1
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Takács T, László L, Tilajka Á, Novák J, Buday L, Vas V. Insulin receptor substrate 1 is a novel member of EGFR signaling in pancreatic cells. Eur J Cell Biol 2024; 103:151457. [PMID: 39326351 DOI: 10.1016/j.ejcb.2024.151457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely incurable cancer type characterized by cells with highly proliferative capacity and resistance against the current therapeutic options. Our study reveals that IRS1 acts as a bridging molecule between EGFR and IGFR/InsR signalization providing a potential mechanism for the interplay between signaling pathways and bypassing EGFR-targeted or IGFR/InsR-targeted therapies. The analysis of IRS1 phosphorylation status in four pancreatic cell lines identified the impact of EGFR signaling on IRS1 activation in comparison with InsR/IGFR signaling. Significantly reduced viability was observed in IRS1-silenced cells even upon EGF stimulation showing the critical role of IRS1 in the EGFR signaling network in both malignant and normal pancreatic cells. This study also demonstrated that EGFR binds directly to IRS1 and at least on two tyrosine sites, Y612 and Y896, IRS1 becomes phosphorylated in response to EGF stimulation. Mechanistically, the EGFR-mediated phosphorylation of IRS1 can further activate the MAPK signaling pathway with the recruitment of GRB2 protein. Collectively, in this study, IRS1 was identified as a crucial regulator in the EGFR signaling suggesting IRS1 as a potential target for more durable responses to targeted PDAC therapy.
Collapse
Affiliation(s)
- Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Loretta László
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Álmos Tilajka
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Julianna Novák
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| | - Virag Vas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
3
|
Tigu AB, Tomuleasa C. Exploring Novel Frontiers in Cancer Therapy. Biomedicines 2024; 12:1345. [PMID: 38927551 PMCID: PMC11202039 DOI: 10.3390/biomedicines12061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer progression and initiation are sustained by a series of alterations in molecular pathways because of genetic errors, external stimuli and other factors, which lead to an abnormal cellular function that can be translated into uncontrolled cell growth and metastasis [...].
Collapse
Affiliation(s)
- Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Elsawi AE, Shahin MI, Elbendary HA, Al-Warhi T, Hassan FE, Eldehna WM. 1,2,4-Triazole-Tethered Indolinones as New Cancer-Fighting Small Molecules Targeting VEGFR-2: Synthesis, Biological Evaluations and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:81. [PMID: 38256914 PMCID: PMC10820444 DOI: 10.3390/ph17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the VEGFR-2 signaling pathway is an inveterate approach toward combating pancreatic and hepatocellular cancers. Based on Sunitinib, the FDA-approved VEGFR-2 inhibitor, novel indolin-2-one-triazole hybrids were designed and synthesized as anti-hepatocellular and anti-pancreatic cancer agents with VEGFR-2 inhibitory activity. All the targeted compounds were assessed for their anti-cancer activity, revealing IC50 values extending from 0.17 to 4.29 µM for PANC1 and 0.58 to 4.49 µM for HepG2 cell lines. An extensive SAR study was conducted to explore the effect of different substituents along with N-alkylation. The potent anti-cancer analogs 11d, 11e, 11g, 11k and 14c were evaluated for their VEGFR-2 inhibitory actions, where their IC50 values ranged from 16.3 to 119.6 nM compared to Sorafenib, which revealed an IC50 of 29.7 nM, having compound 11d as the most active analog. An in silico ADME study was performed to confirm the drug-likeness of the synthesized compounds. Finally, molecular docking simulation was conducted for the most potent VEGFR-2 inhibitor (11d), demonstrating the strong binding with the vital amino acid residues of the VEGFR-2 ATP binding site.
Collapse
Affiliation(s)
- Ahmed E. Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mai I. Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt;
| | - Hager A. Elbendary
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
5
|
Cammarota AL, Falco A, Basile A, Molino C, Chetta M, D’Angelo G, Marzullo L, De Marco M, Turco MC, Rosati A. Pancreatic Cancer-Secreted Proteins: Targeting Their Functions in Tumor Microenvironment. Cancers (Basel) 2023; 15:4825. [PMID: 37835519 PMCID: PMC10571538 DOI: 10.3390/cancers15194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Carlo Molino
- General Surgery Unit, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Massimiliano Chetta
- Medical and Laboratory Genetics Unit, A.O.R.N., Cardarelli, 80131 Naples, Italy;
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy;
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
6
|
de Barros NR, Gomez A, Ermis M, Falcone N, Haghniaz R, Young P, Gao Y, Aquino AF, Li S, Niu S, Chen R, Huang S, Zhu Y, Eliahoo P, Sun A, Khorsandi D, Kim J, Kelber J, Khademhosseini A, Kim HJ, Li B. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. Biofabrication 2023; 15:10.1088/1758-5090/ace0db. [PMID: 37348491 PMCID: PMC10683563 DOI: 10.1088/1758-5090/ace0db] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Department of Biology, Baylor University, 101 Bagby Ave, TX 76706, United Ustates of America
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Patric Young
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Yaqi Gao
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Albert-Fred Aquino
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Siyuan Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- METU Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Siyi Niu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biomedical Engineering, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, United States of America
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Payam Eliahoo
- Department of Biology, University of California, Irvine, CA 92697, United States of America
| | - Arthur Sun
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jonathan Kelber
- Department of Biology, California State University, Northridge, CA 91330, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| |
Collapse
|
7
|
Periyasamy L, Murugantham B, Muthusami S. Plumbagin binds to epidermal growth factor receptor and mitigate the effects of epidermal growth factor micro-environment in PANC-1 cells. Med Oncol 2023; 40:184. [PMID: 37209241 DOI: 10.1007/s12032-023-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
A sustained increase in the mortality of pancreatic cancer (PC) and sudden metastasis-related mortality is a cause for concern. Aberrant expression of epidermal growth factor (EGF) receptor (EGFR) is noted in several cases of PC metastasis. The present study is aimed at analyzing the expression of EGFR in PC and its relevance to the progression of PC. Despite the number of studies that have shown the benefits of plumbagin on PC cells, its role on cancer stem cells remains largely unknown. To this end, the study used an EGF micro-environment to make cancer stem cells in vitro and ascertained the role of plumbagin in mitigating the actions of EGF. The kaplan-meier (KM) plot indicated reduced overall survival (OS) analysis in PC patients with high EGFR than low EGFR expression. Plumbagin pre-treatment significantly prevented EGF-induced survival, epithelial-to-mesenchymal transition (EMT), clonogenesis, migration, matrix metalloproteinase -2 (MMP-2) gene expression and its secretion, and matrix protein hyaluron production in PANC-1 cells. The computational studies indicate the greater affinity of plumbagin with different domains of EGFR than gefitinib. Several hallmarks of resistance and migration due to EGF are effectively attenuated by plumbagin. Collectively, these results warrant investigating the actions of plumbagin in a pre-clinical study to substantiate these findings.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Bharathi Murugantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
8
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Zhang CY, Liu S, Yang M. Clinical diagnosis and management of pancreatic cancer: Markers, molecular mechanisms, and treatment options. World J Gastroenterol 2022; 28:6827-6845. [PMID: 36632312 PMCID: PMC9827589 DOI: 10.3748/wjg.v28.i48.6827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) is the third-leading cause of cancer deaths. The overall 5-year survival rate of PC is 9%, and this rate for metastatic PC is below 3%. However, the PC-induced death cases will increase about 2-fold by 2060. Many factors such as genetic and environmental factors and metabolic diseases can drive PC development and progression. The most common type of PC in the clinic is pancreatic ductal adenocarcinoma, comprising approximately 90% of PC cases. Multiple pathogenic processes including but not limited to inflammation, fibrosis, angiogenesis, epithelial-mesenchymal transition, and proliferation of cancer stem cells are involved in the initiation and progression of PC. Early diagnosis is essential for curable therapy, for which a combined panel of serum markers is very helpful. Although some mono or combined therapies have been approved by the United States Food and Drug Administration for PC treatment, current therapies have not shown promising outcomes. Fortunately, the development of novel immunotherapies, such as oncolytic viruses-mediated treatments and chimeric antigen receptor-T cells, combined with therapies such as neoadjuvant therapy plus surgery, and advanced delivery systems of immunotherapy will improve therapeutic outcomes and combat drug resistance in PC patients. Herein, the pathogenesis, molecular signaling pathways, diagnostic markers, prognosis, and potential treatments in completed, ongoing, and recruiting clinical trials for PC were reviewed.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
10
|
Osei-Bordom DC, Serifis N, Brown ZJ, Hewitt DB, Lawal G, Sachdeva G, Cloonan DJ, Pawlik TM. Pancreatic ductal adenocarcinoma: Emerging therapeutic strategies. Surg Oncol 2022; 43:101803. [PMID: 35830772 DOI: 10.1016/j.suronc.2022.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/11/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
The seventh leading cause of cancer-related death globally, pancreatic ductal adenocarcinoma (PDAC) involves the exocrine pancreas and constitutes greater than 90% of all pancreatic cancers. Surgical resection in combination with systemic chemotherapy with or without radiation remains the mainstay of treatment and the only potentially curative treatment option. While there has been improvement in systemic chemotherapy, long-term survival among patients with PDAC remains poor. Improvement in the understanding of tumorigenesis, genetic mutations, the tumor microenvironment (TME), immunotherapies, as well as targeted therapies continued to drive advances in PDAC treatment. We herein review the TME, genetic landscape, as well as various metabolic pathways associated with PDAC tumorigenesis relative to emerging therapies.
Collapse
Affiliation(s)
- Daniel C Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK; Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Nikolaos Serifis
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zachary J Brown
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - D Brock Hewitt
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Gbemisola Lawal
- Department of Surgery, Arrowhead Regional Cancer Center, California University of Science and Medicine, Colton, CA, USA
| | - Gagandeep Sachdeva
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
| | - Daniel J Cloonan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|