drug sensitivity and use metabolic activity to predict drug response and synergy. Finally, we study the metabolic heterogeneity of cancer mutations across tissues, and find that genes exhibit a range of context specific, and more general metabolic control.
Collapse
Affiliation(s)
- David Shorthouse
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | | | | | | | - Benjamin A Hall
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
24
|
Bizzarri AR. Conformational Heterogeneity and Frustration of the Tumor Suppressor p53 as Tuned by Punctual Mutations. Int J Mol Sci 2022; 23:12636. [PMID: 36293489 PMCID: PMC9604312 DOI: 10.3390/ijms232012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational heterogeneity of the p53 tumor suppressor, the wild-type (p53wt) and mutated forms, was investigated by a computational approach, including the modeling and all atoms of the molecular dynamics (MD) simulations. Four different punctual mutations (p53R175H, p53R248Q, p53R273H, and p53R282W) which are known to affect the DNA binding and belong to the most frequent hot-spot mutations in human cancers, were taken into consideration. The MD trajectories of the wild-type and mutated p53 forms were analyzed by essential dynamics to extract the relevant collective motions and by the frustration method to evaluate the degeneracy of the energy landscape. We found that p53 is characterized by wide collective motions and its energy landscape exhibits a rather high frustration level, especially in the regions involved in the binding to physiological ligands. Punctual mutations give rise to a modulation of both the collective motions and the frustration of p53, with different effects depending on the mutation. The regions of p53wt and of the mutated forms characterized by a high frustration level are also largely involved in the collective motions. Such a correlation is discussed also in connection with the intrinsic disordered character of p53 and with its central functional role.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
25
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Yu X, Mao SQ, Shan YY, Huang Y, Wu SD, Lu CD. Predictive Value of the TP53 p.G245S Mutation Frequency for the Short-Term Recurrence of Hepatocellular Carcinoma as Detected by Pyrophosphate Sequencing. Genet Test Mol Biomarkers 2022; 26:476-484. [PMID: 36264169 DOI: 10.1089/gtmb.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: We explored the relationship between the mutation of the p.G245S site in TP53 and the short-term recurrence of hepatocellular carcinoma (HCC). Materials and Methods: One hundred one HCC patients were included in this study. The TP53 p.G245S mutation frequency spectrum was examined by direct sequencing of genomic DNA from tissue specimens of HCC patients. Univariate and multivariate Cox regression were used to evaluate the independent prognostic factors of tumor recurrence. Receiver operating characteristic (ROC) curve analysis was applied to determine the cutoff value of p.G245S mutation frequency and verify the predictive ability of the Cox model compared with single risk factor indices. Results: Multivariate Cox regression analysis showed that TP53 p.G245S mutation frequency (hazard ratio [HR] = 1.231, 95% CI: 1.006-1.505, p = 0.043), alpha-fetoprotein (AFP) (HR = 2.432, 95% CI: 1.297-4.561, p = 0.006), macrotrabecular-massive (MTM) (HR = 2.656, 95% CI: 0.930-7.583, p = 0.068), and portal vein tumor thrombus (PVTT) (HR = 14.297, 95% CI: 3.085-66.243, p = 0.001) were independent prognostic factors for short-term recurrence. The cutoff value of TP53 p.G245S mutation frequency (18.5%) was determined by ROC analysis. The prediction model integrating TP53 p.G245S mutation frequency, PVTT, MTM, and AFP could be a predictive indicator of short-term recurrence in HCC patients (AUC = 0.849, 95% CI: 0.748-0.950, p = 0.000001). Survival analysis indicated that the probability of short-term recurrence-free survival was significantly different among different TP53 p.G245S mutation frequency, MTM, PVTT, and AFP risk groups (p < 0.05). Conclusion: The mutation frequency of the p.G245S site was a novel prognostic risk factor for the short-term recurrence of HCC.
Collapse
Affiliation(s)
- Xi Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Qi Mao
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yu-Ying Shan
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Sheng-Dong Wu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Cai-De Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
Monti P, Ravera S, Speciale A, Velkova I, Foggetti G, Degan P, Fronza G, Menichini P. Mutant p53K120R expression enables a partial capacity to modulate metabolism. Front Genet 2022; 13:974662. [PMID: 36226181 PMCID: PMC9549157 DOI: 10.3389/fgene.2022.974662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
The TP53 tumor suppressor gene is one of the most studied gene in virtue of its ability to prevent cancer development by regulating apoptosis, cell cycle arrest, DNA repair, autophagy and senescence. Furthermore, the modulation of metabolism by P53 is fundamental for tumor suppressor activity. Studies in mouse models showed that mice carrying TP53 mutations affecting the acetylation in the DNA binding domain still retain the ability to transactivate genes involved in metabolism. Noteworthy, mice expressing the triple 3KR or the single K117R mutant do not show early on-set tumor development in contrast to TP53−/− mice. Interestingly, the mouse K117R mutation corresponds to the human tumor-derived K120R modification, which abrogates P53-dependent activation of apoptosis without affecting growth arrest. In this study, we investigated the property of the human P53 K120R mutant in the regulation of metabolism by analyzing the transcriptional specificity in yeast- and mammalian-based reporter assays, the metabolic phenotype associated to its expression in colon cancer HCT116TP53−/− cells and the induction of P53 targets and proteins involved in the antioxidant response. These properties were analyzed in comparison to wild type P53 protein, the human triple mutant corresponding to mouse 3KR and the cancer hot-spot R273H mutant. We confirm the selective functionality of P53 K120R mutant, which shows a transcriptional activity on cell cycle arrest but not on apoptotic targets. Interestingly, this mutant shows a partial transactivation activity on p53 response element belonging to the metabolic target TIGAR. Moreover, we observe a significant uncoupling between oxygen consumption and ATP production associated with higher lipid peroxidation level in all P53 mutants carrying cells with respect to wild type P53 expressing cells. Noteworthy, in the absence of a pro-oxidative challenge, cells expressing K120R mutant retain a partial capacity to modulate glucose metabolism, limiting lipid peroxidation with respect to the other P53 mutants carrying cells. Lastly, especially in presence of human 3KR mutant, a high expression of proteins involved in the antioxidant response is found. However, this response does not avoid the increased lipid peroxidation, confirming that only wild type P53 is able to completely counteract the oxidative stress and relative damages.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irena Velkova
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giorgia Foggetti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Degan
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- *Correspondence: Paola Menichini,
| |
Collapse
|
28
|
van der Noord VE, van de Water B, Le Dévédec SE. Targeting the Heterogeneous Genomic Landscape in Triple-Negative Breast Cancer through Inhibitors of the Transcriptional Machinery. Cancers (Basel) 2022; 14:4353. [PMID: 36139513 PMCID: PMC9496798 DOI: 10.3390/cancers14184353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer defined by lack of the estrogen, progesterone and human epidermal growth factor receptor 2. Although TNBC tumors contain a wide variety of oncogenic mutations and copy number alterations, the direct targeting of these alterations has failed to substantially improve therapeutic efficacy. This efficacy is strongly limited by interpatient and intratumor heterogeneity, and thereby a lack in uniformity of targetable drivers. Most of these genetic abnormalities eventually drive specific transcriptional programs, which may be a general underlying vulnerability. Currently, there are multiple selective inhibitors, which target the transcriptional machinery through transcriptional cyclin-dependent kinases (CDKs) 7, 8, 9, 12 and 13 and bromodomain extra-terminal motif (BET) proteins, including BRD4. In this review, we discuss how inhibitors of the transcriptional machinery can effectively target genetic abnormalities in TNBC, and how these abnormalities can influence sensitivity to these inhibitors. These inhibitors target the genomic landscape in TNBC by specifically suppressing MYC-driven transcription, inducing further DNA damage, improving anti-cancer immunity, and preventing drug resistance against MAPK and PI3K-targeted therapies. Because the transcriptional machinery enables transcription and propagation of multiple cancer drivers, it may be a promising target for (combination) treatment, especially of heterogeneous malignancies, including TNBC.
Collapse
Affiliation(s)
| | | | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
29
|
Duan Y, Du Y, Gu Z, Zheng X, Wang C. Prognostic Value, Immune Signature, and Molecular Mechanisms of the PHLDA Family in Pancreatic Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810316. [PMID: 36142223 PMCID: PMC9499624 DOI: 10.3390/ijms231810316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Increasing evidence supports the belief that the pleckstrin homology domain family A (PHLDA) family is associated with the development of a variety of cancers. However, the function of the PHLDA family members in PAAD is still unclear. Methods: Comprehensive bioinformatic analyses using R (version 3.6.3), Cytoscape (version 3.9.1), UALCAN, etc., were performed to study the clinicopathological characteristics, prognostic value, immune features, and functional mechanisms of the PHLDA family members in PAAD. Results: The PHLDA family members showed significantly elevated expression in PAAD compared with paracancerous or normal tissues. Their high expression or amplification were significantly correlated with worse clinicopathological characteristics and prognosis in PAAD patients. In addition, the role of the PHLDA family members in the immune regulation is diverse and complex. Mechanistically, TP53 mutations were significantly associated with the promoter methylation and expression levels of the PHLDA family members, which were activated in multiple oncogenic pathways, including the EMT, RAS/MAPK, and TSC/mTOR pathways. Moreover, we found that their expression levels were significantly correlated with the sensitivity of multiple traditional chemotherapeutic drugs and novel targeted MEK1/2 inhibitors. Conclusion: The PHLDA family members play an oncogenic role in the development of PAAD and might serve as new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, China
| | - Xiaohao Zheng
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Correspondence: ; Tel.: +86-10-87787120; Fax: +86-10-87787123
| |
Collapse
|
30
|
Canale M, Petracci E, Cravero P, Mariotti M, Minuti G, Metro G, Ludovini V, Baglivo S, Puccetti M, Dubini A, Martinelli G, Delmonte A, Crinò L, Ulivi P. Prognosis of ALK-rearranged non-small-cell lung cancer patients carrying TP53 mutations. Transl Oncol 2022; 23:101471. [PMID: 35779323 PMCID: PMC9253903 DOI: 10.1016/j.tranon.2022.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the primary cause of cancer-related death. Gene rearrangements involving the anaplastic lymphoma kinase (ALK) tyrosine kinase identify a clinical and molecular subset of NSCLC patients, who benefit from the monotherapy with ALK tyrosine kinase inhibitors. Nonetheless, responsiveness to TKIs and prognosis of these patients are influenced by several factors, including resistance mechanisms and mutations affecting genes involved in key molecular pathways of cancer cells. In a cohort of 98 NSCLC patients with ALK gene rearrangements, we investigated the role of Tumor Protein (TP53) gene mutations in predicting patients prognosis. TP53 mutations were evaluated in relation to disease control rate (DCR), objective response rate (ORR), progression-free survival (PFS) and overall survival (OS).Results: In patients with available clinical and TP53 mutation information, we found that 13 patients (20.3%) were affected by TP53 mutations. Considered together, even though showing a trend, TP53 mutations were not associated with PFS and OS. Considering the different TP53 mutations by functionality in terms of disruptive and non-disruptive mutations, we observed that TP53 non-disruptive mutations were able to predict worse OS in the overall case series. Moreover, a worse PFS was seen in the subgroup of patients with TP53 non-disruptive mutation, in first-, second-, and third line of treatment. Our results show that mutations affecting TP53 gene, especially non-disruptive mutations, are able to affect prognosis of ALK-rearranged NSCLC patients.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Elisabetta Petracci
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Cravero
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Gabriele Minuti
- Department of Medical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy.
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Maurizio Puccetti
- Anatomia Istologia Patologica e Citodiagnostica, Azienda Unità Sanitaria Locale, 40026 Imola, Italy.
| | - Alessandra Dubini
- Department of Pathology, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy.
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| |
Collapse
|
31
|
Wang X, Teng Y, Ji C, Wu H, Li F. Critical target identification and human health risk ranking of metal ions based on mechanism-driven modeling. CHEMOSPHERE 2022; 301:134724. [PMID: 35487360 DOI: 10.1016/j.chemosphere.2022.134724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Huge amounts of metals have been released into environment due to various anthropogenic activities, such as smelting and processing of metals and subsequent application in construction, automobiles, batteries, optoelectronic devices, and so on, resulting in widespread detection in environmental media. However, some metal ions are considered as "Environmental health hazards", leading to serious human health concerns through affecting critical targets. Hence, it is necessary to quickly and effectively recognize the key target of metal ions in living organisms. Fortunately, the development of high-throughput analysis and in silico approaches offer a promising tool for target identification. In this study, the key oncogenic target (tumor suppressor protein, p53) was screened by network analysis based on the comparative toxicogenomics database (CTD). Some metal ions could bind to p53 core domain, impair its function and induce the development of cancer risk, but its mechanisms were still unclear. Therefore, a quantitative structure-activity relationship (QSAR) model was constructed to characterize the binding constants (Ka) between DNA binding domain of p53 (p53 DBD) and nine metal ions (Mg2+, Ca2+, Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Fe3+ and Ba2+). It had good robustness and predictive ability, which could be used to predict the Ka values of other six metal ions (Li+, Ag+, Cs+, Cd2+, Hg2+ and Pb2+) within application domain. The results showed strong binding affinity between Cd2+/Hg2+/Pb2+ and p53 DBD. Subsequent mechanism analyses revealed that first hydrolysis constant (|logKOH|) and polarization force (Z2/r) were key metal ion-characteristic parameters. The metal ions with weak hydrolysis constants and strong polarization forces could readily interact with N-containing histidine and S-containing cysteine of p53 DBD, which resulted in high Ka values. This study identified p53 as potential target for metal ions, revealed the key characteristics affecting the actions and provide a basic understanding of metal ions-p53 DBD interaction.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
32
|
Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. Int J Mol Sci 2022; 23:ijms23147960. [PMID: 35887312 PMCID: PMC9316806 DOI: 10.3390/ijms23147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The formation of a tetrameric assembly is essential for the ability of the tumor suppressor protein p53 to act as a transcription factor. Such a quaternary conformation is driven by a specific tetramerization domain, separated from the central DNA-binding domain by a flexible linker. Despite the distance, functional crosstalk between the two domains has been reported. This phenomenon can explain the pathogenicity of some inherited or somatically acquired mutations in the tetramerization domain, including the widespread R337H missense mutation present in the population in south Brazil. In this work, we combined computational predictions through extended all-atom molecular dynamics simulations with functional assays in a genetically defined yeast-based model system to reveal structural features of p53 tetramerization domains and their transactivation capacity and specificity. In addition to the germline and cancer-associated R337H and R337C, other rationally designed missense mutations targeting a significant salt-bridge interaction that stabilizes the p53 tetramerization domain were studied (i.e., R337D, D352R, and the double-mutation R337D plus D352R). The simulations revealed a destabilizing effect of the pathogenic mutations within the p53 tetramerization domain and highlighted the importance of electrostatic interactions between residues 337 and 352. The transactivation assay, performed in yeast by tuning the expression of wild-type and mutant p53 proteins, revealed that p53 tetramerization mutations could decrease the transactivation potential and alter transactivation specificity, in particular by better tolerating negative features in weak DNA-binding sites. These results establish the effect of naturally occurring variations at positions 337 and 352 on p53’s conformational stability and function.
Collapse
|
33
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
34
|
Environmental Contaminants Modulate Breast Cancer Development and Outcome in TP53 p.R337H Carriers and Noncarriers. Cancers (Basel) 2022; 14:cancers14123014. [PMID: 35740679 PMCID: PMC9221344 DOI: 10.3390/cancers14123014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Two major concerns associated with cancer development in Paraná state, South Brazil, are environmental pollution and the germline TP53 p.R337H variant found in 0.27−0.30% of the population. We assessed breast cancer (BC) risk in rural (C1 and C2) and industrialized (C3) subregions, previously classified by geochemistry, agricultural productivity, and population density. C2 presents lower organochloride levels in rivers and lower agricultural outputs than C1, and lower levels of chlorine anions in rivers and lower industrial activities than C3. TP53 p.R337H status was assessed in 4658 women aged >30 years from C1, C2, and C3, subsequent to a genetic screening (Group 1, longitudinal study). BC risk in this group was 4.58 times higher among TP53 p.R337H carriers. BC prevalence and risk were significantly lower in C2 compared to that in C3. Mortality rate and risk associated with BC in women aged >30 years (n = 8181 deceased women; Group 2) were also lower in C2 than those in C3 and C1. These results suggest that environmental factors modulate BC risk and outcome in carriers and noncarriers.
Collapse
|
35
|
Psychological Impact of TP53-Variant-Carrier Newborns and Counselling on Mothers: A Pediatric Surveillance Cohort. Cancers (Basel) 2022; 14:cancers14122945. [PMID: 35740610 PMCID: PMC9221115 DOI: 10.3390/cancers14122945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Counselling and genetic testing (CGT) after neonatal screening may increase depression and anxiety (DA) levels during cancer surveillance. This study assessed the DA scores in mothers of newborns from Paraná state, Southern Brazil, carrying the TP53 p.R337H variant. To understand and adjust DA conditions during term of pregnancy, we initially detected sociodemographic covariates [marital status (MS), number of children (NC), and/or education level (EL): MS-NC-EL] on an independent group of pregnant women (not subjected to genetic testing). The Hospital Anxiety and Depression Scale (HADS) was used to assess risk factors in pregnant (cross-sectional analysis) and unrelated mothers (at 2-month intervals, longitudinal study) of TP53 p.R337H-tested newborns (three sessions of HADS analysis) using Wilcoxon (Mann-Whitney) and Kruskal-Wallis nonparametric tests. Lower anxiety levels were observed in mothers of noncarriers (without MS-NC-EL = 6.91 ± 1.19; with MS-NC-EL = 6.82 ± 0.93) than in mothers of p.R337H carriers in the first session (without MS-NC-EL = 6.82 = 8.49 ± 0.6025, with MS-NC-EL = 6.82 = 9.21 ± 0.66). The anxiety levels significantly decreased 4 months after CGT (third session) in mothers of p.R337H carriers. We did not find a significant change in depression scores. Mothers with mental health instability requiring medications need periodical psychological support during and after CGT.
Collapse
|
36
|
Patiyal S, Dhall A, Raghava GPS. Prediction of risk-associated genes and high-risk liver cancer patients from their mutation profile: Benchmarking of mutation calling techniques. Biol Methods Protoc 2022; 7:bpac012. [PMID: 35734767 PMCID: PMC9204470 DOI: 10.1093/biomethods/bpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Identification of somatic mutations with high precision is one of the major challenges in the prediction of high-risk liver-cancer patients. In the past, number of mutations calling techniques have been developed that include MuTect2, MuSE, Varscan2, and SomaticSniper. In this study, an attempt has been made to benchmark the potential of these techniques in predicting the prognostic biomarkers for liver cancer. Initially, we extracted somatic mutations in liver cancer patients using Variant Call Format (VCF) and Mutation Annotation Format (MAF) files from the cancer genome atlas. In terms of size, the MAF files are 42 times smaller than VCF files and containing only high-quality somatic mutations. Further, machine learning based models have been developed for predicting high-risk cancer patients using mutations obtained from different techniques. The performance of different techniques and data files have been compared based on their potential to discriminate high and low-risk liver-cancer patients. Based on correlation analysis, we selected 80 genes having significant negative-correlation with the overall survival of liver cancer patients. The univariate survival analysis revealed the prognostic role of highly mutated genes. Single-gene based analysis showed that MuTect2 technique based MAF file has achieved maximum hazard ratio (HRLAMC3) of 9.25 with p-value 1.78E-06. Further, we developed various prediction models using risk-associated top-10 genes for each technique. Our results indicate that MuTect2 technique based VCF files outperform all other methods with maximum Area Under the Receiver-Operating Characteristic (AUROC) curve of 0.765 and HR 4.50 (p-value 3.83E-15). Eventually, VCF file generated using MuTect2 technique performs better among other mutation calling techniques for the prediction of high-risk liver cancer patients. We hope that our findings will provide a useful and comprehensive comparison of various mutation calling techniques for the prognostic analysis of cancer patients. In order to serve the scientific community, we have provided a Python-based pipeline to develop the prediction models using mutation profiles (VCF/MAF) of cancer patients. It is available on GitHub at https://github.com/raghavagps/mutation_bench.
Collapse
Affiliation(s)
- Sumeet Patiyal
- Indraprastha Institute of Information Technology Department of Computational Biology, , Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Indraprastha Institute of Information Technology Department of Computational Biology, , Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Indraprastha Institute of Information Technology Department of Computational Biology, , Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
37
|
Alvarez M, Benhammou JN, Darci-Maher N, French SW, Han SB, Sinsheimer JS, Agopian VG, Pisegna JR, Pajukanta P. Human liver single nucleus and single cell RNA sequencing identify a hepatocellular carcinoma-associated cell-type affecting survival. Genome Med 2022; 14:50. [PMID: 35581624 PMCID: PMC9115949 DOI: 10.1186/s13073-022-01055-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common primary liver cancer with poor overall survival. We hypothesized that there are HCC-associated cell-types that impact patient survival. METHODS We combined liver single nucleus (snRNA-seq), single cell (scRNA-seq), and bulk RNA-sequencing (RNA-seq) data to search for cell-type differences in HCC. To first identify cell-types in HCC, adjacent non-tumor tissue, and normal liver, we integrated single-cell level data from a healthy liver cohort (n = 9 non-HCC samples) collected in the Strasbourg University Hospital; an HCC cohort (n = 1 non-HCC, n = 14 HCC-tumor, and n = 14 adjacent non-tumor samples) collected in the Singapore General Hospital and National University; and another HCC cohort (n = 3 HCC-tumor and n = 3 adjacent non-tumor samples) collected in the Dumont-UCLA Liver Cancer Center. We then leveraged these single cell level data to decompose the cell-types in liver bulk RNA-seq data from HCC patients' tumor (n = 361) and adjacent non-tumor tissue (n = 49) from the Cancer Genome Atlas (TCGA) multi-center cohort. For replication, we decomposed 221 HCC and 209 adjacent non-tumor liver microarray samples from the Liver Cancer Institute (LCI) cohort collected by the Liver Cancer Institute and Zhongshan Hospital of Fudan University. RESULTS We discovered a tumor-associated proliferative cell-type, Prol (80.4% tumor cells), enriched for cell cycle and mitosis genes. In the liver bulk tissue from the TCGA cohort, the proportion of the Prol cell-type is significantly increased in HCC and associates with a worse overall survival. Independently from our decomposition analysis, we reciprocally show that Prol nuclei/cells significantly over-express both tumor-elevated and survival-decreasing genes obtained from the bulk tissue. Our replication analysis in the LCI cohort confirmed that an increased estimated proportion of the Prol cell-type in HCC is a significant marker for a shorter overall survival. Finally, we show that somatic mutations in the tumor suppressor genes TP53 and RB1 are linked to an increase of the Prol cell-type in HCC. CONCLUSIONS By integrating liver single cell, single nucleus, and bulk expression data from multiple cohorts we identified a proliferating cell-type (Prol) enriched in HCC tumors, associated with a decreased overall survival, and linked to TP53 and RB1 somatic mutations.
Collapse
Affiliation(s)
- Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nicholas Darci-Maher
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel W French
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steven B Han
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Vatche G Agopian
- Dumont-UCLA Transplant and Liver Cancer Centers, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph R Pisegna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Liu S, Yu J, Zhang H, Liu J. TP53 Co-Mutations in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Prognosis and Therapeutic Strategy for Cancer Therapy. Front Oncol 2022; 12:860563. [PMID: 35444951 PMCID: PMC9013831 DOI: 10.3389/fonc.2022.860563] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. As the most prevalent molecular mutation subtypes in non-small cell lung cancer (NSCLC), EGFR-TKIs are currently a standard first-line therapy for targeting the mutated EGFR in advanced NSCLC patients. However, 20-30% of this subset of patients shows primary resistance to EGFR-TKIs. Patients with co-mutations of EGFR and several other genes have a poor response to EGFR-TKIs, whereas the prognostic and predictive significance of EGFR/TP53 co-mutation in NSCLC patients remains controversial. Meanwhile, little is known about how to choose an optimal therapeutic strategy for this subset of patients. Presently, no drugs targeting TP53 mutations are available on the market, and some p53 protein activators are in the early stage of clinical trials. A combination of EGFR-TKIs with antiangiogenic agents or chemotherapy or other agents might be a more appropriate strategy to tackle the problem. In this review, we describe the prognostic and predictive value of EGFR/TP53 co-mutation in NSCLC patients, investigate the mechanisms of this co-mutation affecting the response to EGFR-TKIs, and further explore optimal regimens effectively to prolong the survival time of the NSCLC patients harboring this co-mutation.
Collapse
Affiliation(s)
- Surui Liu
- Department of Oncology, Jinan Central Hospital, Jinan, China.,Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jin Yu
- Department of Oncology, Jinan Central Hospital, Jinan, China
| | - Hui Zhang
- Department of Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital, Jinan, China
| |
Collapse
|
39
|
Hong J, Ding J, Hong HH, Xu XW, Pan B, Ruan Y, Zhai XF. Identifying the Mechanism of Polygoni Cuspidati Rhizoma et Radix in Treating Acute Liver Failure Based on Network Pharmacology and Molecular Docking. Gastroenterol Res Pract 2022; 2022:2021066. [PMID: 35432526 PMCID: PMC9012611 DOI: 10.1155/2022/2021066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Materials and Methods The potential bioactive compounds of PCRR and their targets were collected from TCMSP, TCMID, and BATMAN-TCM databases with absorption, distribution, metabolism, and excretion protocols (oral bioavailability ≥30% and drug-likeness ≥0.18). The ALF-related target genes were identified using the GeneCards and OMIM databases. A protein-protein interaction (PPI) network among these targets was constructed using the Cytoscape software to obtain the core targets. The genes associated with ALF were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to identify the signaling pathways related to the therapeutic effect of PCRR in ALF. Results In total, 10 bioactive compounds of PCRR and 200 targets related to them were obtained, and 2913 ALF-related target genes were identified. PPI network analysis pinpointed 15 core targets, namely, TP53, AKT1, JUN, HSP90AA1, MAPK1, RELA, TNF, ESR1, IL6, MYC, MAPK14, FOS, RB1, CDKN1A, and EGFR. GO enrichment and KEGG pathway analyses revealed that the therapeutic mechanisms of PCRR in ALF are related to cell metabolism, oxidative stress, inflammation, and hepatocyte apoptosis. Conclusion This is the first study to explore the therapeutic mechanisms of PCRR in ALF via network pharmacology and molecular docking. This study provides a research platform with candidate ALF-related targets of PRCC for the development of therapeutics against ALF.
Collapse
Affiliation(s)
- Jing Hong
- Department of Integrative Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jie Ding
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Han-han Hong
- Department of Nursing, Chengjiaqiao Community Health Service Center of Changning District, Shanghai 201103, China
| | - Xiao-wan Xu
- Department of Integrative Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Bo Pan
- Department of Integrative Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yi Ruan
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Xiao-feng Zhai
- Department of Integrative Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
40
|
Westphal MS, Lee E, Schadt EE, Sholler GS, Zhu J. Identification of Let-7 miRNA Activity as a Prognostic Biomarker of SHH Medulloblastoma. Cancers (Basel) 2021; 14:cancers14010139. [PMID: 35008302 PMCID: PMC8750188 DOI: 10.3390/cancers14010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric embryonal brain tumor. The current consensus classifies MB into four molecular subgroups: sonic hedgehog-activated (SHH), wingless-activated (WNT), Group 3, and Group 4. MYCN and let-7 play a critical role in MB. Thus, we inferred the activity of miRNAs in MB by using the ActMiR procedure. SHH-MB has higher MYCN expression than the other subgroups. We showed that high MYCN expression with high let-7 activity is significantly associated with worse overall survival, and this association was validated in an independent MB dataset. Altogether, our results suggest that let-7 activity and MYCN can further categorize heterogeneous SHH tumors into more and less-favorable prognostic subtypes, which provide critical information for personalizing treatment options for SHH-MB. Comparing the expression differences between the two SHH-MB prognostic subtypes with compound perturbation profiles, we identified FGFR inhibitors as one potential treatment option for SHH-MB patients with the less-favorable prognostic subtype.
Collapse
Affiliation(s)
| | - Eunjee Lee
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Eric E. Schadt
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Giselle S. Sholler
- Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jun Zhu
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
41
|
Sandru F, Dumitrascu MC, Petca A, Carsote M, Petca RC, Ghemigian A. Melanoma in patients with Li-Fraumeni syndrome (Review). Exp Ther Med 2021; 23:75. [PMID: 34934446 DOI: 10.3892/etm.2021.10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) is a cancer-prone, autosomal dominant syndrome caused by underlying germline gene mutations of TP53, a tumor-suppressor gene encoding the p53 protein with a major role in apoptosis, DNA repair and cell cycle regulation. Cumulative cancer incidence for LFS patients by the age of 70 years is 80-100%, mostly involving adrenocortical carcinoma, brain tumors, bone and soft tissue sarcomas, leukemia and female breast cancer from the age of 20 years. Dominant negative TP53 variant is correlated with an increased tumorigenesis risk in LFS. Sporadic TP53 mutations are related to almost half of global cancers since p53 in addition to p73 protein represent essential players in anticancer cellular protection. Epidemiological aspects concerning skin cancers, especially malignant melanoma (MM), in LFS are less clear. A low level of statistical evidence demonstrates LFS cases with pediatric MM, multiple MM, spitzoid MM, atypical presentations, mucosal and uveal MM. Retrospective cohorts indicate a higher cumulative risk than the general population by the age of 70 years for MM and basal cell carcinoma. Non-syndromic and syndromic TP53 mutations are a major pathway of metastasis, including MM. In LHS, an important level of awareness involves skin cancers despite not being a part of the typical malignancy-containing picture. Additional data are crucially needed. However, at least one dermatologic control is a step in the multidisciplinary panel of surveillance of these patients; but in cases with benign and pre-malign pigmentations, serial dermatoscopy and full body photography are recommended for early melanoma detection in order to improve the prognosis and to reduce the overall malignancy burden.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Elias' Emergency Hospital, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Elias' Emergency Hospital, 022461 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Urology, 'Prof. Dr. Theodor Burghele' Clinical Hospital, 061344 Bucharest, Romania
| | - Adina Ghemigian
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
42
|
Huang L, Tian M, Liu Z, Liu C, Fu R. Deferasirox combination with eltrombopag shows anti-myelodysplastic syndrome effects by enhancing iron deprivation-related apoptosis. J Investig Med 2021; 70:953-962. [PMID: 34921125 DOI: 10.1136/jim-2021-002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/04/2022]
Abstract
Iron overload (IO) affected the survival of patients with myelodysplastic syndrome (MDS). Deferasirox (DFX) is widely used in patients with MDS for iron chelation therapy, but is not suitable for MDS patients with severe thrombocytopenia. Eltrombopag (ELT) is a type of thrombopoietin receptor (TPOR) analog used in the treatment of thrombocytopenia. Therefore, we sought to explore the synergistic effects and possible mechanisms of DFX combination with ELT in MDS cells. In our study, the combination of DFX with ELT synergistically inhibited proliferation, induced apoptosis and arrested cell cycle of MDS cells. Through the RNA-sequence and gene set enrichment analysis (GSEA), iron metabolism-related pathway played important roles in apoptosis of SKM-1 cells treated with DFX plus ELT. Transferrin receptor (TFRC) was significantly highly expressed in combination group than that in single agent groups, without affecting TPOR. Furthermore, the apoptosis of the combination group MDS cells could be partially reversed by ferric ammonium citrate (FAC), accompanied with decreased expression of TFRC. These results suggested that the combination of DFX and ELT synergistically induced apoptosis of MDS cells by enhancing iron deprivation-related pathway.
Collapse
Affiliation(s)
- Lei Huang
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyue Tian
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Liu
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
43
|
Rynda AY, Zabrodskaya YM, Olyushin VE, Rostovtsev DM, Sokolova TV, Papayan GV. [Morphological evaluation of the effectiveness of fluorescence navigation with chlorin e6 in surgery for malignant gliomas]. Arkh Patol 2021; 83:13-20. [PMID: 34609799 DOI: 10.17116/patol20218305113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of fluorescence navigation with chlorin e6 in surgery for malignant gliomas based on surgical material morphological and immunohistochemical data. MATERIAL AND METHODS The surgical material obtained from patients with high-grade (Grade III-IV) anaplastic glioma was examined. Along with histological examination, the proliferation marker Ki-67, the cell cycle transcription factor protein p53, and vascular endothelial growth factor (VEGF) were determined. RESULTS A significant direct correlation was found between the expression of Ki-67, p53, and VEGF and the fluorescence intensity of tumor tissues (p<0.05). CONCLUSION The technique of fluorescence navigation using chlorin e6 in comparative morphopathological analysis has confirmed its effectiveness in surgery for malignant gliomas.
Collapse
Affiliation(s)
- A Yu Rynda
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - Yu M Zabrodskaya
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - V E Olyushin
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - D M Rostovtsev
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - T V Sokolova
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - G V Papayan
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
44
|
Integrative pan-cancer analysis of MEK1 aberrations and the potential clinical implications. Sci Rep 2021; 11:18366. [PMID: 34526571 PMCID: PMC8443600 DOI: 10.1038/s41598-021-97840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Alterations of mitogen-activated protein kinase kinase 1 (MEK1) are commonly associated with tumorigenesis, and MEK1 is thought to be a suitable targeted therapy for various cancers. However, abnormal MEK1 alterations and their relevant clinical implications are unknown. Our research comprehensively analyzed the MEK1 alteration spectrum and provided novel insight for targeted therapies. There were 7694 samples covering 32 types of cancer from The Cancer Genome Atlas (TCGA) database. They were used to conduct an integrative analysis of MEK1 expression, alterations, functional impacts and clinical significance. There was a dramatic difference in the alteration frequency and distribution and clinical implications in 32 types of cancer from the TCGA. Skin cutaneous melanoma (SKCM) has the most alterations and has therapeutic targets located in the protein kinase domain, and the growing expression of SKCM is positively related to patient prognosis. MEK1 expression in lung adenocarcinoma (LUAD), kidney renal papillary cell carcinoma (KIRP), esophageal carcinoma (ESCA) and liver hepatocellular carcinoma (LIHC) is decreased, which is associated with better prognosis, while MEK1 expression in thymoma (THYM), stomach adenocarcinoma (STAD), kidney renal clear cell carcinoma (KIRC), testicular germ cell tumors (TGCTs) and head and neck squamous cell carcinoma (HNSC) is increased, which is associated with better prognosis. Mesothelioma (MESO) has the second highest alterations but has no therapy targets. This study provided a great and detailed interpretation of MEK1 expression, alterations and clinical implications in 32 types of cancer and reminded us to fill the gap in MEK1 research from a new perspective.
Collapse
|
45
|
Yun X, Sun X, Hu X, Zhang H, Yin Z, Zhang X, Liu M, Zhang Y, Wang X. Prognostic and Therapeutic Value of Apolipoprotein A and a New Risk Scoring System Based on Apolipoprotein A and Adenosine Deaminase in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:698572. [PMID: 34277446 PMCID: PMC8281891 DOI: 10.3389/fonc.2021.698572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is related to lymphomagenesis, and is a novel therapeutic target in some hematologic tumors. Apolipoprotein A (ApoA), the major protein of high-density lipoprotein (HDL), plays a crucial role in lipid transportation and protecting against cardiovascular disease, and takes effect on anti-inflammation and anti-oxidation. It is correlated with the prognosis of some solid tumors. Yet, there is no investigation involving the role of ApoA plays in chronic lymphocytic leukemia (CLL). Our retrospective study focuses on the prognostic value of ApoA in CLL and its therapeutic potential for CLL patients. Herein, ApoA is a favorable independent prognostic factor for both overall survival (OS) and progression-free survival (PFS) of CLL patients. ApoA is negatively associated with β2-microglobulin (β2-MG) and advanced stage, which are poor prognostic factors in CLL. Age, Rai stage, ApoA, and adenosine deaminase (ADA) are included in a new risk scoring system named ARAA-score. It is capable of assessing OS and PFS of CLL patients. Furthermore, cell proliferation assays show that the ApoA-I mimetic L-4F can inhibit the proliferation of CLL cell lines and primary cells. In conclusion, ApoA is of prognostic value in CLL, and is a potential therapy for CLL patients. The ARAA-score may optimize the risk stratification of CLL patients.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixun Yin
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Lynch KN, Liu JF, Kesten N, Chow KH, Shetty A, He R, Afreen MF, Yuan L, Matulonis UA, Growdon WB, Muto MG, Horowitz NS, Feltmate CM, Worley MJ, Berkowitz RS, Crum CP, Rueda BR, Hill SJ. Enhanced Efficacy of Aurora Kinase Inhibitors in G2/M Checkpoint Deficient TP53 Mutant Uterine Carcinomas Is Linked to the Summation of LKB1-AKT-p53 Interactions. Cancers (Basel) 2021; 13:cancers13092195. [PMID: 34063609 PMCID: PMC8125555 DOI: 10.3390/cancers13092195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancers arising from the lining of the uterus, endometrial cancers, are the most common gynecologic malignancy in the United States. Once endometrial cancer escapes the uterus and grows in distant locations, there are limited therapeutic options. The most aggressive and lethal endometrial cancers carry alterations in the protein p53, which is a critical guardian of many cellular functions. The role of these p53 alterations in endometrial cancer is not well understood. The goal of this work was to use p53 altered models of endometrial cancer to understand which, if any, therapeutically targetable vulnerabilities these p53 alterations may confer in endometrial cancer. Here we show that many of these p53 altered cells have problems with cell division which can be targeted with novel single and combination therapies. These discoveries may lead to relevant new therapies for difficult to treat advanced stage endometrial cancers. Abstract Uterine carcinoma (UC) is the most common gynecologic malignancy in the United States. TP53 mutant UCs cause a disproportionate number of deaths due to limited therapies for these tumors and the lack of mechanistic understanding of their fundamental vulnerabilities. Here we sought to understand the functional and therapeutic relevance of TP53 mutations in UC. We functionally profiled targetable TP53 dependent DNA damage repair and cell cycle control pathways in a panel of TP53 mutant UC cell lines and patient-derived organoids. There were no consistent defects in DNA damage repair pathways. Rather, most models demonstrated dependence on defective G2/M cell cycle checkpoints and subsequent upregulation of Aurora kinase-LKB1-p53-AKT signaling in the setting of baseline mitotic defects. This combination makes them sensitive to Aurora kinase inhibition. Resistant lines demonstrated an intact G2/M checkpoint, and combining Aurora kinase and WEE1 inhibitors, which then push these cells through mitosis with Aurora kinase inhibitor-induced spindle defects, led to apoptosis in these cases. Overall, this work presents Aurora kinase inhibitors alone or in combination with WEE1 inhibitors as relevant mechanism driven therapies for TP53 mutant UCs. Context specific functional assessment of the G2/M checkpoint may serve as a biomarker in identifying Aurora kinase inhibitor sensitive tumors.
Collapse
Affiliation(s)
- Katherine N. Lynch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kin-Hoe Chow
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.-H.C.); (A.S.)
| | - Aniket Shetty
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.-H.C.); (A.S.)
| | - Ruiyang He
- Department of Biochemistry, Cambridge University, Cambridge CB2 1QW, UK;
| | - Mosammat Faria Afreen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Liping Yuan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Whitfield B. Growdon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; (W.B.G.); (B.R.R.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
| | - Michael G. Muto
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Neil S. Horowitz
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Colleen M. Feltmate
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael J. Worley
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ross S. Berkowitz
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Christopher P. Crum
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Bo R. Rueda
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; (W.B.G.); (B.R.R.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
| | - Sarah J. Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Corresponding Author: Sarah J. Hill, Dana-Farber Cancer Institute, Smith 834, 450 Brookline Ave., Boston, MA 02215. Tel.: 617-272-5451; Fax: 617-582-8601; E-mail:
| |
Collapse
|
47
|
Strobel SB, Machiraju D, Hülsmeyer I, Becker JC, Paschen A, Jäger D, Wels WS, Bachmann M, Hassel JC. Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life (Basel) 2021; 11:life11040269. [PMID: 33805080 PMCID: PMC8064084 DOI: 10.3390/life11040269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor antigen-specific redirection of cytotoxic T cells (CTLs) or natural killer (NK) cells including chimeric antigen receptor (CAR-) and T cell receptor (TCR-) cell therapy is currently being evaluated in different tumor entities including melanoma. Expression of melanoma-specific antigen recognized by the respective CAR or TCR directly or presented by HLA molecules is an indispensable prerequisite for this innovative therapy. In this study, we investigated in 168 FFPE tumor specimens of patients with stage I-IV melanoma the protein expression of HER2, TRP2, ABCB5, gp100, p53, and GD2 by immunohistochemistry (IHC). These results were correlated with clinical parameters. Membrane expression of HER2 and GD2 was also investigated in ten melanoma cell lines by flow cytometry for which corresponding tumors were analyzed by IHC. Our results demonstrated that gp100 was the most frequently overexpressed protein (61%), followed by TRP2 (50%), GD2 (38%), p53 (37%), ABCB5 (17%), and HER2 (3%). TRP2 expression was higher in primary tumors compared to metastases (p = 0.005). Accordingly, TRP2 and ABCB5 expression was significantly associated with lower tumor thickness of the primary (p = 0.013 and p = 0.025). There was no association between protein expression levels and survival in advanced melanoma patients. Flow cytometric analysis revealed abundant surface expression of GD2 and HER2 in all melanoma cell lines. The discordant HER2 expression in situ and in vitro suggests a tissue culture associated induction. In summary, our data support the use of gp100 and GD2 as a potential target for developing engineered TCR- or CAR-cell therapies, respectively, against melanoma.
Collapse
Affiliation(s)
- Sophia B. Strobel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| | - Devayani Machiraju
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| | - Ingrid Hülsmeyer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
| | - Jürgen C. Becker
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141 Essen, Germany
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Annette Paschen
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Jäger
- National Center for Tumor Diseases (NCT) Heidelberg, Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases, German Cancer Research Center, Clinical Cooperation Unit Applied Tumor Immunity, 69120 Heidelberg, Germany
| | - Winfried S. Wels
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University Hospital ‘Carl Gustav Carus’, TU Dresden, 01307 Dresden, Germany
- Tumor Immunology, University Cancer Center (UCC) ‘Carl Gustav Carus’, TU Dresden, 01307 Dresden, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
- Correspondence:
| |
Collapse
|
48
|
Antitumor Effects of PRIMA-1 and PRIMA-1 Met (APR246) in Hematological Malignancies: Still a Mutant P53-Dependent Affair? Cells 2021; 10:cells10010098. [PMID: 33430525 PMCID: PMC7827888 DOI: 10.3390/cells10010098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Because of its role in the regulation of the cell cycle, DNA damage response, apoptosis, DNA repair, cell migration, autophagy, and cell metabolism, the TP53 tumor suppressor gene is a key player for cellular homeostasis. TP53 gene is mutated in more than 50% of human cancers, although its overall dysfunction may be even more frequent. TP53 mutations are detected in a lower percentage of hematological malignancies compared to solid tumors, but their frequency generally increases with disease progression, generating adverse effects such as resistance to chemotherapy. Due to the crucial role of P53 in therapy response, several molecules have been developed to re-establish the wild-type P53 function to mutant P53. PRIMA-1 and its methylated form PRIMA-1Met (also named APR246) are capable of restoring the wild-type conformation to mutant P53 and inducing apoptosis in cancer cells; however, they also possess mutant P53-independent properties. This review presents the activities of PRIMA-1 and PRIMA-1Met/APR246 and describes their potential use in hematological malignancies.
Collapse
|