1
|
Kip P, Sluiter TJ, MacArthur MR, Tao M, Kruit N, Mitchell SJ, Jung J, Kooijman S, Gorham J, Seidman JG, Quax PHA, Decano JL, Aikawa M, Ozaki CK, Mitchell JR, de Vries MR. Preoperative methionine restriction induces perivascular adipose tissue browning and improves vein graft remodeling in male mice. Nat Commun 2024; 15:9652. [PMID: 39511181 PMCID: PMC11544300 DOI: 10.1038/s41467-024-53844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Short-term preoperative methionine restriction (MetR) is a promising translatable strategy to mitigate surgical injury response. However, its application to improve post-interventional vascular remodeling remains underexplored. Here we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and pathologic vascular remodeling following vein graft surgery in male mice. RNA sequencing reveals that MetR enhances browning in arterial (thoracic aorta) perivascular adipose tissue (PVAT) and induces it in venous (caval vein) PVAT. Specifically, Ppara is highly upregulated in PVAT-adipocytes upon MetR. Furthermore, MetR dampens the postoperative pro-inflammatory response to surgery in PVAT-macrophages in vivo and in vitro. This study shows that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in MetR-induced browning of PVAT. Furthermore, we demonstrate the potential of short-term preoperative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.
Collapse
Affiliation(s)
- Peter Kip
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs J Sluiter
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ming Tao
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicky Kruit
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jonathan Jung
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Julius L Decano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margreet R de Vries
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Pisu D, Johnston L, Mattila JT, Russell DG. The frequency of CD38 + alveolar macrophages correlates with early control of M. tuberculosis in the murine lung. Nat Commun 2024; 15:8522. [PMID: 39358361 PMCID: PMC11447019 DOI: 10.1038/s41467-024-52846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains an enduring global health challenge due to the limited efficacy of existing treatments. Although much research has focused on immune failure, the role of host macrophage biology in controlling the disease remains underappreciated. Here we show, through multi-modal single-cell RNA sequencing in a murine model, that different alveolar macrophage subsets play distinct roles in either advancing or controlling the disease. Initially, alveolar macrophages that are negative for the CD38 marker are the main infected population. As the infection progresses, CD38+ monocyte-derived and tissue-resident alveolar macrophages emerge as significant controllers of bacterial growth. These macrophages display a unique chromatin organization pre-infection, indicative of epigenetic priming for pro-inflammatory responses. Moreover, intranasal BCG immunization increases the numbers of CD38+ macrophages, enhancing their capability to restrict Mycobacterium tuberculosis growth. Our findings highlight the dynamic roles of alveolar macrophages in tuberculosis and open pathways for improved vaccines and therapies.
Collapse
Affiliation(s)
- Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luana Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Soto CA, Lesch ML, Becker JL, Sharipol A, Khan A, Schafer XL, Becker MW, Munger JC, Frisch BJ. The Lactate Receptor GPR81 is a Mechanism of Leukemia-Associated Macrophage Polarization in the Bone Marrow Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566874. [PMID: 39185193 PMCID: PMC11343108 DOI: 10.1101/2023.11.13.566874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Interactions between acute myeloid leukemia (AML) and the bone marrow microenvironment (BMME) are critical to leukemia progression and chemoresistance. Altered metabolite levels in the tumor microenvironment contribute to immunosuppression in solid tumors, while this has not been studied yet in the leukemic BMME. Metabolomics of AML patient bone marrow serum detected elevated metabolites, including lactate, compared to age- and sex-matched controls. Excess lactate has been implicated in solid tumors for inducing suppressive tumor-associated macrophages (TAMs) and correlates with poor prognosis. We describe the role of lactate in the polarization of leukemia-associated macrophages (LAMs) using a murine model of blast crisis chronic myelogenous leukemia (bcCML) and mice genetically lacking the lactate receptor GPR81. LAMs were CD206hi and suppressive in transcriptomics and cytokine profiling. Yet, LAMs had a largely unique expression profile from other types of TAMs. We demonstrate GPR81 signaling as a mechanism of both LAM polarization and the direct support of leukemia cell growth and self-repopulation. Furthermore, LAMs and elevated lactate diminished the function of hematopoietic progenitors and stromal support, while knockout of GPR81 had modest protective effects on the hematopoietic system. We report microenvironmental lactate as a critical driver of AML-induced immunosuppression and leukemic progression, thus identifying GPR81 signaling as an exciting and novel therapeutic target for treating this devastating disease.
Collapse
Affiliation(s)
- Celia A. Soto
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Maggie L. Lesch
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Jennifer L. Becker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester School of Medicine, Rochester, NY, USA
| | - Amal Khan
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Xenia L. Schafer
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Michael W. Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joshua C. Munger
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Benjamin J. Frisch
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
4
|
Smith HL, Goodlett BL, Navaneethabalakrishnan S, Mitchell BM. Elevated Salt or Angiotensin II Levels Induce CD38+ Innate Immune Cells in the Presence of Granulocyte-Macrophage Colony Stimulating Factor. Cells 2024; 13:1302. [PMID: 39120331 PMCID: PMC11311366 DOI: 10.3390/cells13151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Hypertension (HTN) impacts almost half of adults, predisposing them to cardiovascular disease and renal damage. Salt-sensitive HTN (SSHTN) and angiotensin II (A2)-induced HTN (A2HTN) both involve immune system activation and renal innate immune cell infiltration. Subpopulations of activated [Cluster of differentiation 38 (CD38)] innate immune cells, such as macrophages and dendritic cells (DCs), play distinct roles in modulating renal function and blood pressure. It is unknown how these cells become CD38+ or which subtypes are pro-hypertensive. When bone marrow-derived monocytes (BMDMs) were grown in granulocyte-macrophage colony stimulating factor (GM-CSF) and treated with salt or A2, CD38+ macrophages and CD38+ DCs increased. The adoptive transfer of GM-CSF-primed BMDMs into mice with either SSHTN or A2HTN increased renal CD38+ macrophages and CD38+ DCs. Flow cytometry revealed increased renal M1 macrophages and type-2 conventional DCs (cDC2s), along with their CD38+ counterparts, in mice with either SSHTN or A2HTN. These results were replicable in vitro. Either salt or A2 treatment of GM-CSF-primed BMDMs significantly increased bone marrow-derived (BMD)-M1 macrophages, CD38+ BMD-M1 macrophages, BMD-cDC2s, and CD38+ BMD-cDC2s. Overall, these data suggest that GM-CSF is necessary for the salt or A2 induction of CD38+ innate immune cells, and that CD38 distinguishes pro-hypertensive immune cells. Further investigation of CD38+ M1 macrophages and CD38+ cDC2s could provide new therapeutic targets for both SSHTN and A2HTN.
Collapse
Affiliation(s)
| | | | | | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA; (H.L.S.)
| |
Collapse
|
5
|
Russell D, Pisu D, Mattila J, Johnston L. CD38+ Alveolar macrophages mediate early control of M. tuberculosis proliferation in the lung. RESEARCH SQUARE 2024:rs.3.rs-3934768. [PMID: 39070650 PMCID: PMC11275981 DOI: 10.21203/rs.3.rs-3934768/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Tuberculosis, caused by M.tuberculosis (Mtb), remains an enduring global health challenge, especially given the limited efficacy of current therapeutic interventions. Much of existing research has focused on immune failure as a driver of tuberculosis. However, the crucial role of host macrophage biology in controlling the disease remains underappreciated. While we have gained deeper insights into how alveolar macrophages (AMs) interact with Mtb, the precise AM subsets that mediate protection and potentially prevent tuberculosis progression have yet to be identified. In this study, we employed multi-modal scRNA-seq analyses to evaluate the functional roles of diverse macrophage subpopulations across different infection timepoints, allowing us to delineate the dynamic landscape of controller and permissive AM populations during the course of infection. Our analyses at specific time-intervals post-Mtb challenge revealed macrophage populations transitioning between distinct anti- and pro-inflammatory states. Notably, early in Mtb infection, CD38- AMs showed a muted response. As infection progressed, we observed a phenotypic shift in AMs, with CD38+ monocyte-derived AMs (moAMs) and a subset of tissue-resident AMs (TR-AMs) emerging as significant controllers of bacterial growth. Furthermore, scATAC-seq analysis of naïve lungs demonstrated that CD38+ TR-AMs possessed a distinct chromatin signature prior to infection, indicative of epigenetic priming and predisposition to a pro-inflammatory response. BCG intranasal immunization increased the numbers of CD38+ macrophages, substantially enhancing their capability to restrict Mtb growth. Collectively, our findings emphasize the pivotal, dynamic roles of different macrophage subsets in TB infection and reveal rational pathways for the development of improved vaccines and immunotherapeutic strategies.
Collapse
|
6
|
Luo W, Hoang H, Miller KE, Zhu H, Xu S, Mo X, Garfinkle EAR, Costello H, Wijeratne S, Chemnitz W, Gandhi R, Liao Y, Ayello J, Gardenswartz A, Rosenblum JM, Cassady KA, Mardis ER, Lee DA, Cripe TP, Cairo MS. Combinatorial macrophage induced innate immunotherapy against Ewing sarcoma: Turning "Two Keys" simultaneously. J Exp Clin Cancer Res 2024; 43:193. [PMID: 38992659 PMCID: PMC11238356 DOI: 10.1186/s13046-024-03093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Katherine E Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Serena Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Heather Costello
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Wiebke Chemnitz
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | - Yanling Liao
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Aliza Gardenswartz
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Kevin A Cassady
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | - Dean A Lee
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Timothy P Cripe
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Medicine, New York Medical College, Valhalla, NY, USA.
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
7
|
Alabarse PG, Oliveira P, Qin H, Yan T, Migaud M, Terkeltaub R, Liu-Bryan R. The NADase CD38 is a central regulator in gouty inflammation and a novel druggable therapeutic target. Inflamm Res 2024; 73:739-751. [PMID: 38493256 PMCID: PMC11058052 DOI: 10.1007/s00011-024-01863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVES Cellular NAD+ declines in inflammatory states associated with increased activity of the leukocyte-expressed NADase CD38. In this study, we tested the potential role of therapeutically targeting CD38 and NAD+ in gout. METHODS We studied cultured mouse wild type and CD38 knockout (KO) murine bone marrow derived macrophages (BMDMs) stimulated by monosodium urate (MSU) crystals and used the air pouch gouty inflammation model. RESULTS MSU crystals induced CD38 in BMDMs in vitro, associated with NAD+ depletion, and IL-1β and CXCL1 release, effects reversed by pharmacologic CD38 inhibitors (apigenin, 78c). Mouse air pouch inflammatory responses to MSU crystals were blunted by CD38 KO and apigenin. Pharmacologic CD38 inhibition suppressed MSU crystal-induced NLRP3 inflammasome activation and increased anti-inflammatory SIRT3-SOD2 activity in macrophages. BMDM RNA-seq analysis of differentially expressed genes (DEGs) revealed CD38 to control multiple MSU crystal-modulated inflammation pathways. Top DEGs included the circadian rhythm modulator GRP176, and the metalloreductase STEAP4 that mediates iron homeostasis, and promotes oxidative stress and NF-κB activation when it is overexpressed. CONCLUSIONS CD38 and NAD+ depletion are druggable targets controlling the MSU crystal- induced inflammation program. Targeting CD38 and NAD+ are potentially novel selective molecular approaches to limit gouty arthritis.
Collapse
Affiliation(s)
- Paulo Gil Alabarse
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Patricia Oliveira
- University of California San Diego, La Jolla, San Diego, CA, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, La Jolla, San Diego, CA, USA
| | - Huaping Qin
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Tiffany Yan
- University of California San Diego, La Jolla, San Diego, CA, USA
- Gritstone Bio, Emeryville, CA, USA
| | - Marie Migaud
- Department of Pharmacology, F. Whiddon College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
- University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
8
|
Li C, Schneider JM, Schneider EM. Disulfiram Inhibits Opsonin-Independent Phagocytosis and Migration of Human Long-Lived In Vitro Cultured Phagocytes from Multiple Inflammatory Diseases. Cells 2024; 13:535. [PMID: 38534379 PMCID: PMC10968875 DOI: 10.3390/cells13060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Disulfiram (DSF), an anti-alcoholism medicine, exerts treatment effects in patients suffering from persistent Borreliosis and also exhibits anti-cancer effects through its copper chelating derivatives and induction of oxidative stress in mitochondria. Since chronic/persistent borreliosis is characterized by increased amounts of pro-inflammatory macrophages, this study investigated opsonin-independent phagocytosis, migration, and surface marker expression of in vivo activated and in vitro cultured human monocyte-derived phagocytes (macrophages and dendritic cells) with and without DSF treatment. Phagocytosis of non-opsonized Dynabeads® M-450 and migration of macrophages and dendritic cells were monitored using live cell analyzer Juli™ Br for 24 h, imaging every 3.5 min. To simultaneously monitor phagocyte function, results were analyzed by a newly developed software based on the differential phase contrast images of cells before and after ingestion of Dynabeads. DSF decreased the phagocytic capacities exhibited by in vitro enriched and long-lived phagocytes. Although no chemotactic gradient was applied to the test system, vigorous spontaneous migration was observed. We therefore set up an algorithm to monitor and quantify both phagocytosis and migration simultaneously. DSF not only reduced phagocytosis in a majority of these long-lived phagocytes but also impaired their migration. Despite these selective effects by DSF, we found that DSF reduced the expression densities of surface antigens CD45 and CD14 in all of our long-lived phagocytes. In cells with a high metabolic activity and high mitochondrial contents, DSF led to cell death corresponding to mitochondrial oxidative stress, whereas metabolically inactive phagocytes survived our DSF treatment protocol. In conclusion, DSF affects the viability of metabolically active phagocytes by inducing mitochondrial stress and secondly attenuates phagocytosis and migration in some long-lived phagocytes.
Collapse
Affiliation(s)
| | | | - E. Marion Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.L.)
| |
Collapse
|
9
|
Chappin K, Besteman SB, Hennus MP, Wildenbeest JG, Mokry M, Bont LJ, van der Vlist M, Calis JJA. Airway and Blood Monocyte Transcriptomic Profiling Reveals an Antiviral Phenotype in Infants With Severe Respiratory Syncytial Virus Infection. J Infect Dis 2024; 229:S100-S111. [PMID: 37941411 DOI: 10.1093/infdis/jiad487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is the primary cause of lower respiratory tract infections in children <5 years of age. Monocytes, especially in the respiratory tract, are suggested to contribute to RSV pathology, but their role is incompletely understood. With transcriptomic profiling of blood and airway monocytes, we describe the role of monocytes in severe RSV infection. METHODS Tracheobronchial aspirates and blood samples were collected from control patients (n = 9) and those infected with RSV (n = 14) who were admitted to the pediatric intensive care unit. Monocytes (CD14+) were sorted and analyzed by RNA sequencing for transcriptomic profiling. RESULTS Peripheral blood and airway monocytes of patients with RSV demonstrated increased expression of antiviral and interferon-responsive genes as compared with controls. Cytokine signaling showed a shared response between blood and airway monocytes while displaying responses that were more pronounced according to the tissue of origin. Airway monocytes upregulated additional genes related to migration and inflammation. CONCLUSIONS We found that the RSV-induced interferon response extends from the airways to the peripheral blood. Moreover, RSV induces a migration-promoting transcriptional program in monocytes. Unraveling the monocytic response and its role in the immune response to RSV infection could help the development of therapeutics to prevent severe disease.
Collapse
Affiliation(s)
- K Chappin
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| | | | - M P Hennus
- Department of Paediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Centre Utrecht
| | | | - M Mokry
- Experimental Cardiology, Department of Heart and Lungs, University Medical Centre Utrecht, the Netherlands
| | - L J Bont
- Department of Paediatric Infectious Diseases and Immunology
| | - M van der Vlist
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| | - J J A Calis
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| |
Collapse
|
10
|
Ruelas Castillo J, Neupane P, Karanika S, Krug S, Quijada D, Garcia A, Ayeh S, Yilma A, Costa DL, Sher A, Fotouhi N, Serbina N, Karakousis PC. The heme oxygenase-1 metalloporphyrin inhibitor stannsoporfin enhances the bactericidal activity of a novel regimen for multidrug-resistant tuberculosis in a murine model. Antimicrob Agents Chemother 2024; 68:e0104323. [PMID: 38132181 PMCID: PMC10848751 DOI: 10.1128/aac.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDTs) offer a novel approach to TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that the inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here, we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO), in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P = 0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 colony-forming units (CFUs), a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P = 0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.
Collapse
Affiliation(s)
- Jennie Ruelas Castillo
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pranita Neupane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Styliani Karanika
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefanie Krug
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Darla Quijada
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Garcia
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel Ayeh
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Addis Yilma
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Petros C. Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Castillo JR, Neupane P, Karanika S, Krug S, Quijada D, Garcia A, Ayeh S, Yilma A, Costa DL, Sher A, Fotouhi N, Serbina N, Karakousis PC. The heme oxygenase-1 metalloporphyrin inhibitor stannsoporfin enhances the bactericidal activity of a novel regimen for multidrug-resistant tuberculosis in a murine model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552716. [PMID: 37609351 PMCID: PMC10441415 DOI: 10.1101/2023.08.09.552716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDT) offer a novel approach for TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO) in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5 mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P=0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes, and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10 mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 CFU, a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P=0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.
Collapse
Affiliation(s)
- Jennie Ruelas Castillo
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pranita Neupane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Styliani Karanika
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefanie Krug
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Darla Quijada
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Garcia
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel Ayeh
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Addis Yilma
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Petros C. Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
12
|
DeDreu J, Basta MD, Walker JL, Menko AS. Immune Responses Induced at One Hour Post Cataract Surgery Wounding of the Chick Lens. Biomolecules 2023; 13:1615. [PMID: 38002297 PMCID: PMC10668984 DOI: 10.3390/biom13111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
While the lens is an avascular tissue with an immune-privileged status, studies have now revealed that there are immune responses specifically linked to the lens. The response to lens injury, such as following cataract surgery, has been shown to involve the activation of the resident immune cell population of the lens and the induction of immunomodulatory factors by the wounded epithelium. However, there has been limited investigation into the immediate response of the lens to wounding, particularly those induced factors that are intrinsic to the lens and its associated resident immune cells. Using an established chick embryo ex vivo cataract surgery model has made it possible to determine the early immune responses of this tissue to injury, including its resident immune cells, through a transcriptome analysis. RNA-seq studies were performed to determine the gene expression profile at 1 h post wounding compared to time 0. The results provided evidence that, as occurs in other tissues, the resident immune cells of the lens rapidly acquired a molecular signature consistent with their activation. These studies also identified the expression of many inflammatory factors by the injured lens that are associated with both the induction and regulation of the immune response.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Kip P, Sluiter TJ, MacArthur MR, Tao M, Jung J, Mitchell SJ, Kooijman S, Kruit N, Gorham J, Seidman JG, Quax PHA, Aikawa M, Ozaki CK, Mitchell JR, de Vries MR. Short-term Pre-operative Methionine Restriction Induces Browning of Perivascular Adipose Tissue and Improves Vein Graft Remodeling in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565269. [PMID: 37961405 PMCID: PMC10635070 DOI: 10.1101/2023.11.02.565269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Short-term preoperative methionine restriction (MetR) shows promise as a translatable strategy to modulate the body's response to surgical injury. Its application, however, to improve post-interventional vascular remodeling remains underexplored. Here, we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and adverse vascular remodeling after vein graft surgery. RNA sequencing reveals that MetR enhances the brown adipose tissue phenotype in arterial perivascular adipose tissue (PVAT) and induces it in venous PVAT. Specifically, PPAR-α was highly upregulated in PVAT-adipocytes. Furthermore, MetR dampens the post-operative pro-inflammatory response to surgery in PVAT-macrophages in vivo and in vitro . This study shows for the first time that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in browning of PVAT. Furthermore, we demonstrate the potential of short-term pre-operative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.
Collapse
|
14
|
Kosyreva A, Vishnyakova P, Tsvetkov I, Kiseleva V, Dzhalilova DS, Miroshnichenko E, Lokhonina A, Makarova O, Fatkhudinov T. Advantages and disadvantages of treatment of experimental ARDS by M2-polarized RAW 264.7 macrophages. Heliyon 2023; 9:e21880. [PMID: 38027880 PMCID: PMC10658332 DOI: 10.1016/j.heliyon.2023.e21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Innate immunity reactions are core to any immunological process, including systemic inflammation and such extremes as acute respiratory distress syndrome (ARDS) and cytokine storm. Macrophages, the key cells of innate immunity, show high phenotypic plasticity: depending on microenvironmental cues, they can polarize into M1 (classically activated, pro-inflammatory) or M2 (alternatively activated, anti-inflammatory). The anti-inflammatory M2 macrophage polarization-based cell therapies constitute a novel prospective modality. Systemic administration of 'educated' macrophages is intended at their homing in lungs in order to mitigate the pro-inflammatory cytokine production and reduce the risks of 'cytokine storm' and related severe complications. Acute respiratory distress syndrome (ARDS) is the main mortality factor in pneumonia including SARS-CoV-associated cases. This study aimed to evaluate the influence of infusions of RAW 264.7 murine macrophage cell line polarized towards M2 phenotype on the development of LPS-induced ARDS in mouse model. The results indicate that the M2-polarized RAW 264.7 macrophage infusions in the studied model of ARDS promote relocation of lymphocytes from their depots in immune organs to the lungs. In addition, the treatment facilitates expression of M2-polarization markers Arg1, Vegfa and Tgfb and decreases of M1-polarization marker Cd38 in lung tissues, which can indicate the anti-inflammatory response activation. However, treatment of ARDS with M2-polarized macrophages didn't change the neutrophil numbers in the lungs. Moreover, the level of the Arg1 protein in lungs decreased throughtout the treatment with M2 macrophages, which is probably because of the pro-inflammatory microenvironment influence on the polarization of macrophages towards M1. Thus, the chemical polarization of macrophages is unstable and depends on the microenvironment. This adverse effect can be reduced through the use of primary autologous macrophages or some alternative methods of M2 polarization, notably siRNA-mediated.
Collapse
Affiliation(s)
- A.M. Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - P.A. Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - I.S. Tsvetkov
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - V.V. Kiseleva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - D. Sh. Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - E.A. Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - A.V. Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - O.V. Makarova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - T.H. Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| |
Collapse
|
15
|
Jha A, Larkin J, Moore E. SOCS1-KIR Peptide in PEGDA Hydrogels Reduces Pro-Inflammatory Macrophage Activation. Macromol Biosci 2023; 23:e2300237. [PMID: 37337867 DOI: 10.1002/mabi.202300237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Macrophages modulate the wound healing cascade by adopting different phenotypes such as pro-inflammatory (M1) or pro-wound healing (M2). To reduce M1 activation, the JAK/STAT pathway can be targeted by using suppressors of cytokine signaling (SOCS1) proteins. Recently a peptide mimicking the kinase inhibitory region (KIR) of SOCS1 has been utilized to manipulate the adaptive immune response. However, the utilization of SOCS1-KIR to reduce pro-inflammatory phenotype in macrophages is yet to be investigated in a biomaterial formulation. This study introduces a PEGDA hydrogel platform to investigate SOCS1-KIR as a macrophage phenotype manipulating peptide. Immunocytochemistry, cytokine secretion assays, and gene expression analysis for pro-inflammatory macrophage markers in 2D and 3D experiments demonstrate a reduction in M1 activation due to SOCS1-KIR treatment. The retention of SOCS1-KIR in the hydrogel through release assays and diffusion tests is demonstrated. The swelling ratio of the hydrogel also remains unaffected with the entrapment of SOCS1-KIR. This study elucidates how SOCS1-KIR peptide in PEGDA hydrogels can be utilized as an effective therapeutic for macrophage manipulation.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Erika Moore
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
16
|
Barhoumi T, Mansour FA, Jalouli M, Alamri HS, Ali R, Harrath AH, Aljumaa M, Boudjelal M. Angiotensin II modulates THP-1-like macrophage phenotype and inflammatory signatures via angiotensin II type 1 receptor. Front Cardiovasc Med 2023; 10:1129704. [PMID: 37692050 PMCID: PMC10485254 DOI: 10.3389/fcvm.2023.1129704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Angiotensin II (Ang II) is a major component of the renin-angiotensin or renin-angiotensin-aldosterone system, which is the main element found to be involved in cardiopathology. Recently, long-term metabolomics studies have linked high levels of angiotensin plasma to inflammatory conditions such as coronary heart disease, obesity, and type 2 diabetes. Monocyte/macrophage cellular function and phenotype orchestrate the inflammatory response in various pathological conditions, most notably cardiometabolic disease. An activation of the Ang II system is usually associated with inflammation and cardiovascular disease; however, the direct effect on monocyte/macrophages has still not been well elucidated. Herein, we have evaluated the cellular effects of Ang II on THP-1-derived macrophages. Ang II stimulated the expression of markers involved in monocyte/macrophage cell differentiation (e.g., CD116), as well as adhesion, cell-cell interaction, chemotaxis, and phagocytosis (CD15, CD44, CD33, and CD49F). Yet, Ang II increased the expression of proinflammatory markers (HLA-DR, TNF-α, CD64, CD11c, and CD38) and decreased CD206 (mannose receptor), an M2 marker. Moreover, Ang II induced cytosolic calcium overload, increased reactive oxygen species, and arrested cells in the G1 phase. Most of these effects were induced via the angiotensin II type 1 receptor (AT1R). Collectively, our results provide new evidence in support of the effect of Ang II in inflammation associated with cardiometabolic diseases.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Fatmah A. Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan S. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences/King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Aljumaa
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Korotkaja K, Jansons J, Spunde K, Rudevica Z, Zajakina A. Establishment and Characterization of Free-Floating 3D Macrophage Programming Model in the Presence of Cancer Cell Spheroids. Int J Mol Sci 2023; 24:10763. [PMID: 37445941 DOI: 10.3390/ijms241310763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Reprogramming of tumor-associated macrophages (TAMs) is a promising strategy for cancer immunotherapy. Several studies have shown that cancer cells induce/support the formation of immunosuppressive TAMs phenotypes. However, the specific factors that orchestrate this immunosuppressive process are unknown or poorly studied. In vivo studies are expensive, complex, and ethically constrained. Therefore, 3D cell interaction models could become a unique framework for the identification of important TAMs programming factors. In this study, we have established and characterized a new in vitro 3D model for macrophage programming in the presence of cancer cell spheroids. First, it was demonstrated that the profile of cytokines, chemokines, and surface markers of 3D-cultured macrophages did not differ conceptually from monolayer-cultured M1 and M2-programmed macrophages. Second, the possibility of reprogramming macrophages in 3D conditions was investigated. In total, the dynamic changes in 6 surface markers, 11 cytokines, and 22 chemokines were analyzed upon macrophage programming (M1 and M2) and reprogramming (M1→M2 and M2→M1). According to the findings, the reprogramming resulted in a mixed macrophage phenotype that expressed both immunosuppressive and anti-cancer immunostimulatory features. Third, cancer cell spheroids were shown to stimulate the production of immunosuppressive M2 markers as well as pro-tumor cytokines and chemokines. In summary, the newly developed 3D model of cancer cell spheroid/macrophage co-culture under free-floating conditions can be used for studies on macrophage plasticity and for the development of targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Ksenija Korotkaja
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| | - Juris Jansons
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| | - Karina Spunde
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| | - Zhanna Rudevica
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k.1, LV-1067 Riga, Latvia
| |
Collapse
|
18
|
da Silva CO, de Souza Nogueira J, do Nascimento AP, Victoni T, Bártholo TP, da Costa CH, Costa AMA, Valença SDS, Schmidt M, Porto LC. COPD Patients Exhibit Distinct Gene Expression, Accelerated Cellular Aging, and Bias to M2 Macrophages. Int J Mol Sci 2023; 24:9913. [PMID: 37373058 DOI: 10.3390/ijms24129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
COPD, one of world's leading contributors to morbidity and mortality, is characterized by airflow limitation and heterogeneous clinical features. Three main phenotypes are proposed: overlapping asthma/COPD (ACO), exacerbator, and emphysema. Disease severity can be classified as mild, moderate, severe, and very severe. The molecular basis of inflammatory amplification, cellular aging, and immune response are critical to COPD pathogenesis. Our aim was to investigate EP300 (histone acetylase, HAT), HDAC 2 (histone deacetylase), HDAC3, and HDAC4 gene expression, telomere length, and differentiation ability to M1/M2 macrophages. For this investigation, 105 COPD patients, 42 smokers, and 73 non-smoker controls were evaluated. We identified a reduced HDAC2 expression in patients with mild, moderate, and severe severity; a reduced HDAC3 expression in patients with moderate and severe severity; an increased HDAC4 expression in patients with mild severity; and a reduced EP300 expression in patients with severe severity. Additionally, HDAC2 expression was reduced in patients with emphysema and exacerbator, along with a reduced HDAC3 expression in patients with emphysema. Surprisingly, smokers and all COPD patients showed telomere shortening. COPD patients showed a higher tendency toward M2 markers. Our data implicate genetic changes in COPD phenotypes and severity, in addition to M2 prevalence, that might influence future treatments and personalized therapies.
Collapse
Affiliation(s)
- Camila Oliveira da Silva
- Laboratory of Histocompatibility and Cryopreservation, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | | | - Tatiana Victoni
- VetAgro Sup, University of Lyon, APCSe, 69280 Marcy l'Étoile, France
| | - Thiago Prudente Bártholo
- Department of Thorax, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | | | - Andrea Monte Alto Costa
- Tissue Repair Laboratory, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | - Samuel Dos Santos Valença
- Laboratory of Redox Biology, ICB, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Luís Cristóvão Porto
- Laboratory of Histocompatibility and Cryopreservation, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| |
Collapse
|
19
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
20
|
Li L, Yao ZC, Parian A, Yang YH, Chao J, Yin J, Salimian KJ, Reddy SK, Zaheer A, Gearhart SL, Mao HQ, Selaru FM. A nanofiber-hydrogel composite improves tissue repair in a rat model of Crohn's disease perianal fistulas. SCIENCE ADVANCES 2023; 9:eade1067. [PMID: 36598982 PMCID: PMC9812382 DOI: 10.1126/sciadv.ade1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Perianal fistulas (PAFs) represent a severe complication of Crohn's disease (CD). Despite the advent of biologic and small-molecule therapeutics for luminal disease, PAFs in CD (CD-PAF) are relatively resistant to treatment, with less than 50% responding to any therapy. We report an injectable, biodegradable, mechanically fragmented nanofiber-hydrogel composite (mfNHC) loaded with adipose-derived stem cells (ADSCs) for the treatment of fistulas in a rat model of CD-PAF. The ADSC-loaded mfNHC results in a higher degree of healing when compared to surgical treatment of fistulas, which is a standard treatment. The volume of fistulas treated with mfNHC is decreased sixfold compared to the surgical treatment control. Molecular studies reveal that utilization of mfNHC reduced local inflammation and improved tissue regeneration. This study demonstrates that ADSC-loaded mfNHC is a promising therapy for CD-PAF, and warrants further studies to advance mfNHC toward clinical translation.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zhi-Cheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yueh-Hsun Yang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey Chao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Public Health Studies, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jason Yin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevan J. Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank K. Reddy
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Atif Zaheer
- Division of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Susan L. Gearhart
- Division of Colorectal Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Preconditioned Mesenchymal Stromal Cell-Derived Extracellular Vesicles (EVs) Counteract Inflammaging. Cells 2022; 11:cells11223695. [PMID: 36429124 PMCID: PMC9688039 DOI: 10.3390/cells11223695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammaging is one of the evolutionarily conserved mechanisms underlying aging and is defined as the long-term consequence of the chronic stimulation of the innate immune system. As macrophages are intimately involved in initiating and regulating the inflammatory process, their dysregulation plays major roles in inflammaging. The paracrine factors, and in particular extracellular vesicles (EVs), released by mesenchymal stromal cells (MSCs) retain immunoregulatory effects on innate and adaptive immune responses. In this paper, we demonstrate that EVs derived from MSCs preconditioned with hypoxia inflammatory cytokines exerted an anti-inflammatory role in the context of inflammaging. In this study, macrophages isolated from aged mice presented elevated pro-inflammatory factor levels already in basal conditions compared to the young counterpart, and this pre-activation status increased when cells were challenged with IFN-γ. EVs were able to attenuate the age-associated inflammation, inducing a decrease in the expression of TNF-α, iNOS, and the NADase CD38. Moreover, we demonstrate that EVs counteracted the mitochondrial dysfunction that affected the macrophages, reducing lipid peroxidation and hindering the age-associated impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis. These results indicate that preconditioned MSC-derived EVs might be exploited as new anti-aging therapies in a variety of age-related diseases.
Collapse
|
22
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
23
|
TcpC Inhibits M1 but Promotes M2 Macrophage Polarization via Regulation of the MAPK/NF-κB and Akt/STAT6 Pathways in Urinary Tract Infection. Cells 2022; 11:cells11172674. [PMID: 36078080 PMCID: PMC9454685 DOI: 10.3390/cells11172674] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract TcpC is a multifunctional virulence factor of Uropathogenic Escherichia coli (UPEC). Macrophages can differentiate into two different subsets M1 and M2 that play distinct roles in anti-infection immunity. Here, we investigate the influence of TcpC on M1/M2 polarization and the potential mechanisms. Our data showed that M1 markers CD86 and iNOS were significantly inhibited, while the M2 markers CD163, CD206 and Arg-1 were enhanced in macrophages in kidneys from the TcpC-secreting wild-type CFT073 (CFT073wt)-infected pyelonephritis mouse model, compared with those in macrophages in kidneys from TcpC knockout CFT073 mutant (CFT073Δtcpc)-infected mice. CFT073wt or recombinant TcpC (rTcpC) treatment inhibits LPS + IFN-γ-induced CD80, CD86, TNF-α and iNOS expression, but promotes IL-4-induced CD163, CD206, Arg-1 and IL-10 expression in both human and mouse macrophage cell lines THP-1 and J774A.1. Moreover, rTcpC significantly attenuated LPS + IFN-γ-induced phosphorylation of p38, ERK, p50 and p65 but enhanced IL-4-induced phosphorylation of Akt and STAT6. These data suggest that TcpC inhibits M1 but promotes M2 macrophage polarization by down-regulation of p38, ERK/NF-κB and up-regulation of the Akt/STAT6 signaling pathway, respectively. Our findings not only illuminate the regulatory effects of TcpC on macrophage M1/M2 polarization and its related signaling pathways, but also provide a novel mechanism underlying TcpC-mediated immune evasion of macrophage-mediated innate immunity. Simple Summary We investigate the influence of TcpC, a multifunctional virulence factor of Uropathogenic Escherichia coli (UPEC), on M1/M2 macrophage polarization and the potential mechanisms. TcpC-secreting wild-type CFT073 (CFT073wt) or recombinant TcpC (rTcpC) treatment inhibits LPS + IFN-γ-induced CD80, CD86, TNF-α and iNOS expression, but promotes IL-4-induced CD163, CD206, Arg-1 and IL-10 expression in CFT073wt-infected pyelonephritis model mouse and both human and mouse macrophage cell lines THP-1 and J774A.1, respectively. Moreover, rTcpC significantly attenuated LPS + IFN-γ-induced phosphorylation of p38, ERK, p50 and p65 but en-hanced IL-4-induced phosphorylation of Akt and STAT6. These data suggest that TcpC inhibits M1 but promotes M2 macrophage polarization by down-regulation of p38, ERK/NF-κB and up-regulation of the Akt/STAT6 signaling pathway, respectively. Our findings not only illuminate the regulatory effects of TcpC on macrophage M1/M2 polarization and its related signaling pathways, but also provide a novel mechanism underlying TcpC-mediated immune evasion of macrophage-mediated innate immunity.
Collapse
|