1
|
Elmaihub ES, Alhudiri I, Ramadan AM, Eljilani M, Elzagheid A, Elfagi F, Hassen E. Analysis of BRCA1 germline variants (exons 5, 11 and 20) in breast cancer families from Libya. Libyan J Med 2024; 19:2356906. [PMID: 38785139 PMCID: PMC11210411 DOI: 10.1080/19932820.2024.2356906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) is a leading cause of cancer deaths in Libyan women. BRCA1 variants differ globally due to the diversity of genetic makeup and populations history. Their distribution, prevalence, and significance in Libyans remain largely unexplored. This study investigated the characteristics and distribution of BRCA1 variants in exons 5, 11, and 20 in Libyan families with BC. Thirty-six BC patients at ≤ 45 years, between 46-50 years and with a family history of breast, ovarian, pancreatic or prostate cancer in close relatives, or with triple-negative BC, were selected from 33 unrelated families during 2018-2020 at the National Cancer Institute, Sabratha, Libya. From these 33 families, 20 women (18 BC patients and two unaffected) were screened for BRCA1 exons 5, 11 and 20 using Sanger sequencing. All families completed an epidemiology and family history questionnaire. Twenty-seven variants (26 in exon 11 and 1 in exon 20, minor allele frequency of < 0.01) were detected in 10 of 18 unrelated families (55.6%.) Among the 27 variants, 26 (96%) were heterozygous. A frameshift pathogenic variant, c.2643del, and one novel variant c.1366A>G were identified. Furthermore, seven variants with unknown clinical significance were detected: c.1158T>A, c.1346C>G, c.1174C>G, c.3630 G>T, c.3599A>T, and c.3400 G>C in exon 11, and c.5244T>A in exon 20. Six variants with conflicting pathogenicity interpretations, c. 3460T>A, c. 3572 G>A, c. 3700 G>C, c. 1246C>G, c. 1344C>G, and c. 1054 G>A, were also identified. Twelve benign/likely benign variants were identified. Rare BRCA1 variants that have not been reported in North Africa were found in Libyan patients. These findings provide preliminary insights into the BRCA1 variants that could contribute to hereditary BC risk in Libyans. Further functional, computational, and population analyses are essential to determine their significance and potential impact on BC risk, which could ultimately lead to more personalized management strategies.
Collapse
Affiliation(s)
- Eanas Saleh Elmaihub
- Department of Molecular Biology, Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Sabratha University, Sabratha, Libya
| | - Inas Alhudiri
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Ahmad M. Ramadan
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Mouna Eljilani
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Adam Elzagheid
- Department of Genetic Engineering, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Fakria Elfagi
- Department of Oncology, National Cancer Institute, Sabratha, Libya
| | - Elham Hassen
- Department of Molecular Biology, Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
- Laboratory of Molecular Immuno-Oncology, Faculty of Medicine, Monastir University, Monastir, Tunisia
| |
Collapse
|
2
|
Wismayer R, Matthews R, Whalley C, Kiwanuka J, Kakembo FE, Thorn S, Wabinga H, Odida M, Tomlinson I. Determination of the frequency and distribution of APC, PIK3CA, and SMAD4 gene mutations in Ugandan patients with colorectal cancer. BMC Cancer 2024; 24:1212. [PMID: 39350061 PMCID: PMC11440721 DOI: 10.1186/s12885-024-12967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Uganda is a developing low-income country with a low incidence of colorectal cancer, which is steadily increasing. Ugandan colorectal cancer (CRC) patients are young and present with advanced-stage disease. In our population, there is a scarcity of genetic oncological studies, therefore, we investigated the mutational status of CRC tissues, focusing in particular on the adenomatous polyposis coli (APC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and SMAD4 genes. Our objective was to determine whether there were any differences between other populations and Ugandan patients. We performed next-generation sequencing on the extracted DNA from formalin-fixed paraffin-embedded adenocarcinoma samples from 127 patients (mean (SD) age: 54.9 (16.0) years; male:female sex ratio: 1.2:1). Most tumours were located in the rectum 56 (44.1%), 14 (11%) tumours were high grade, and 96 (75.6%) were moderate grade CRC. Stage III + IV CRC tumours were found in 109 (85.8%) patients. We identified 48 variants of APC, including 9 novel APC mutations that were all pathogenic or deleterious. For PIK3CA, we found 19 variants, of which 9 were deleterious or pathogenic. Four PIK3CA novel pathogenic or deleterious variants were included (c.1397C > G, c.2399_2400insA, c.2621G > C, c.2632C > G). Three SMAD4 variants were reported, including two pathogenic or deleterious variants (c.1268G > T, c.556dupC) and one tolerant (c.563A > C) variant. One novel SMAD4 deleterious mutation (c.1268G > T) was reported. In conclusion, we provide clinicopathological information and new genetic variation data pertinent to CRC in Uganda.
Collapse
Affiliation(s)
- Richard Wismayer
- Department of Surgery, Masaka Regional Referral Hospital, Masaka, Uganda.
- Department of Surgery, Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda.
- Department of Surgery, Faculty of Health Sciences, Habib Medical School, IUIU University, Kampala, Uganda.
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie Matthews
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Celina Whalley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julius Kiwanuka
- Department of Epidemiology and Biostatistics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fredrick Elishama Kakembo
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- African Centre of Excellence in Bioinformatics and Data Intensive Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Steve Thorn
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Henry Wabinga
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Michael Odida
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Pathology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Ian Tomlinson
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
- Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Osler TS, Brandenburg JT, Schoeman M, Chen WC, Urban MF, Mathew CG. Prevalence and Reclassification of Genetic Variants in South African Populations with Breast Cancer. Genes Chromosomes Cancer 2024; 63:e23275. [PMID: 39324485 DOI: 10.1002/gcc.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Concurrent testing of numerous genes for hereditary breast cancer (BC) is available but can result in management difficulties. We evaluated use of an expanded BC gene panel in women of diverse South African ancestries and assessed use of African genomic data to reclassify variants of uncertain significance (VUS). A total of 331 women of White, Black African, or Mixed Ancestry with BC had a 9-gene panel test, with an additional 75 genes tested in those without a pathogenic/likely pathogenic (P/LP) variant. The proportion of VUS reclassified using ClinGen gene-specific allele frequency (AF) thresholds or an AF > 0.001 in nonguidelines genes in African genomic data was determined. The 9-gene panel identified 58 P/LP variants, but only two of the P/LP variants detected using the 75-gene panel were in confirmed BC genes, resulting in a total of 60 (18.1%) in all participants. P/LP variant prevalence was similar across ancestry groups, but VUS prevalence was higher in Black African and Mixed Ancestry than in White participants. In total, 611 VUS were detected, representing 324 distinct variants. 10.8% (9/83) of VUS met ClinGen AF thresholds in genomic data while 10.8% (26/240) in nonguideline genes had an AF > 0.001. Overall, 27.0% of VUS occurrences could potentially be reclassified using African genomic data. Thus, expanding the gene panel yielded few clinically actionable variants but many VUS, particularly in participants of Black African and Mixed Ancestry. However, use of African genomic data has the potential to reclassify a significant proportion of VUS.
Collapse
Affiliation(s)
- Tabitha S Osler
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch and Tygerberg Hospital, Cape Town, Parow, South Africa
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Michael F Urban
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Stellenbosch and Tygerberg Hospital, Cape Town, Parow, South Africa
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
4
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
5
|
Olono A, Mitesser V, Happi A, Happi C. Building genomic capacity for precision health in Africa. Nat Med 2024; 30:1856-1864. [PMID: 38961224 DOI: 10.1038/s41591-024-03081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
The African continent is poised to have a pivotal role in the global population landscape, with the United Nations projecting a population of 2.5 billion (more than 25% of the global population) by 2050. Amid this demographic shift, Africa faces a unique healthcare challenge-navigating a complex landscape of infectious and non-communicable diseases. This necessitates a departure from the conventional 'one-size-fits-all' medical model toward precision approaches that are efficient and sustainable. Genomic capacity is a pillar of precision health; however, access to up-to-date genetic testing in African countries is limited, compounded by a startling lack of representation of data from populations of African descent in gene discovery studies. In this Review, we delve into the challenges impeding the development of genomic capacity in Africa, such as the lack of electronic clinical and epidemiological records, infrastructural challenges, high supply chain costs and the 'dependency trap' that jeopardizes long-term sustainability. We emphasize the need for strategies hinged on true partnerships, robust infrastructure, workforce development and well-crafted policies. Finally, we outline recent progress and existing initiatives that should be considered as role models for future capacity-building initiatives.
Collapse
Affiliation(s)
- Alhaji Olono
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria
| | - Vera Mitesser
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria
| | - Anise Happi
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria
| | - Christian Happi
- The African Centre of Excellence for Genomics and Infectious Diseases, ACEGID, Ede, Nigeria.
| |
Collapse
|
6
|
Gueye A, Maroun B, Zimur A, Berkovits T, Tan SM. The future of collaborative precision oncology approaches in sub-Saharan Africa: learnings from around the globe. Front Oncol 2024; 14:1426558. [PMID: 38974239 PMCID: PMC11224929 DOI: 10.3389/fonc.2024.1426558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
As the projected incidence and mortality of cancer in Sub-Saharan Africa (SSA) rises to epidemic proportions, it is imperative that more is done to identify the genomic differences and commonalities between patients of African and European ancestry to fulfil the promise of precision oncology. Here, we summarize the utility of precision oncology approaches, with a focus on comprehensive genomic profiling (CGP) and consolidate examples of national and international consortia that are driving the field forward. We describe the importance of genomic diversity and its relevance in cancer, and propose recommendations, success factors and desired outcomes for precision oncology consortia to adopt in SSA. Through this, we hope to catalyze the initiation of such projects and to contribute to improving cancer patient outcomes in the region.
Collapse
|
7
|
Hamdi Y, Boujemaa M, Ben Aissa-Haj J, Radouani F, Khyatti M, Mighri N, Hannachi M, Ghedira K, Souiai O, Hkimi C, Kammoun MS, Mejri N, Bouaziz H, Beloufa MA, Charoute H, Barakat A, Najjar I, Taniguchi H, Pietrosemoli N, Dellagi K, Abdelhak S, Boubaker MS, Chica C, Rouleau E. A regionally based precision medicine implementation initiative in North Africa:The PerMediNA consortium. Transl Oncol 2024; 44:101940. [PMID: 38537326 PMCID: PMC11391035 DOI: 10.1016/j.tranon.2024.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/21/2024] Open
Abstract
Precision Medicine is being increasingly used in the developed world to improve health care. While several Precision Medicine (PM) initiatives have been launched worldwide, their implementations have proven to be more challenging particularly in low- and middle-income countries. To address this issue, the "Personalized Medicine in North Africa" initiative (PerMediNA) was launched in three North African countries namely Tunisia, Algeria and Morocco. PerMediNA is coordinated by Institut Pasteur de Tunis together with the French Ministry for Europe and Foreign Affairs, with the support of Institut Pasteur in France. The project is carried out along with Institut Pasteur d'Algérie and Institut Pasteur du Maroc in collaboration with national and international leading institutions in the field of PM including Institut Gustave Roussy in Paris. PerMediNA aims to assess the readiness level of PM implementation in North Africa, to strengthen PM infrastructure, to provide workforce training, to generate genomic data on North African populations, to implement cost effective, affordable and sustainable genetic testing for cancer patients and to inform policy makers on how to translate research knowledge into health products and services. Gender equity and involvement of young scientists in this implementation process are other key goals of the PerMediNA project. In this paper, we are describing PerMediNA as the first PM implementation initiative in North Africa. Such initiatives contribute significantly in shortening existing health disparities and inequities between developed and developing countries and accelerate access to innovative treatments for global health.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia.
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Jihenne Ben Aissa-Haj
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Fouzia Radouani
- Chlamydiae and Mycoplasmas Laboratory, Research Department, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Meriem Khyatti
- Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Mariem Hannachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics LR20IPT09, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics LR20IPT09, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics LR20IPT09, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics LR20IPT09, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Mohamed Selim Kammoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics LR20IPT09, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; Medical Oncology Department, Abderrahmane Mami Hospital, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | | | - Hicham Charoute
- Research unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc 20360, Casablanca, Morocco
| | - Imène Najjar
- Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris 75015, France
| | - Hiroaki Taniguchi
- The Polish Academy of Sciences, Poland; University Mohamed VI, Morocco
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub F-75015, Paris, France
| | - Koussay Dellagi
- Pasteur Network Association, Institut Pasteur, Paris, France
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Claudia Chica
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub F-75015, Paris, France
| | - Etienne Rouleau
- Department of Biology and Pathology-Cancer Genetics Laboratory-Gustave Roussy 94805, Villejuif, France
| |
Collapse
|
8
|
Elshwekh H, Alhudiri IM, Elzagheid A, Enattah N, Abbassi Y, Abou Assali L, Marino I, Stuani C, Buratti E, Romano M. Assessing the Impact of Novel BRCA1 Exon 11 Variants on Pre-mRNA Splicing. Cells 2024; 13:824. [PMID: 38786046 PMCID: PMC11119505 DOI: 10.3390/cells13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that the c.2363T>G and c.3192T>C variants could impact both splicing and protein function, resulting in the V340A and V788G mutations, respectively. We further examined their splicing effects using minigene assays in MCF7 and SKBR3 breast cancer cell lines. Interestingly, we found that the c.2363T>G variant significantly altered splicing patterns in MCF7 cells but not in SKBR3 cells. This finding suggests a potential influence of cellular context on the variant's effects. While attempts to correlate in silico predictions with RNA binding factors were inconclusive, this observation underscores the complexity of splicing regulation. Splicing is governed by various factors, including cellular contexts and protein interactions, making it challenging to predict outcomes accurately. Further research is needed to fully understand the functional consequences of the c.2363T>G variant in breast cancer pathogenesis. Integrating computational predictions with experimental data will provide valuable insights into the role of alternative splicing regulation in different breast cancer types and stages.
Collapse
Affiliation(s)
- Halla Elshwekh
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Inas M. Alhudiri
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Adam Elzagheid
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Nabil Enattah
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Yasmine Abbassi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Lubna Abou Assali
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Ilenia Marino
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
9
|
Soh PXY, Mmekwa N, Petersen DC, Gheybi K, van Zyl S, Jiang J, Patrick SM, Campbell R, Jaratlerdseri W, Mutambirwa SBA, Bornman MSR, Hayes VM. Prostate cancer genetic risk and associated aggressive disease in men of African ancestry. Nat Commun 2023; 14:8037. [PMID: 38052806 PMCID: PMC10697980 DOI: 10.1038/s41467-023-43726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Naledi Mmekwa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Desiree C Petersen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Smit van Zyl
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Weerachai Jaratlerdseri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
10
|
Dix-Peek T, Dickens C, Augustine TN, Phakathi BP, Van Den Berg EJ, Joffe M, Ayeni OA, Cubasch H, Nietz S, Mathew CG, Hayat M, Neugut AI, Jacobson JS, Ruff P, Duarte RA. FGFR2 genetic variants in women with breast cancer. Mol Med Rep 2023; 28:226. [PMID: 37830168 PMCID: PMC10619128 DOI: 10.3892/mmr.2023.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/11/2023] [Indexed: 10/14/2023] Open
Abstract
Black African populations are more genetically diverse than others, but genetic variants have been studied primarily in European populations. The present study examined the association of four single nucleotide polymorphisms (SNPs) of the fibroblast growth factor receptor 2, associated with breast cancer in non‑African populations, with breast cancer in Black, southern African women. Genomic DNA was extracted from whole blood samples of 1,001 patients with breast cancer and 1,006 controls (without breast cancer), and the rs2981582, rs35054928, rs2981578, and rs11200014 polymorphisms were analyzed using allele‑specific Kompetitive allele‑specific PCR™, and the χ2 or Fisher's exact tests were used to compare the genotype frequencies. There was no association between those SNPs and breast cancer in the studied cohort, although an association was identified between the C/C homozygote genotype for rs2981578 and invasive lobular carcinoma. These results show that genetic biomarkers of breast cancer risk in European populations are not necessarily associated with risk in sub‑Saharan African populations. African populations are more heterogenous than other populations, and the information from this population can help focus genetic risks of cancer in this understudied population.
Collapse
Affiliation(s)
- Thérèse Dix-Peek
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Caroline Dickens
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Boitumelo P. Phakathi
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa
| | - Eunice J. Van Den Berg
- Department of Histopathology, National Health Laboratory Services, Chris Hani Baragwanath Hospital, Johannesburg 1864, South Africa
- Department of Anatomical Pathology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- South African Medical Research Council Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Non-Communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd., Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Oluwatosin A. Ayeni
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- South African Medical Research Council Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Non-Communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd., Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Division of Radiation Oncology, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Herbert Cubasch
- South African Medical Research Council Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Non-Communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd., Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Batho Pele Breast Unit, Chris Hani Baragwanath Academic Hospital, Soweto 1860, South Africa
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Sarah Nietz
- South African Medical Research Council Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Christopher G. Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, WC2R 2LS, United Kingdom
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Mahtaab Hayat
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Alfred I. Neugut
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, New York 10032, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York 10032, United States of America
| | - Judith S. Jacobson
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, New York 10032, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York 10032, United States of America
| | - Paul Ruff
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- South African Medical Research Council Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
- Non-Communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd., Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| | - Raquel A.B. Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
11
|
Temilola DO, Adeola HA, Grobbelaar J, Chetty M. Liquid Biopsy in Head and Neck Cancer: Its Present State and Future Role in Africa. Cells 2023; 12:2663. [PMID: 37998398 PMCID: PMC10670726 DOI: 10.3390/cells12222663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The rising mortality and morbidity rate of head and neck cancer (HNC) in Africa has been attributed to factors such as the poor state of health infrastructures, genetics, and late presentation resulting in the delayed diagnosis of these tumors. If well harnessed, emerging molecular and omics diagnostic technologies such as liquid biopsy can potentially play a major role in optimizing the management of HNC in Africa. However, to successfully apply liquid biopsy technology in the management of HNC in Africa, factors such as genetic, socioeconomic, environmental, and cultural acceptability of the technology must be given due consideration. This review outlines the role of circulating molecules such as tumor cells, tumor DNA, tumor RNA, proteins, and exosomes, in liquid biopsy technology for the management of HNC with a focus on studies conducted in Africa. The present state and the potential opportunities for the future use of liquid biopsy technology in the effective management of HNC in resource-limited settings such as Africa is further discussed.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Johan Grobbelaar
- Division of Otorhinolaryngology, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| |
Collapse
|
12
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Rotimi SO, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Detection of Cancer-Associated Gene Mutations in Urinary Cell-Free DNA among Prostate Cancer Patients in South Africa. Genes (Basel) 2023; 14:1884. [PMID: 37895233 PMCID: PMC10606409 DOI: 10.3390/genes14101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The presence of tumor-specific variations in cell-free DNA (cfDNA), such as mutations, microsatellite instability, and DNA methylation, has been explored as a source of biomarkers for cancer diagnosis. In this study, we investigated the diagnostic role of cfDNA among South African PCa patients. We performed whole exome sequencing (WES) of urinary cfDNA. We identified a novel panel of 31 significantly deregulated somatic mutated genes between PCa and benign prostatic hyperplasia (BPH). Additionally, we performed whole-genome sequencing (WGS) on matching PCa and normal prostate tissue in an independent PCa cohort from South Africa. Our results suggest that the mutations are of germline origin as they were also found in the normal prostate tissue. In conclusion, our study contributes to the knowledge of cfDNA as a biomarker for diagnosing PCa in the South African population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa; (A.S.S.); (L.K.)
| | | | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland;
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa; (A.S.S.); (L.K.)
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| |
Collapse
|
13
|
Onyia AF, Nana TA, Adewale EA, Adebesin AO, Adegboye BE, Paimo OK, De Campos OC, Bisi-Adeniyi TI, Rotimi OA, Oyelade JO, Rotimi SO. Breast Cancer Phenotypes in Africa: A Scoping Review and Meta-Analysis. JCO Glob Oncol 2023; 9:e2300135. [PMID: 38085060 PMCID: PMC10846770 DOI: 10.1200/go.23.00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/29/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE Africans have been associated with more aggressive forms of breast cancer (BC). However, there is a lack of data regarding the incidence and distribution of different subtypes on the basis of phenotypic classification. This scoping review and meta-analysis was undertaken to determine the distribution pattern of BC phenotypes (luminal, human epidermal growth factor receptor 2 [HER2]+, and triple-negative breast cancer [TNBC]) across the African region. METHODS Four online databases (PubMed, Scopus, ProQuest, and EBSCOhost) were accessed to identify studies published between 2000 and 2022 reporting the representation of receptor status (estrogen receptor, progesterone receptor, and HER2) in African patients with BC. Furthermore, the meta-analysis was carried out using a random-effects model and pooled using the inverse variance method and logit transformation. 95% CI and I2 statistics were calculated using the Clopper-Pearson method to estimate between-study heterogeneity. RESULTS A total of 2,734 records were retrieved, of which 2,133 were retained for further screening. After the screening, 63 studies were finally selected for the scoping review and meta-analysis. The pooled frequency of luminal, HER2-positive (HER2+), and TNBC was estimated at 56.30%, 12.61%, and 28.10%, respectively. Northern Africa had the highest frequency of the luminal subtype, while West Africa showed higher frequencies of HER2+ and TNBC subtypes. The review also had a representation of only 24 countries in Africa. CONCLUSION Our results highlight the disparity in the representation of molecular subtypes among the people in different regions of Africa. There is a need to incorporate routine molecular subtyping into the management of African patients with BC.
Collapse
Affiliation(s)
- Abimbola F. Onyia
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Cancer Genomics Laboratory, Covenant University, Ota, Nigeria
| | - Toluwani A. Nana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Elijah A. Adewale
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | | | - Bose E. Adegboye
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | | | - Opeyemi C. De Campos
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Cancer Genomics Laboratory, Covenant University, Ota, Nigeria
| | - Titilayo I. Bisi-Adeniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Cancer Genomics Laboratory, Covenant University, Ota, Nigeria
| | - Oluwakemi A. Rotimi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Cancer Genomics Laboratory, Covenant University, Ota, Nigeria
| | - Jelili O. Oyelade
- Department of Computer and Informational Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Solomon O. Rotimi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Cancer Genomics Laboratory, Covenant University, Ota, Nigeria
| |
Collapse
|
14
|
Nordling L. African scientists call for research equity as a cancer crisis looms. Nature 2023; 621:S16-S17. [PMID: 37674000 DOI: 10.1038/d41586-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
|
15
|
Boafo IM, Tetteh PM, Hiadzi RA. Exploring prostate cancer screening among men in Accra using the health belief model. Ghana Med J 2023; 57:226-233. [PMID: 38957671 PMCID: PMC11216731 DOI: 10.4314/gmj.v57i3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Objective To explore the prevalence of prostate cancer screening among Ghanaian men and interrogate why some individuals screen for the disease and others do not. Design A cross-sectional questionnaire survey based on the Health Belief Model was used to collect data from 356 men aged 40 years and above. Data were collected between February and March 2021. Setting The study was conducted in the Accra metropolitan area of the Greater Accra region of Ghana. Participants Convenience sampling was used to recruit participants for the study. Results Although 86% of the respondents had heard about prostate cancer, only 23% had ever screened for it. Logistic regression analysis suggested that knowledge of the disease (OR = 1.19, CI 95% = 1.03 -1.38) and barriers to screening (OR = .87, CI 95% = .83 -.91) were statistically significant predictors of screening behaviour. Conclusion HBM has limited predictive power as far as our study is concerned. We suggest increasing public education on prostate cancer and its screening methods. The cost of screening should also be made more affordable so as not to become a barrier. Funding None declared.
Collapse
Affiliation(s)
- Isaac M Boafo
- University of Ghana, School of Social Sciences, Department of Sociology, Legon, Ghana
| | - Peace M Tetteh
- University of Ghana, School of Social Sciences, Department of Sociology, Legon, Ghana
| | - Rosemond A Hiadzi
- University of Ghana, School of Social Sciences, Department of Sociology, Legon, Ghana
| |
Collapse
|
16
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Mapoko BSE, Ndi KC, Tabola L, Mouaye V, Douanla P, Nsangou N, Nkeng G, Vanvolkenburgh C, Dzekem B, Huo D, Ndom P, Olopade O. Feasibility of cancer genetic counselling and screening in Cameroon: perceived benefits and barriers. Ecancermedicalscience 2023; 17:1588. [PMID: 37799957 PMCID: PMC10550300 DOI: 10.3332/ecancer.2023.1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 10/07/2023] Open
Abstract
Because there was no genetic testing service in Cameroon, we assessed the acceptance, perceived benefits and barriers and willingness to pay for genetic cancer screening in Cameroon amongst patients with cancers. We carried out a hospital-based, cross-sectional study on adult cancer patients at the Yaoundé General Hospital and the non-Governmental Organisation Solidarity Chemotherapy between February 1, 2021, and December 31, 2021. This was a convenience sampling that included all consenting patients. Qualitative and quantitative data were analysed by Epi info version 7 and SPSS version 20. Our study included 160 (87.5% females) cancer patients, whose ages ranged from 20 to 82 years, with a mean of 49.9 ± 13.0 years. Only 11.9% had undergone some form of genetic counselling or information sessions, and most found this to be helpful in terms of increased knowledge and prevention strategies (13, 68.4%). Almost all participants (156, 97.5%) stated they will like their relatives to undergo genetic counselling. Of these, 151 (94.4%) expressed their desire for their relatives to discuss their cancer risk with a specialist. Perceived benefits of genetic testing included cancer prevention (108, 67.5%) and motivation of self-examination (81, 50.6%). Prominent possible barriers included the cost (129, 80.6%), unavailability of equipment (49, 30.6%) and anticipated anxiety (40, 25.0%). However, a majority of the participants (156, 97.5%) were willing to test for genetic mutations. One hundred and thirty-five (84.4%) participants were willing to pay for genetic testing, with the majority of them (71.8%) ready to pay between $16.7 and $100. Almost all of the participants expressed their willingness to receive cancer genetic counselling and testing but the cost became the main barrier. This pilot study will serve as a guide to the processes of establishing a cancer risk assessment clinic in Cameroon.
Collapse
Affiliation(s)
- Berthe Sabine Esson Mapoko
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
- National Cancer Control Committee, Yaoundé 99322, Cameroon
| | - Kenn Chi Ndi
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Lionel Tabola
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Vanessa Mouaye
- National Cancer Control Committee, Yaoundé 99322, Cameroon
| | - Pelagie Douanla
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Nasser Nsangou
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Glenda Nkeng
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Carmen Vanvolkenburgh
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bonaventure Dzekem
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Dezheng Huo
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Paul Ndom
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
- National Cancer Control Committee, Yaoundé 99322, Cameroon
| | - Olufunmilayo Olopade
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Sharma K, Mayer T, Li S, Qureshi S, Farooq F, Vuylsteke P, Ralefala T, Marlink R. Advancing oncology drug therapies for sub-Saharan Africa. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001653. [PMID: 37368872 DOI: 10.1371/journal.pgph.0001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Cancer incidence is rising across sub-Saharan Africa (SSA), and is often characterized by late-stage presentation, early age of onset and poor survival. While a number of oncology drugs are now improving the length and quality of life for cancer patients in high-income countries, significant disparities in access to a range of oncology therapeutics exist for SSA. A number of challenges to drug access such as drug costs, lack of infrastructure and trained personnel must be urgently addressed to advance oncology therapies for SSA. We present a review of selected oncology drug therapies that are likely to benefit cancer patients with a focus on common malignancies in SSA. We collate available data from seminal clinical trials in high-income countries to highlight the potential for these therapeutics to improve cancer outcomes. In addition, we discuss the need to ensure access to drugs within the WHO Model List of Essential Medicines and highlight therapeutics that require consideration. Available and active oncology clinical trials in the region is tabulated, demonstrating the significant gaps in access to oncology drug trials across much of the region. We issue an urgent call to action to address drug access due to the predicted rise in cancer burden in the region in coming years.
Collapse
Affiliation(s)
- Kirthana Sharma
- Rutgers Global Health Institute, New Brunswick, New Jersey, United States of America
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Tina Mayer
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sharon Li
- Rutgers Cancer Institute at University Hospital, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Sadaf Qureshi
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Faheem Farooq
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Peter Vuylsteke
- Department of Internal Medicine, University of Botswana, Gaborone, Botswana
| | - Tlotlo Ralefala
- Department of Oncology, Princess Marina Hospital, Gaborone, Botswana
| | - Richard Marlink
- Rutgers Global Health Institute, New Brunswick, New Jersey, United States of America
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| |
Collapse
|
19
|
Manirakiza F, Rutaganda E, Yamada H, Iwashita Y, Rugwizangoga B, Seminega B, Dusabejambo V, Ntakirutimana G, Ruhangaza D, Uwineza A, Shinmura K, Sugimura H. Clinicopathological Characteristics and Mutational Landscape of APC, HOXB13, and KRAS among Rwandan Patients with Colorectal Cancer. Curr Issues Mol Biol 2023; 45:4359-4374. [PMID: 37232746 PMCID: PMC10217012 DOI: 10.3390/cimb45050277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer research in Rwanda is estimated to be less than 1% of the total African cancer research output with limited research on colorectal cancer (CRC). Rwandan patients with CRC are young, with more females being affected than males, and most patients present with advanced disease. Considering the paucity of oncological genetic studies in this population, we investigated the mutational status of CRC tissues, focusing on the Adenomatous polyposis coli (APC), Kirsten rat sarcoma (KRAS), and Homeobox B13 (HOXB13) genes. Our aim was to determine whether there were any differences between Rwandan patients and other populations. To do so, we performed Sanger sequencing of the DNA extracted from formalin-fixed paraffin-embedded adenocarcinoma samples from 54 patients (mean age: 60 years). Most tumors were located in the rectum (83.3%), and 92.6% of the tumors were low-grade. Most patients (70.4%) reported never smoking, and 61.1% of patients had consumed alcohol. We identified 27 variants of APC, including 3 novel mutations (c.4310_4319delAAACACCTCC, c.4463_4470delinsA, and c.4506_4507delT). All three novel mutations are classified as deleterious by MutationTaster2021. We found four synonymous variants (c.330C>A, c.366C>T, c.513T>C, and c.735G>A) of HOXB13. For KRAS, we found six variants (Asp173, Gly13Asp, Gly12Ala, Gly12Asp, Gly12Val, and Gln61His), the last four of which are pathogenic. In conclusion, here we contribute new genetic variation data and provide clinicopathological information pertinent to CRC in Rwanda.
Collapse
Affiliation(s)
- Felix Manirakiza
- Department of Pathology, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (F.M.)
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Belson Rugwizangoga
- Department of Pathology, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (F.M.)
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | | | - Annette Uwineza
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
- Department of Biochemistry, Molecular Biology and Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
20
|
Melki R, Melloul M, Aissaoui S, El Harroudi T, Boukhatem N. Increased prevalence of the founder BRCA1 c.5309G>T and recurrent BRCA2 c.1310_1313delAAGA mutations in breast cancer families from Northerstern region of Morocco: evidence of geographical specificity and high relevance for genetic counseling. BMC Cancer 2023; 23:339. [PMID: 37055759 PMCID: PMC10099884 DOI: 10.1186/s12885-023-10822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Inherited mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 (BRCA1/2) confer high risks of breast and ovarian cancer. Because the contribution of BRCA1/2 germline mutations to BC in the Northeastern population of Morocco remains largely unknown, we conducted this first study to evaluate the prevalence and the phenotypic spectrum of two BRCA1/2 pathogenic mutations (the founder BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA). This choice was also argued by the presence of an apparent specific geographical connection of these mutations and the Northeastern region of Morocco. METHODS Screening for the germline mutations c.5309G>T and BRCA2 c.1310_1313delAAGA was performed by sequencing on a total of 184 breast cancer (BC) patients originated from the Northeastern region of Morocco. The likelihood of identifying a BRCA mutation is calculated using the Eisinger scoring model. The clinical and pathologic features were compared between the BRCA-positive and BRCA-negative groups of patients. Difference in survival outcomes was compared between mutation carriers and non-carriers. RESULTS BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA are responsible for a significant proportion of all BC cases (12.5%) and at least 20% of familial BC. The screening of BRCA1/2 genes by NGS sequencing confirmed that there are no additional mutations detected among positive patients. The clinicopathological features in positive patients were in accordance with typical characteristics of BRCA pathogenic mutations. The mean features in the carriers were the early onset of the disease, familial history, triple negative status (for BRCA1 c.5309G>T) and worse prognosis in terms of overall surviving. Our study indicates that the Eisinger scoring model could be recommended to identify patients for referral to BRCA1/2 oncogenetic counseling. CONCLUSION Our findings suggest that BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA mutations may have a strong founder and/or recurrent effect on breast cancer among the Northeastern Moroccan population. There contribution to breast cancer incidence is certainly substantial in this subgroup. Therefore, we believe that BRCA1 c.5309G>T and BRCA2 c.1310_1313delAAGA mutations have to be included in the array of tests aimed at revealing cancer syndrome carriers among subjects of Moroccan origin.
Collapse
Affiliation(s)
- Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.
| | - Marouane Melloul
- Microbiology and Molecular Biology Unit, PMBBE Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | | - Tijani El Harroudi
- Surgical Oncology, Faculty of Medicine and Pharmacy, University Mohammed Premier , Oujda, Morocco
| | - Noureddine Boukhatem
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
21
|
Xulu KR, Augustine TN. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals (Basel) 2022; 15:1532. [PMID: 36558983 PMCID: PMC9784118 DOI: 10.3390/ph15121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The association between cancer and a hypercoagulatory environment is well described. Thrombotic complications serve not only as a major mortality risk but the underlying molecular structure and function play significant roles in enhancing tumour progression, which is defined as the tumour's capacity to survive, invade and metastasise, amongst other hallmarks of the disease. The use of anticoagulant or antiplatelet drugs in cardiovascular disease lessens thrombotic effects, but the consequences on tumour progression require interrogation. Therefore, this review considered developments in the management of platelet activation pathways (thromboxane, ADP and thrombin), focusing on the use of Aspirin, Clopidogrel and Atopaxar, and their potential impacts on tumour progression. Published data suggested a cautionary tale in ensuring we adequately investigate not only drug-drug interactions but also those unforeseen reciprocal interactions between drugs and their targets within the tumour microenvironment that may act as selective pressures, enhancing tumour survival and progression.
Collapse
Affiliation(s)
- Kutlwano R. Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
22
|
Ibe C, Otu AA, Mnyambwa NP. Advancing disease genomics beyond COVID-19 and reducing health disparities: what does the future hold for Africa? Brief Funct Genomics 2022; 22:241-249. [DOI: 10.1093/bfgp/elac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
Abstract
The COVID-19 pandemic has ushered in high-throughput sequencing technology as an essential public health tool. Scaling up and operationalizing genomics in Africa is crucial as enhanced capacity for genome sequencing could address key health problems relevant to African populations. High-quality genomics research can be leveraged to improve diagnosis, understand the aetiology of unexplained illnesses, improve surveillance of infectious diseases and inform efficient control and therapeutic methods of known, rare and emerging infectious diseases. Achieving these within Africa requires strong commitment from stakeholders. A roadmap is needed to guide training of scientists, infrastructural development, research funding, international collaboration as well as promote public–private partnerships. Although the COVID-19 pandemic has significantly boosted genomics capacity in Africa, the continent still lags other regions. Here, we highlighted key initiatives in genomics research and efforts to address health challenges facing the diverse and fast-growing populations on the continent. We explore the scalability of genomic tools and techniques to tackle a broader range of infectious diseases in Africa, a continent that desperately requires a boost from genomic science.
Collapse
Affiliation(s)
- Chibuike Ibe
- Abia State University Department of Microbiology, Faculty of Biological Sciences, , Uturu, Nigeria
| | | | - Nicholaus P Mnyambwa
- National Institute for Medical Research , Muhimbili Research Centre, Dar es Salaam , Tanzania
- Alliance for Africa Health and Research (A4A), Dar es Salaam , Tanzania
| |
Collapse
|
23
|
Kairuz D, Samudh N, Ely A, Arbuthnot P, Bloom K. Advancing mRNA technologies for therapies and vaccines: An African context. Front Immunol 2022; 13:1018961. [PMID: 36353641 PMCID: PMC9637871 DOI: 10.3389/fimmu.2022.1018961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 09/26/2023] Open
Abstract
Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Nankabirwa JI, Rek J, Arinaitwe E, Namuganga JF, Nsobya SL, Asua V, Mawejje HD, Epstein A, Greenhouse B, Rodriguez-Barraquer I, Briggs J, Krezanoski PJ, Rosenthal PJ, Conrad M, Smith D, Staedke SG, Drakeley C, Bousema T, Andolina C, Donnelly MJ, Kamya MR, Dorsey G. East Africa International Center of Excellence for Malaria Research: Summary of Key Research Findings. Am J Trop Med Hyg 2022; 107:21-32. [PMID: 36228916 PMCID: PMC9662228 DOI: 10.4269/ajtmh.21-1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.
Collapse
Affiliation(s)
- Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sam L. Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Adrienne Epstein
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Melissa Conrad
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Sarah G. Staedke
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
25
|
Sudi SM, Kabbashi S, Roomaney IA, Aborass M, Chetty M. The genetic determinants of oral diseases in Africa: The gaps should be filled. FRONTIERS IN ORAL HEALTH 2022; 3:1017276. [PMID: 36304994 PMCID: PMC9593064 DOI: 10.3389/froh.2022.1017276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Oral diseases are a major health concern and are among the most prevalent diseases globally. This problem is becoming more prominent in the rapidly growing populations of Africa. It is well documented that Africa exhibits the most diverse genetic make-up in the world. However, little work has been conducted to understand the genetic basis of oral diseases in Africans. Oral health is often neglected and receives low prioritisation from funders and governments. The genetic determinants of highly prevalent oral diseases such as dental caries and periodontal disease, and regionally prevalent conditions such as oral cancer and NOMA, are largely under-researched areas despite numerous articles alluding to a high burden of these diseases in African populations. Therefore, this review aims to shed light on the significant gaps in research on the genetic and genomic aspects of oral diseases in African populations and highlights the urgent need for evidence-based dentistry, in tandem with the development of the dentist/scientist workforce.
Collapse
Affiliation(s)
| | - Salma Kabbashi
- Craniofacial Biology, University of the Western Cape, Cape Town, South Africa
| | | | | | | |
Collapse
|
26
|
Jaratlerdsiri W, Jiang J, Gong T, Patrick SM, Willet C, Chew T, Lyons RJ, Haynes AM, Pasqualim G, Louw M, Kench JG, Campbell R, Horvath LG, Chan EKF, Wedge DC, Sadsad R, Brum IS, Mutambirwa SBA, Stricker PD, Bornman MSR, Hayes VM. African-specific molecular taxonomy of prostate cancer. Nature 2022; 609:552-559. [PMID: 36045292 PMCID: PMC9477733 DOI: 10.1038/s41586-022-05154-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/27/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African-European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene-environment interaction-defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa-we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.
Collapse
Affiliation(s)
- Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Sean M Patrick
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| | - Cali Willet
- Sydney Informatics Hub, University of Sydney, Darlington, New South Wales, Australia
| | - Tracy Chew
- Sydney Informatics Hub, University of Sydney, Darlington, New South Wales, Australia
| | - Ruth J Lyons
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anne-Maree Haynes
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Gabriela Pasqualim
- Endocrine and Tumor Molecular Biology Laboratory (LABIMET), Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genetics, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Melanie Louw
- National Health Laboratory Services, Johannesburg, South Africa
| | - James G Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | | | - Lisa G Horvath
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Royal Prince Alfred Hospital and Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Eva K F Chan
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- NSW Health Pathology, Sydney, New South Wales, Australia
| | - David C Wedge
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rosemarie Sadsad
- Sydney Informatics Hub, University of Sydney, Darlington, New South Wales, Australia
| | - Ilma Simoni Brum
- Endocrine and Tumor Molecular Biology Laboratory (LABIMET), Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - Phillip D Stricker
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Urology, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - M S Riana Bornman
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Mankweng, South Africa.
| |
Collapse
|
27
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
28
|
Sharma K, Sayed S, Saleh M. Promoting Best Practice in Cancer Care in Sub Saharan Africa. Front Med (Lausanne) 2022; 9:950309. [PMID: 35872798 PMCID: PMC9299371 DOI: 10.3389/fmed.2022.950309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Promoting best practice in the management of a cancer patient is rooted in the application of new knowledge derived through various sources including population science, laboratory advances, and translational research. Ultimately, the impact of these advances depends on their application at the patient's bedside. A close collaboration between the oncologist and the pathologist is critical in underwriting progress in the management of the cancer patient. Recent advancements have shown that more granular characteristics of the tumor and the microenvironment are defining determinants when it comes to disease course and overall outcome. Whereas, histologic features and basic immunohistochemical characterization were previously adequate to define the tumor and establish treatment recommendation, the growing capability of the pathologist to provide molecular characterization of the tumor and its microenvironment, as well as, the availability of novel therapeutic agents have revolutionized cancer treatment paradigms and improved patient-outcomes and survival. While such capacity and capability appear readily available in most developed high-income countries (HIC), it will take a concerted and collaborative effort of all stakeholders to pave the way in the same stride in the low and middle-income countries (LMIC), which bear a disproportionate burden of human illness and cancers. Patients in the LMIC present with disease at advanced stage and often display characteristics unlike those encountered in the developed world. To keep stride and avoid the disenfranchisement of patients in the LMIC will require greater participation of LMIC patients on the global clinical trial platform, and a more equitable and affordable sharing of diagnostic and therapeutic capabilities between the developed and developing world. Key to the success of this progress and improvement of patient outcomes in the developing world is the close collaboration between the oncologist and the pathologist in this new era of precision and personalized medicine.
Collapse
Affiliation(s)
- Karishma Sharma
- Clinical Research Unit, Aga Khan University Cancer Center, Aga Khan University, Nairobi, Kenya
| | - Shahin Sayed
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Mansoor Saleh
- Clinical Research Unit, Aga Khan University Cancer Center, Aga Khan University, Nairobi, Kenya
- Department of Hematology and Oncology, Aga Khan University Hospital, Nairobi, Kenya
- *Correspondence: Mansoor Saleh
| |
Collapse
|
29
|
Shyirambere C, Villaverde C, Nguyen C, Ruhangaza D, Umwizerwa A, Nsanzimana O, Mujyuwisha L, Iradukunda E, Shulman LN, Lehmann L. Nephroblastoma Treatment and Outcomes in a Low-Income Setting. JCO Glob Oncol 2022; 8:e2200036. [PMID: 35820081 PMCID: PMC9296183 DOI: 10.1200/go.22.00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Nephroblastoma is a highly curable pediatric cancer that requires multidisciplinary care. Few reports have assessed long-term treatment outcomes in low-resource settings using a task-shifting model of care. We report outcomes of a large cohort and factors associated with survival. METHODS We performed a retrospective chart review of all patients with nephroblastoma presenting to the Butaro Cancer Center of Excellence in Rwanda between July 2012 and June 2018. RESULTS In total, 136 patients were identified and treated according to International Society of Pediatric Oncology guidelines for low-income settings. Median age at diagnosis was 39.7 months (interquartile range, 25.3-61.8 months); 56.6% were female. Sixty-one (44.9%) patients presented with stage I-III disease, 35 (25.7%) with stage IV disease, and 6 (4.4%) with stage V disease; the remainder were unstaged (n = 34; 25.0%). Most patients completed surgery (n = 97; 71.3%) and postoperative chemotherapy (n = 82; 60.2%); 17 patients received radiotherapy. With a median follow-up time of 18.1 months, 44.9% of patients were alive, 41.9% had died, 8.8% were lost to follow-up, and 4.4% were referred for palliative care or declined further care at the end of the study. Three-year overall survival was 57.5% (95% CI, 48.1 to 65.8) for the entire cohort, and 80.1% (95% CI, 66.8 to 88.5) and 44.0% (95% CI, 26.8 to 60.0) for stages I-III and IV-V, respectively. CONCLUSION We demonstrate that patients with nephroblastoma can be successfully treated in a low-resource setting. Survival remains lower than in high-income countries, in part due to early deaths, contributing to approximately 30% of patients not being medically able to receive surgical intervention. Next steps include the development of strategies that focus on earlier diagnosis, supportive care during the early phases of therapy, and efficient and timely transitions between specialties for multimodal care.
Collapse
Affiliation(s)
| | | | - Cam Nguyen
- University of Colorado Cancer Center, Aurora, CO
| | | | | | | | | | | | | | - Leslie Lehmann
- Children's Hospital Boston, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
30
|
El-Attar EA, Helmy Elkaffas RM, Aglan SA, Naga IS, Nabil A, Abdallah HY. Genomics in Egypt: Current Status and Future Aspects. Front Genet 2022; 13:797465. [PMID: 35664315 PMCID: PMC9157251 DOI: 10.3389/fgene.2022.797465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Egypt is the third most densely inhabited African country. Due to the economic burden and healthcare costs of overpopulation, genomic and genetic testing is a huge challenge. However, in the era of precision medicine, Egypt is taking a shift in approach from “one-size-fits all” to more personalized healthcare via advancing the practice of medical genetics and genomics across the country. This shift necessitates concrete knowledge of the Egyptian genome and related diseases to direct effective preventive, diagnostic and counseling services of prevalent genetic diseases in Egypt. Understanding disease molecular mechanisms will enhance the capacity for personalized interventions. From this perspective, we highlight research efforts and available services for rare genetic diseases, communicable diseases including the coronavirus 2019 disease (COVID19), and cancer. The current state of genetic services in Egypt including availability and access to genetic services is described. Drivers for applying genomics in Egypt are illustrated with a SWOT analysis of the current genetic/genomic services. Barriers to genetic service development in Egypt, whether economic, geographic, cultural or educational are discussed as well. The sensitive topic of communicating genomic results and its ethical considerations is also tackled. To understand disease pathogenesis, much can be gained through the advancement and integration of genomic technologies via clinical applications and research efforts in Egypt. Three main pillars of multidisciplinary collaboration for advancing genomics in Egypt are envisaged: resources, infrastructure and training. Finally, we highlight the recent national plan to establish a genome center that will aim to prepare a map of the Egyptian human genome to discover and accurately determine the genetic characteristics of various diseases. The Reference Genome Project for Egyptians and Ancient Egyptians will initialize a new genomics era in Egypt. We propose a multidisciplinary governance system in Egypt to support genomic medicine research efforts and integrate into the healthcare system whilst ensuring ethical conduct of data.
Collapse
Affiliation(s)
- Eman Ahmed El-Attar
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
- *Correspondence: Eman Ahmed El-Attar,
| | | | - Sarah Ahmed Aglan
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Iman S. Naga
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hoda Y. Abdallah
- Medical Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
31
|
Fernandez PW. Prostate Cancer Genomics Research Disparities in Africa: Advancing Knowledge in Resource Constrained Settings. Cancer Control 2022; 29:10732748221095952. [PMID: 35475404 PMCID: PMC9087236 DOI: 10.1177/10732748221095952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer disproportionately affects men of African descent and it is estimated that Africa will bear the highest disease burden in the next decade. Underlying genomic factors may contribute to prostate cancer disparities; however, it is unclear whether Africa has prioritised genomics research toward addressing these disparities. A Pubmed review was performed of publications spanning a 15-year period, with specific focus on prostate cancer genomics research that included samples from Africa and investigators in Africa. Data are presented on research publications from Africa relative to similar publications from different geographical regions, and more specifically, the extent of disparities and the contributions to prostate cancer knowledge as a result of genomics research that included African samples and African institutions. Limited publication output may reflect the infrastructure and funding challenges in Africa. Widespread cooperation should be fostered by sharing capacity and leveraging existing expertise to address the growing cancer burden facing the continent.
Collapse
|
32
|
|