1
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
2
|
Gumus M, Gulbahce-Mutlu E, Unal O, Baltaci SB, Unlukal N, Mogulkoc R, Baltaci AK. Marginal Maternal Zinc Deficiency Produces Liver Damage and Altered Zinc Transporter Expression in Offspring Male Rats. Biol Trace Elem Res 2024; 202:2133-2142. [PMID: 37656390 DOI: 10.1007/s12011-023-03824-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
The aim of this study was to investigate how zinc deficiency and supplementation affect liver markers including autotaxin, kallistatin, endocan, and zinc carrier proteins ZIP14 and ZnT9 in rats exposed to maternal zinc deficiency. Additionally, the study aimed to assess liver tissue damage through histological examination. A total of forty male pups were included in the research, with thirty originating from mothers who were given a zinc-deficient diet (Groups 1, 2, and 3), and the remaining ten born to mothers fed a standard diet (Group 4). Subsequently, Group 1 was subjected to a zinc-deficient diet, Group 2 received a standard diet, Group 3 received zinc supplementation, and Group 4 served as the control group without any supplementation. Upon completion of the experimental phases of the study, all animals were sacrificed under general anesthesia, and samples of liver tissue were obtained. The levels of autotaxin, kallistatin, endocan, ZIP 14, and ZnT9 in these liver tissue samples were determined using the ELISA technique. In addition, histological examination was performed to evaluate tissue damage in the liver samples. In the group experiencing zinc deficiency, both endocan and autotaxin levels increased compared to the control group. With zinc supplementation, the levels of endocan and autotaxin returned to the values observed in the control group. Similarly, the suppressed levels of kallistatin, ZIP14, and ZnT9 observed in the zinc deficiency group were reversed with zinc supplementation. Likewise, the reduced levels of kallistatin, ZIP14, and ZnT9 seen in the zinc deficiency group were rectified with zinc supplementation. Moreover, the application of zinc partially ameliorated the heightened liver tissue damage triggered by zinc deficiency. This study is the pioneering one to demonstrate that liver tissue dysfunction induced by a marginal zinc-deficient diet in rats with marginal maternal zinc deficiency can be alleviated through zinc supplementation.
Collapse
Affiliation(s)
- Meltem Gumus
- Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Elif Gulbahce-Mutlu
- Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
| | - Omer Unal
- Department of Physiology, Medical Faculty, Kirikkale University, Kirikkale, Turkey
| | - Saltuk Bugra Baltaci
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Nejat Unlukal
- Department of Histology and Embryology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | |
Collapse
|
3
|
Lescop C, Brotschi C, Williams JT, Sager CP, Birker M, Morrison K, Froidevaux S, Delahaye S, Nayler O, Bolli MH. Discovery of a Novel Orally Active, Selective LPA Receptor Type 1 Antagonist, 4-(4-(2-Isopropylphenyl)-4-((2-methoxy-4-methylphenyl)carbamoyl)piperidin-1-yl)-4-oxobutanoic Acid, with a Distinct Molecular Scaffold. J Med Chem 2024; 67:2379-2396. [PMID: 38349223 DOI: 10.1021/acs.jmedchem.3c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Lysophosphatidic acid receptor 1 (LPAR1) antagonists show promise as potentially novel antifibrotic treatments. In a human LPAR1 β-arrestin recruitment-based high-throughput screening campaign, we identified urea 19 as a hit with a LPAR1 IC50 value of 5.0 μM. Hit-to-lead activities revealed that one of the urea nitrogen atoms can be replaced by carbon and establish the corresponding phenylacetic amide as a lead structure for further optimization. Medicinal chemistry efforts led to the discovery of piperidine 18 as a potent and selective LPAR1 antagonist with oral activity in a mouse model of LPA-induced skin vascular leakage. The molecular scaffold of 18 shares no obvious structural similarity with any other LPAR1 antagonist disclosed so far.
Collapse
Affiliation(s)
- Cyrille Lescop
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Christine Brotschi
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Jodi T Williams
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Christoph P Sager
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Magdalena Birker
- DD Biology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Keith Morrison
- DD Pharmacology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Sylvie Froidevaux
- DD Pharmacology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Stéphane Delahaye
- Preclinical DMPK, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Oliver Nayler
- DD Biology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Martin H Bolli
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
4
|
Benesch MG, Tang X, Brindley DN, Takabe K. Autotaxin and Lysophosphatidate Signaling: Prime Targets for Mitigating Therapy Resistance in Breast Cancer. World J Oncol 2024; 15:1-13. [PMID: 38274724 PMCID: PMC10807915 DOI: 10.14740/wjon1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Overcoming and preventing cancer therapy resistance is the most pressing challenge in modern breast cancer management. Consequently, most modern breast cancer research is aimed at understanding and blocking these therapy resistance mechanisms. One increasingly promising therapeutic target is the autotaxin (ATX)-lysophosphatidate (LPA)-lipid phosphate phosphatase (LPP) axis. Extracellular LPA, produced from albumin-bound lysophosphatidylcholine by ATX and degraded by the ecto-activity of the LPPs, is a potent cell-signaling mediator of tumor growth, invasion, angiogenesis, immune evasion, and resistance to cancer treatment modalities. LPA signaling in the post-natal organism has central roles in physiological wound healing, but these mechanisms are subverted to fuel pathogenesis in diseases that arise from chronic inflammatory processes, including cancer. Over the last 10 years, our understanding of the role of LPA signaling in the breast tumor microenvironment has begun to mature. Tumor-promoting inflammation in breast cancer leads to increased ATX production within the tumor microenvironment. This results in increased local concentrations of LPA that are maintained in part by decreased overall cancer cell LPP expression that would otherwise more rapidly break it down. LPA signaling through six G-protein-coupled LPA receptors expressed by cancer cells can then activate virtually every known tumorigenic pathway. Consequently, to target therapy resistance and tumor growth mediated by LPA signaling, multiple inhibitors against the LPA signaling axis are entering clinical trials. In this review, we summarize recent developments in LPA breast cancer biology, and illustrate how these novel therapeutics against the LPA signaling pathway may be excellent adjuncts to extend the efficacy of evolving breast cancer treatments.
Collapse
Affiliation(s)
- Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Tsukahara T, Imamura S, Morohoshi T. A Review of Cyclic Phosphatidic Acid and Other Potential Therapeutic Targets for Treating Osteoarthritis. Biomedicines 2023; 11:2790. [PMID: 37893163 PMCID: PMC10603845 DOI: 10.3390/biomedicines11102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is the most common form of arthritis. OA occurs when the protective cartilage that cushions the ends of bones gradually breaks down. This leads to the rubbing of bones against each other, resulting in pain and stiffness. Cyclic phosphatidic acid (cPA) shows promise as a treatment for OA. In this article, we review the most recent findings regarding the biological functions of cPA signaling in mammalian systems, specifically in relation to OA. cPA is a naturally occurring phospholipid mediator with unique cyclic phosphate rings at the sn-2 and sn-3 positions in the glycerol backbone. cPA promotes various responses, including cell proliferation, migration, and survival. cPA possesses physiological activities that are distinct from those elicited by lysophosphatidic acid; however, its biochemical origin has rarely been studied. Although there is currently no cure for OA, advances in medical research may lead to new therapies or strategies in the future, and cPA has potential therapeutic applications.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | | | | |
Collapse
|
6
|
Başpınar A, Özkan D, Tokgöz S, Özkardeş AB, Kaya İO. Diagnostic value of serum autotaxin level in colorectal cancer. Biomark Med 2023; 17:787-798. [PMID: 38095984 DOI: 10.2217/bmm-2023-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Background: Autotaxin (ATX) is a nucleotide enzyme linked to cell growth, differentiation and migration. This study investigated serum levels of ATX in colorectal cancer (CRC). Methods: The study involved stage I-III CRC diagnosed between December 2020 and 2021, excluding those with neoadjuvant or adjuvant therapy, or metastasis. Healthy volunteers were controls. Serum ATX levels were measured by ELISA and compared. Results: This study included 129 patients (91 in the patient group and 38 in the control group). The optimal cutoff value of ATX for CRC was 169.98 ng/ml, and sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were 91.2% (95% CI: 89.4-96.2), 78.9% (95% CI: 62.7-90.4), 4.33 and 0.11, respectively. Conclusion: The serum ATX level is a useful biomarker for CRC.
Collapse
Affiliation(s)
- Abdurrahman Başpınar
- Department of General Surgery, Ankara Training and Research Hospital, University of Health Science, Ankara, 06230, Turkey
| | - Didem Özkan
- Department of Microbiology, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| | - Serhat Tokgöz
- Department of General Surgery, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| | - Alper Bilal Özkardeş
- Department of General Surgery, Ankara Hospital, Lokman Hekim University, Ankara, 06510, Turkey
| | - İsmail Oskay Kaya
- Department of General Surgery, Etlik City Hospital, University of Health Science, Ankara, 06170, Turkey
| |
Collapse
|
7
|
Tanaka-Kanegae R, Kimura H, Hamada K. Oral Administration of Egg- and Soy-Derived Lysophosphatidylcholine Mitigated Acetylcholine Depletion in the Brain of Scopolamine-Treated Rats. Nutrients 2023; 15:3618. [PMID: 37630808 PMCID: PMC10458616 DOI: 10.3390/nu15163618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Enzyme-modified lecithin that contains lysophosphatidylcholine (LPC) is generally recognized as safe. However, its potential as a functional ingredient has been less investigated than other choline (Ch)-containing compounds, such as glycerophosphocholine (GPC). Reports on the possibility of LPC functioning as a cholinergic precursor in vivo and on its kinetics are limited to docosahexaenoic acid-bound LPC. Herein, three experiments were performed to investigate these processes in scopolamine (SCO)-treated rats. First, an egg-derived LPC reagent was orally administered to rats, and brain acetylcholine (ACh), Ch, plasma Ch, and LPC were measured. Second, soy- and rapeseed-derived enzyme-modified lecithins and GPC were administered for comparison. Third, soy-derived enzyme-modified lecithins with different fat contents were administered for comparison. The LPC reagent mitigated SCO-induced ACh depletion at 500 mg/kg body weight and increased plasma Ch, but not LPC, concentrations. Additionally, soy-derived LPC-containing food additive counteracted brain ACh depletion similarly to GPC. Interestingly, plasma Ch and linoleoyl-LPC levels were higher when soy-derived LPC with a higher fat content was administered, whereas the plasma levels of palmitoyl-LPC decreased and those of total LPC remained constant. In conclusion, egg- and soy-derived LPC species function as cholinergic precursors in vivo, and future studies should explore this potential.
Collapse
Affiliation(s)
- Ryohei Tanaka-Kanegae
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd. 5006-5 Aza Higashiyama, Yoshinogari-cho, Kanzaki-gun, Omagari, Saga 842-0195, Japan
| | | | | |
Collapse
|
8
|
Tsuchida Y, Shoda H, Sawada T, Fujio K. Role of autotaxin in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1166343. [PMID: 37122329 PMCID: PMC10130763 DOI: 10.3389/fmed.2023.1166343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease characterized by the production of various autoantibodies and deposition of immune complexes. SLE is a heterogenous disease, and the pattern of organ involvement and response to treatment differs significantly among patients. Novel biological markers are necessary to assess the extent of organ involvement and predict treatment response in SLE. Lysophosphatidic acid is a lysophospholipid involved in various biological processes, and autotaxin (ATX), which catalyzes the production of lysophosphatidic acid in the extracellular space, has gained attention in various diseases as a potential biomarker. The concentration of ATX is increased in the serum and urine of patients with SLE and lupus nephritis. Recent evidence suggests that ATX produced by plasmacytoid dendritic cells may play an important role in the immune system and pathogenesis of SLE. Furthermore, the production of ATX is associated with type I interferons, a key cytokine in SLE pathogenesis, and ATX may be a potential biomarker and key molecule in SLE.
Collapse
Affiliation(s)
- Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yumi Tsuchida,
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Banerjee S, Lee S, Norman DD, Tigyi GJ. Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules 2022; 27:5487. [PMID: 36080255 PMCID: PMC9458164 DOI: 10.3390/molecules27175487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
- Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN 37132, USA
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Gabor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3 N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|