1
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
2
|
Lieb N, Tran A, Torres M, Bommareddy A. Modulation of Wnt/Beta-Catenin Pathway by Major Dietary Phytochemicals Against Breast Cancer Development. BIOLOGY 2025; 14:194. [PMID: 40001961 PMCID: PMC11851881 DOI: 10.3390/biology14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Breast cancer is one of the most commonly diagnosed cancers and is the second leading cause of cancer-related deaths among women in the United States. Despite a decrease in mortality associated with breast cancer, there has been a steady increase in its incidence. Development of the mammary gland is normally regulated by such pathways including Wnt, Hedgehog, estrogen and Notch signaling. However, the deregulation of these pathways gives rise to tumor development, and upregulated Wnt activity along with high levels of beta-catenin is correlated with poor prognosis of breast cancer. In addition, beta-catenin-dependent Wnt signaling is enriched in triple-negative breast cancers and is associated with reduced overall survival in breast cancer patients. Various studies have investigated the ability of naturally occurring plant-based agents to reduce incidence and morbidity of breast cancer by regulating critical cell survival pathways to reverse or inhibit the occurrence of clinical disease. The present review focuses on summarizing the role of commonly consumed dietary phytochemicals and their role in regulating Wnt/β-catenin pathway against the development of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Ajay Bommareddy
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
3
|
Othman B, Beigh S, Albanghali MA, Sindi AAA, Shanawaz MA, Ibahim MAEM, Marghani D, Kofiah Y, Iqbal N, Rashid H. Comprehensive pharmacokinetic profiling and molecular docking analysis of natural bioactive compounds targeting oncogenic biomarkers in breast cancer. Sci Rep 2025; 15:5426. [PMID: 39948091 PMCID: PMC11825887 DOI: 10.1038/s41598-024-84401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
Breast cancer is one of the leading causes of death in women worldwide, highlighting the crucial need for novel and effective treatments. In this study, we look at the ability of four natural compounds i.e. Berberine, Curcumin, Withaferin A, and Ellagic Acid to target important breast cancer biomarkers such as B-cell lymphoma 2 (BCL-2), programmed death-ligand 1 (PDL-1), cyclin-dependent kinase 4/6 (CDK4/6) and fibroblast growth factor receptor (FGFR). These indicators have important roles in tumor development, survival, immune response, and cell cycle control, making them potential targets for future cancer treatments. Our study employs a variety of techniques, including pharmacokinetic profiling (ADME), molecular docking, and molecular dynamics simulations, to determine how successful these drugs could be in therapy. The pharmacokinetic investigation found that Berberine and Ellagic Acid stand out due to their high absorption and solubility, implying that they could be suitable for clinical application. When we ran docking simulations, we discovered substantial connections between these chemicals and the target proteins. Additionally, Berberine has a binding affinity of - 9.3 kcal/mol for BCL-2, indicating that it can impair the protein's cancer cell-protective activities. Ellagic Acid, on the other hand, has an even higher binding affinity for PDL-1 of - 9.8 kcal/mol, showing that it may be able to increase immune responses against tumors. Molecular dynamics simulations over 100 ns demonstrated the stability of these protein-ligand complexes. Interestingly, Ellagic Acid was found to be more structurally stable than Berberine throughout these simulations. We found consistent interactions between the chemicals and key residues in the target proteins. For example, Ellagic Acid (CID: 5281855) established persistent linkages with LYS43, ASP163, and VAL27, whereas Berberine (CID: 2353) interacted with VAL27, ALA41, and LEU152 throughout the simulation. In conclusion, the combination of good pharmacokinetics, robust interactions with cancer biomarkers, and stable complexes makes Berberine and Ellagic Acid interesting candidates for further investigation as natural inhibitors in breast cancer treatment. These findings establish the framework for future research into novel and inventive techniques to effectively combating breast cancer.
Collapse
Affiliation(s)
- Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia.
| | - Mohammad A Albanghali
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed A Shanawaz
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | | | - Dina Marghani
- Clinical Laboratory Science Department, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Yasser Kofiah
- Department of Surgery, College of Medicine, Al-Baha University Al-Baha, Al-Baha, Saudi Arabia
| | - Navid Iqbal
- Department of Bioinformatics, The Islamic University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Yang GJ, Liu YJ, Chen RY, Shi JJ, Li CY, Wang R, Yu J, Lu JF, Zhang LL, Yu B, Chen J. PRMT7 in cancer: Structure, effects, and therapeutic potentials. Eur J Med Chem 2025; 283:117103. [PMID: 39615371 DOI: 10.1016/j.ejmech.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Protein arginine methyltransferase 7 (PRMT7), a type III methyltransferase responsible solely for arginine mono-methylation, plays a critical role in numerous physiological and pathological processes. Recent studies have highlighted its aberrant expression or mutation in various cancers, implicating it in tumorigenesis, cancer progression, and drug resistance. Consequently, PRMT7 has emerged as a promising target for cancer diagnosis and therapeutic intervention. In this review, we present an overview of the molecular structure of PRMT7, discuss its roles and mechanisms in different cancer types, and analyze the binding modes and structure-activity relationships of reported PRMT7 inhibitors. Furthermore, we identify the challenges encountered in functional exploration and drug development targeting PRMT7, propose potential solutions to these challenges, and outline future directions for the development of PRMT7 inhibitors to inform future drug discovery efforts.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, 610106, Chengdu, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
5
|
Elimam H, Eldeib MG, Kizilaslan EZ, Alhamshry NAA, Ashour AE, Elfar N, Abdel-Wahab MM, Zaki MB, Mohammed OA, Radwan AF, Abdel-Reheim MA, Moussa R, Doghish AS. Exploring the interplay of natural products and long non-coding RNAs in colorectal cancer: pathogenesis, diagnosis, and overcoming drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1243-1263. [PMID: 39287672 DOI: 10.1007/s00210-024-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Colorectal cancer (CRC) is recognized as one of the most prevalent malignancies, both in terms of incidence and mortality rates. Current research into CRC has shed light on the molecular mechanisms driving its development. Several factors, including lifestyle, environmental influences, genetics, and diet, play significant roles in its pathogenesis. Natural compounds such as curcumin, tanshinone, lycorine, sinomenine, kaempferol, verbascoside, quercetin, berberine, and fisetin have shown great promise in the prevention and treatment of CRC. Research has also highlighted the significance of non-coding RNAs (ncRNAs) as biomarkers and therapeutic targets in CRC. Among these, long non-coding RNAs (lncRNAs) have been found to regulate the transcription of genes involved in cancer. LncRNAs contribute to cancer stem cell (CSC) proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), and chemoresistance. Specific lncRNAs, including GAS5, LNC00337, HOTAIR, TPT1-AS1, cCSC1, BCAR4, TUG1, and Solh2, play crucial roles in these processes. They hold potential as novel biomarkers, detectable in bodily fluids and tissues, and could serve as therapeutic targets due to their involvement in drug resistance and sensitivity. These insights could improve CRC treatment strategies, addressing resistance to chemotherapy and radiotherapy. This review article aims to provide a comprehensive analysis of the current knowledge regarding the effectiveness of natural anti-cancer agents in CRC treatment. Additionally, it offers an in-depth evaluation of lncRNAs in CRC, their role in the disease's progression, and their potential applications in its management.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | | | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority, Ministry of Health and Population, Cairo, 11567, Egypt
| | - Maie M Abdel-Wahab
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
6
|
Liu YJ, Wang HY, Wang R, Yu J, Shi JJ, Chen RY, Yang GJ, Chen J. IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review. Int J Biol Macromol 2025; 284:138099. [PMID: 39608548 DOI: 10.1016/j.ijbiomac.2024.138099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
In the last decade, research has clarified the binding interactions between immunoglobulin E (IgE) and its high-affinity receptor, the FcεRI alpha chain (FcεRI). The formation of the IgE-FcεRI complex is crucial in the context of atopic allergies, linking allergen recognition to cellular activation and disease manifestation. Consequently, pharmacological strategies that disrupt these interactions are vital for managing atopic conditions. Historically, the complexity of the IgE-FcεRI binding process and challenges in producing functional recombinant derivatives has complicated data interpretation. However, advancements in structural biology, protein engineering, and immunological studies have enhanced our understanding of these protein-protein interactions (PPI), facilitating the development of more effective therapies. The introduction of anti-IgE therapies underscores the significance of the IgE-FcεRI PPI in allergic asthma. IgE, that is present locally and systemically, serves as a sensory mechanism in the adaptive immune response, particularly in mast cells (MCs) and basophils. When bound to FcεRI, IgE enables rapid memory responses to allergens, but dysregulation can lead to severe allergic asthma. Thus, the reactivity of IgE sensors can be finely modulated using various IgE-associated molecules. This review explores the mechanisms underlying IgE-dependent MC activation and its regulation by these molecules, including the latest therapeutic candidates under investigation.
Collapse
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
7
|
Haque S, Mathkor DM, Bhat SA, Musayev A, Khituova L, Ramniwas S, Phillips E, Swamy N, Kumar S, Yerer MB, Tuli HS, Yadav V. A Comprehensive Review Highlighting the Prospects of Phytonutrient Berberine as an Anticancer Agent. J Biochem Mol Toxicol 2025; 39:e70073. [PMID: 39717894 DOI: 10.1002/jbt.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer. Notably, berberine enhances the effectiveness of conventional chemotherapeutic drugs, mitigating associated drug resistance. Mechanistically, it has been shown to exert its efficacy by targeting molecules like nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphoinositide 3-kinase (PI3K)/Akt, thereby inhibiting survival pathways and promoting apoptosis of cancer cells. Moreover, berberine influences the expression of tumor suppressor genes, curtails cancer cell migration and invasion, and modulates the tumour microenvironment. Despite promising preclinical evidence, further research is essential to comprehensively elucidate its mechanisms of action and evaluate its safety and efficacy in clinical settings. In the present review, we have highlighted the pharmacokinetics, biosynthesis, and recent research work done pertaining to berberine's strong anticancer activity. We have also emphasised on the research being done on nanoformulations of berberine, which aim to improve its stability and bioavailability.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Bhat
- Department of Biochemistry, International Medical School, University of International Business (UIB), Almaty, Kazakhstan
| | - Abdugani Musayev
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Lidiya Khituova
- Department of Pediatrics with a Course of Children's Infectious Diseases, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Enosh Phillips
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Nitin Swamy
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Suneel Kumar
- Department of Botany, Government Girls College, Khargone, Madhya Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
8
|
Miao G, Zhang Z, Wang M, Gu X, Xiang D, Cao H. Berberine in combination with anti-PD-L1 suppresses hepatocellular carcinoma progression and metastasis via Erk signaling pathway. Ann Med Surg (Lond) 2025; 87:103-112. [PMID: 40109642 PMCID: PMC11918555 DOI: 10.1097/ms9.0000000000002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Background Berberine (BBR) is an isoquinoline alkaloid extracted from Huang Lian and other herbal medicines. It has been reported to play a crucial role in multiple metabolic diseases and cancers. Programmed cell death-1 (PD-L1) is known as the immune checkpoint; immunotherapy targeting PD1/PD-L1 axis can effectively block its pro-tumor activity. However, the effect of the combined use of BBR and anti-PD-L1 on hepatocellular carcinoma (HCC) has not been reported. Methods Hep-3B and HCCLM3 cells were chosen as the experimental objects. To determine the potential anti-cancer activity of the combination of BBR and anti-PD-L1, we first treated v cells with BBR. The cell viability of Hep-3B and HCCLM3 with BBR treatment was measured by Cell Count Kit 8 assay. Cytometry by time-of-flight was performed to analyze tumor tissues after treatment with BBR and/or anti-PD-L1. Proliferation-, migration-, and invasion-related markers were measured by western blotting and immunohistochemistry. Results The results showed that BBR significantly inhibited the proliferation of Hep-3B and HCCLM3.The combination treatment of BBR and anti-PD-L1 had a prominent inhibitory effect on HCC tumorigenesis. Cytometry by time-of-flight analysis indicated that BBR affects the immune subsets in the tumors. Besides, BBR and anti-PD-L1 inhibited the migration and invasion of HCC by inactivating the phosphorylation of Erk. Conclusion Our study proposed that the combination treatment of BBR and anti-PD-L1 markedly inhibited the tumorigenesis of HCC by Erk signaling pathway. We hope our research can provide a new strategy for the potential of BBR as a therapeutic agent in the treatment of HCC.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Zhiyu Zhang
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Meiyan Wang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Xingwei Gu
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Dongxiao Xiang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Shi JJ, Chen RY, Liu YJ, Li CY, Yu J, Tu FY, Sheng JX, Lu JF, Zhang LL, Yang GJ, Chen J. Unraveling the role of ubiquitin-conjugating enzyme 5 (UBC5) in disease pathogenesis: A comprehensive review. Cell Signal 2024; 124:111376. [PMID: 39236836 DOI: 10.1016/j.cellsig.2024.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei-Yang Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Xiang Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Shi JJ, Liu YJ, Liu ZG, Chen RY, Wang R, Yu J, Li CY, Yang GJ, Chen J. Structure-Based identification of a potent KDM7A inhibitor exerts anticancer activity through transcriptionally reducing MKRN1 in taxol- resistant and -sensitive triple-negative breast cancer cells. Bioorg Chem 2024; 153:107945. [PMID: 39509788 DOI: 10.1016/j.bioorg.2024.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
KDM7A, a histone demethylase implicated in cancer proliferation, metastasis, and drug resistance, represents a crucial therapeutic target. Utilizing "mcule.com" for virtual screening of 100,000 compounds from the ZINC database, we identified 12 compounds with high affinity for KDM7A, with compound 4 emerging as the leading candidate for effectively inhibiting KDM7A's demethylase activity. Analysis of the GTRD database, the Breast Cancer Gene Expression Miner website, and recent studies highlighted MKRN1, a gene associated with cell proliferation and drug resistance, as a key intersecting factor. Compared to 2,4-pyridine dicarboxylic acid, compound 4 significantly reduced breast cancer stem cells and induced G1 phase cell cycle arrest. Mechanistically, compound 4 inhibited KDM7A's binding to H3K27me3, decreased MKRN1 transcription, and increased the levels of cell cycle regulators p16, p21, and p27, while reducing stem cell markers ALDH1A1, CD44, and CD133. These findings suggest that compound 4 could serve as a promising lead for selective KDM7A-targeting drugs. Additionally, this study is the first to demonstrate MKRN1 as a downstream gene of KDM7A, showing significant inhibitory effects in both taxol-resistant and drug-sensitive triple-negative breast cancer (TNBC) cells. This research offers new insights into the anticancer mechanisms of KDM7A inhibitors and underscores KDM7A's potential as a therapeutic target against TNBC.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Zhi-Guo Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
11
|
Chen RY, Ding LJ, Liu YJ, Shi JJ, Yu J, Li CY, Lu JF, Yang GJ, Chen J. Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer. Mar Drugs 2024; 22:459. [PMID: 39452867 PMCID: PMC11509616 DOI: 10.3390/md22100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Li-Jian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| |
Collapse
|
12
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
13
|
Duda-Madej A, Viscardi S, Szewczyk W, Topola E. Natural Alkaloids in Cancer Therapy: Berberine, Sanguinarine and Chelerythrine against Colorectal and Gastric Cancer. Int J Mol Sci 2024; 25:8375. [PMID: 39125943 PMCID: PMC11313295 DOI: 10.3390/ijms25158375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The rising incidence of colorectal cancer (CRC) and gastric cancer (GC) worldwide, coupled with the limited effectiveness of current chemotherapeutic agents, has prioritized the search for new therapeutic options. Natural substances, which often exhibit cytostatic properties, hold significant promise in this area. This review evaluates the anticancer properties of three natural alkaloids-berberine, sanguinarine, and chelerythrine-against CRC and GC. In vivo and in vitro studies have demonstrated that these substances can reduce tumor volume and inhibit the epithelial-mesenchymal transition (EMT) of tumors. At the molecular level, these alkaloids disrupt key signaling pathways in cancer cells, including mTOR, MAPK, EGFR, PI3K/AKT, and NF-κB. Additionally, they exhibit immunomodulatory effects, leading to the induction of programmed cell death through both apoptosis and autophagy. Notably, these substances have shown synergistic effects when combined with classical cytostatic agents such as cyclophosphamide, 5-fluorouracil, cetuximab, and erlotinib. Furthermore, berberine has demonstrated the ability to restore sensitivity in individuals originally resistant to cisplatin GC. Given these findings, natural compounds emerge as a promising option in the chemotherapy of malignant gastrointestinal tumors, particularly in cases with limited treatment options. However, more research is necessary to fully understand their therapeutic potential.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Wiktoria Szewczyk
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| |
Collapse
|
14
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
15
|
Ciorîță A, Erhan SE, Soran ML, Lung I, Mot AC, Macavei SG, Pârvu M. Pharmacological Potential of Three Berberine-Containing Plant Extracts Obtained from Berberis vulgaris L., Mahonia aquifolium (Pursh) Nutt., and Phellodendron amurense Rupr. Biomedicines 2024; 12:1339. [PMID: 38927546 PMCID: PMC11201499 DOI: 10.3390/biomedicines12061339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Three berberine-containing plant extracts were investigated for their pharmacological properties. The stems and leaves of Berberis vulgaris, Mahonia aquifolium, and Phellodendron amurense were characterized through scanning electron microscopy. The plant extracts obtained from fresh stem barks were further analyzed through high-performance liquid chromatography, revealing berberine concentrations, among berbamine and palmatine. The plant extracts were further tested for their anticancer potential against 2D and 3D human skin melanoma (A375) and lung adenocarcinoma (A549) cell lines. The concentrations at which 50% of the cells are affected was determined by the viability assay and it was shown that B. vulgaris, the plant extract with the highest berberine concentration, is the most efficient inhibitor (0.4% extract concentration for the 2D model and 3.8% for the 3D model). The membrane integrity and nitrate/nitrite concentration assays were consistent with the viability results and showed effective anticancer potential. For further investigations, the B. vulgaris extract was used to obtain silver nanoparticles, which were characterized through transmission electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The formed nanoparticles have a uniform size distribution and are suited for future investigations in the field of biomedical applications, together with the B. vulgaris plant extract.
Collapse
Affiliation(s)
- Alexandra Ciorîță
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii, 400015 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Sabina-Emanuela Erhan
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii, 400015 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Maria Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Augustin Catalin Mot
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
- Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János St., 400028 Cluj-Napoca, Romania
| | - Sergiu Gabriel Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.L.S.); (I.L.); (A.C.M.); (S.G.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Republicii, 400015 Cluj-Napoca, Romania;
| |
Collapse
|
16
|
Chen RY, Shi JJ, Liu YJ, Yu J, Li CY, Tao F, Cao JF, Yang GJ, Chen J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024; 12:1155. [PMID: 38930536 PMCID: PMC11206003 DOI: 10.3390/microorganisms12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| |
Collapse
|
17
|
Badawey SE, Heikal L, Teleb M, Abu-Serie M, Bakr BA, Khattab SN, El-Khordagui L. Biosurfactant-amphiphilized hyaluronic acid: A dual self-assembly anticancer nanoconjugate and drug vector for synergistic chemotherapy. Int J Biol Macromol 2024; 271:132545. [PMID: 38815938 DOI: 10.1016/j.ijbiomac.2024.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Novel amphiphilic nanoconjugates of hyaluronic acid (HA), 50 kDa (HA50) and 100 kDa (HA100), and the lipopeptide biosurfactant surfactin (SF) were developed for potential anticancer applications. Physicochemical characterization indicated the formation of an ester conjugate (HA: SF molar ratio 1: 40) with the HA50-SF derivative exhibiting higher degree of substitution, hydrolytic stability, and surface activity. Self-assembly resulted in nanomicelles with smaller size and greater negative charge relative to SF micelles. Biological data demonstrated distinct anticancer activity of HA50-SF which displayed greater synergistic cytotoxicity and selectivity for MDA-MB 231 and MCF-7 breast cancer cells alongside greater modulation of apoptosis-related biomarkers leading to apoptosis. As bioactive vector for chemotherapeutic agents, the selected HA50-SF nanoconjugate efficiently (70 %) entrapped berberine (BER) producing a sustained release BER-HA50-SF synergistic anticancer nanoformulation. Lactoferrin (Lf) coating for dual HA/Lf targeting endowed Lf/BER-HA50-SF with significantly greater selectivity for both cell lines. A murine Ehrlich breast cancer model provided evidence for the efficacy and safety of Lf/BER-HA50-SF via tumoral, histological, immunohistochemical, molecular and systemic toxicity assessments. Thus, HA-SF nanoconjugates integrating the HA and SF properties and biofunctionalties present a novel biopolymer-biosurfactant platform of benefit to oncology nanomedicine and possibly other applications.
Collapse
Affiliation(s)
- Sara E Badawey
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, 21321 Alexandria, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
18
|
Shi ZY, Li CY, Chen RY, Shi JJ, Liu YJ, Lu JF, Yang GJ, Chen J. The emerging role of deubiquitylating enzyme USP21 as a potential therapeutic target in cancer. Bioorg Chem 2024; 147:107400. [PMID: 38688196 DOI: 10.1016/j.bioorg.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
19
|
Fu W, Liu L, Tong S. Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA. Thorac Cancer 2024; 15:1357-1368. [PMID: 38709912 PMCID: PMC11168909 DOI: 10.1111/1759-7714.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Berberine (BBR), an isoquinoline alkaloid from Coptidis rhizoma, has been found to have powerful activities against various human malignancies, including breast cancer. However, the underlying antitumor mechanisms of BBR in breast cancer remain poorly understood. METHODS Breast cancer cells were cultured and treated with different doses (0, 20, 40, and 60 μM) of BBR for 48 h. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. Fibroblast growth factor 7 (FGF7), methyltransferase-like 3 (METTL3), and insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) mRNA levels and protein levels were measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Interaction between METTL3 and FGF7 m6A was assessed using methylated RNA immunoprecipitation (MeRIP)-qPCR and RNA immunoprecipitation (RIP) assay. Binding ability between IGF2BP3 and FGF7 mRNA was analyzed using RIP assay. RESULTS BBR treatment hindered breast cancer cell proliferation, invasion, migration, and induced apoptosis. FGF7 expression was upregulated in breast cancer tissues, while its level was reduced in BBR-treated tumor cells. FGF7 upregulation relieved the repression of BBR on breast cancer cell malignant behaviors. In mechanism, METTL3 stabilized FGF7 mRNA through the m6A-IGF2BP3-dependent mechanism and naturally improved FGF7 expression. BBR treatment inhibited breast cancer growth in vivo. CONCLUSION BBR treatment blocked breast cancer cell growth and metastasis partly by regulating METTL3-mediated m6A modification of FGF7 mRNA, providing a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Wei Fu
- Department of PharmacyPeople's Hospital of Dongxihu DistrictWuhanChina
| | - Lixin Liu
- Department of EmergencyPeople's Hospital of Dongxihu DistrictWuhanChina
| | - Suiju Tong
- Department of PharmacyPeople's Hospital of Dongxihu DistrictWuhanChina
| |
Collapse
|
20
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
21
|
Qin WJ, Shi JJ, Chen RY, Li CY, Liu YJ, Lu JF, Yang GJ, Cao JF, Chen J. Curriculum vitae of CUG binding protein 1 (CELF1) in homeostasis and diseases: a systematic review. Cell Mol Biol Lett 2024; 29:32. [PMID: 38443798 PMCID: PMC10916161 DOI: 10.1186/s11658-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.
Collapse
Affiliation(s)
- Wan-Jia Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili S, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 PMCID: PMC10936236 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
| | - Sepehr Dadfar
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Shadab
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Niloufar Orooji
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - MohammadHossein Nemati
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Pazoki
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Rasoul Baharlou
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| | - Dariush Haghmorad
- Department of Immunology, School of MedicineSemnan University of Medical SciencesSemnanIran
- Cancer Research CenterSemnan University of Medical SciencesSemnanIran
| |
Collapse
|
23
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
24
|
Ali M, Mishra D, Singh RP. Cancer Pathways Targeted by Berberine: Role of microRNAs. Curr Med Chem 2024; 31:5178-5198. [PMID: 38303534 DOI: 10.2174/0109298673275121231228124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.
Collapse
Affiliation(s)
- Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepali Mishra
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana Pratap Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
25
|
Li CY, Liu YJ, Tao F, Chen RY, Shi JJ, Lu JF, Yang GJ, Chen J. Lysine-specific demethylase 7A (KDM7A): A potential target for disease therapy. Biochem Pharmacol 2023; 216:115799. [PMID: 37696455 DOI: 10.1016/j.bcp.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Lee SY, Seo JH, Kim S, Hwang C, Jeong DI, Park J, Yang M, Huh JW, Cho HJ. Cuproptosis-Inducible Chemotherapeutic/Cascade Catalytic Reactor System for Combating with Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301402. [PMID: 37162448 DOI: 10.1002/smll.202301402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Cascade hydroxyl radical generating hydrogel reactor structures including a chemotherapeutic agent are invented for multiple treatment of breast cancer. Glucose oxidase (GOx) and cupric sulfate (Cu) are introduced for transforming accumulated glucose (in cancer cells) to hydroxyl radicals for starvation/chemodynamic therapy. Cu may also suppress cancer cell growth via cuproptosis-mediated cell death. Berberine hydrochloride (BER) is engaged as a chemotherapeutic agent in the hydrogel reactor for combining with starvation/chemodynamic/cuproptosis therapeutic modalities. Moreover, Cu is participated as a gel crosslinker by coordinating with catechol groups in hyaluronic acid-dopamine (HD) polymer. Controlling viscoelasticity of hydrogel reactor can extend the retention time following local injection and provide sustained drug release patterns. Low biodegradation rate of designed HD/BER/GOx/Cu hydrogel can reduce dosing frequency in local cancer therapy and avoid invasiveness-related inconveniences. Especially, it is anticipated that HD/BER/GOx/Cu hydrogel system can be applied for reducing size of breast cancer prior to surgery as well as tumor growth suppression in clinical application.
Collapse
Affiliation(s)
- Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ji-Hye Seo
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - ChaeRim Hwang
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - JiHye Park
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Mingyu Yang
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ji Won Huh
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| |
Collapse
|
28
|
Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des 2023; 102:177-200. [PMID: 36905314 DOI: 10.1111/cbdd.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Berberine (BBR) is a potential plant metabolite and has remarkable anticancer properties. Many kinds of research are being focused on the cytotoxic activity of berberine in in vitro and in vivo studies. A variety of molecular targets which lead to the anticancer effect of berberine ranges from p-53 activation, Cyclin B expression for arresting cell cycles; protein kinase B (AKT), MAP kinase and IKB kinase for antiproliferative activity; effect on beclin-1 involved in autophagy; reduced expression of MMP-9 and MMP-2 for the inhibition of invasion and metastasis etc. Berberine also interferes with transcription factor-1 (AP-1) activity responsible for the expression of oncogenes and neoplastic transformation of the cell. It also leads to the inhibition of various enzymes which are directly or indirectly involved in carcinogenesis like N acetyl transferase, Cyclo-oxygenase-2, Telomerase and Topoisomerase. In addition to these actions, Berberine plays a role in, the regulation of reactive oxygen species and inflammatory cytokines in preventing cancer formation. Berberine anticancer properties are demonstrated due to the interaction of berberine with micro-RNA. The summarized information presented in this review article may help and lead the researchers, scientists/industry persons to use berberine as a promising candidate against cancer.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281 46, Uttar Pradesh, India
| |
Collapse
|
29
|
Zhao Y, Lin X, Zeng W, Qin X, Miao B, Gao S, Liu J, Li Z. Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage. Mol Biol Rep 2023:10.1007/s11033-023-08381-w. [PMID: 37217616 DOI: 10.1007/s11033-023-08381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/09/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Berberine is a natural isoquinoline alkaloid that has been shown to have antitumor properties in a growing number of studies. However, its role in renal cell carcinoma remains unclear. This study investigates berberine's effect and mechanism in renal cell carcinoma. METHODS The methyl-tetrazolium, colony formation, and lactate dehydrogenase assay were used to detect proliferation and cytotoxicity, respectively. Flow cytometry, caspase-Glo 3/7 assay, and adenosine triphosphate assay were used to detect apoptosis and the adenosine triphosphate levels. Wound healing and transwell assay were used to examine the migration ability of renal cell carcinoma cells. Besides, the level of reactive oxygen species (ROS) was explored using a DCFH-DA-based kit. Additionally, western blot and Immunofluorescence assay was taken to determine the levels of relative proteins. RESULTS In vitro, our findings indicated that the proliferation and migration of renal cell carcinoma cells treated with berberine in various concentrations were inhibited, while the level of ROS and apoptosis rate were increased. Furthermore, The results of western blot showed that the expression of Bax, Bad, Bak, Cyto c, Clv-Caspase 3, Clv-Caspase 9, E-cadherin, TIMP-1and γH2AX were up-regulated, while Bcl-2, N-cadherin, Vimentin, Snail, Rad51 and PCNA were down-regulated after treating with berberine with various concentration. CONCLUSION The result of this study revealed that berberine inhibits renal cell carcinoma progression via regulating ROS generation and inducing DNA break.
Collapse
Affiliation(s)
- Yuwan Zhao
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Xinghua Lin
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Wenfeng Zeng
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Xingzhang Qin
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Bailiang Miao
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Sheng Gao
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China
| | - Jianjun Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
| | - Zhuo Li
- Department of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Street South, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
30
|
Sun Z, Zhang X, Fu J, Zhang L, Cheng M, Yang L, Liu Y. Collective Syntheses of 8-Oxoprotoberberines via Sequential In(OTf) 3-Catalyzed Cyclization and Pd(OAc) 2-Catalyzed Heck Coupling. J Org Chem 2023. [PMID: 37172220 DOI: 10.1021/acs.joc.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six 8-oxoprotoberberines were synthesized collectively in four steps with acceptable yields (14-19%), of which the products 8-oxopalmatine, 8-oxopseudopalmatine, 8-oxoberberine, and 8-oxopseudoberberine come from nature. The synthetic route was featured with the In(OTf)3-catalyzed cyclization and Heck coupling. Moreover, the syntheses of the natural products berberine, canadine, and iambertine were achieved via various reductions from 8-oxoberberine, which provided a concise approach to the syntheses of this kind of alkaloids.
Collapse
Affiliation(s)
- Zenghui Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
31
|
Chen LJ, Xu XY, Zhong XD, Liu YJ, Zhu MH, Tao F, Li CY, She QS, Yang GJ, Chen J. The role of lysine-specific demethylase 6A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg Chem 2023; 133:106409. [PMID: 36753963 DOI: 10.1016/j.bioorg.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiu-Sheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, Henan, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
32
|
Sung WJ, Hong J. Targeting lncRNAs of colorectal cancers with natural products. Front Pharmacol 2023; 13:1050032. [PMID: 36699052 PMCID: PMC9868597 DOI: 10.3389/fphar.2022.1050032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNA (ncRNA) is one of the functional classes of RNA that has a regulatory role in various cellular processes, such as modulation of disease onset, progression, and prognosis. ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been actively studied in recent years. The change in ncRNA levels is being actively studied in numerous human diseases, especially auto-immune disorders and cancers; however, targeting and regulating ncRNA with natural products to cure cancer has not been fully established. Recently many groups reported the relationship between ncRNA and natural products showing promising effects to serve as additional therapeutic approaches to cure cancers. This mini-review summarizes the aspects of lncRNAs related to cancer biology focusing on colorectal cancers that natural products can target.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea,*Correspondence: Jaewoo Hong,
| |
Collapse
|
33
|
Yang GJ, Tao F, Zhong HJ, Yang C, Chen J. Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem 2022; 244:114798. [DOI: 10.1016/j.ejmech.2022.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
|