1
|
Maamor NH, Ismail J, Malek KA, Yusoff K, Boon-Peng H. AGT, CYP11B2 & ADRB2 gene polymorphism & essential hypertension (HT): A meta-analysis. Indian J Med Res 2024; 159:619-626. [PMID: 39382462 PMCID: PMC11463865 DOI: 10.25259/ijmr_520_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives The results of the genetic association studies between the selected candidate genes and hypertension (HT) contradicted across different populations. Majority of the meta-analyses carried out did not consider population genetic ancestry as a confounding factor. Therefore, this meta-analysis attempted to consolidate and re-evaluate the findings of the association between the selected candidate variants (AGT-rs699, CYP11B2-rs1799998, ADRB2-rs1042713 and rs1042714) and HT, by categorizing the genotyping data based on known genetic ancestry, and/or major geographical populations. Methods Publications were retrieved from PubMed, Cochrane and World of Science. The included articles were further divided into different populations based on their known genetic and/or geographical ancestry. Results AGTrs699-G was significantly associated with HT among Indians for (i) allele [P=0.03, Odds ratio (OR): 1.37, 95% Confidence Interval (CI): 1.03-1.82], and (ii) dominant mode of inheritance (P=0.009, OR:1.45, 95% CI: 1.09-1.91). CYP11B2rs1799998-G was significantly associated with HT in Europeans for (i) allele (P=6.9 × 10-5, OR: 0.82, 95% CI: 0.74-0.9), (ii) recessive (P=6.38 × 10-5, OR: 0.7, 95% CI: 0.59-0.83) and (iii) dominant mode of inheritance (P=0.008, OR: 0.81, 95% CI: 0.7-0.94). ADRB2-rs1042713-G was significantly associated with HT in east Asians for (i) allele (P=0.01, OR: 1.26, 95% CI: 1.05-1.51), and (ii) recessive mode of inheritance (P=0.04, OR: 1.36, 95% CI: 1.01-1.83). Interpretation & conclusions Different genotype and allele frequencies in diverse populations result in different genetic associations with HT across populations. This meta-analysis finding provides an update and summary of the genetic association between the selected simple nucleotide polymorphism (SNPs) and HT across different populations and essential insights into selecting appropriate pharmacogenetic marker(s) for effective HT management in populations of different ancestries.
Collapse
Affiliation(s)
- Nur Hasnah Maamor
- Faculty of Medicine & Health Sciences, UCSI University, UCSI Hospital, Negeri Sembilan, Malaysia
- Sector for Evidence-Based Healthcare, National Institute of Health, Ministry of Health Setia Alam, Malaysia
| | - Johanrizwal Ismail
- UiTM Private Specialist Centre, Jalan Hospital, Selangor, Malaysia
- Cardiology Unit, Prince Court Medical Centre, Kuala Lumpur, Malaysia
- MAA Medicare Cardiac Diagnostic Centre, Kuala Lumpur, Malaysia
| | - Khasnur Abd Malek
- Faculty of Medicine, Universiti Teknologi MARA, Jalan Hospital, Selangor, Malaysia
| | - Khalid Yusoff
- Faculty of Medicine & Health Sciences, UCSI University, UCSI Hospital, Negeri Sembilan, Malaysia
| | - Hoh Boon-Peng
- Faculty of Medicine & Health Sciences, UCSI University, UCSI Hospital, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Copeland I, Wonkam-Tingang E, Gupta-Malhotra M, Hashmi SS, Han Y, Jajoo A, Hall NJ, Hernandez PP, Lie N, Liu D, Xu J, Rosenfeld J, Haldipur A, Desire Z, Coban-Akdemir ZH, Scott DA, Li Q, Chao HT, Zaske AM, Lupski JR, Milewicz DM, Shete S, Posey JE, Hanchard NA. Exome sequencing implicates ancestry-related Mendelian variation at SYNE1 in childhood-onset essential hypertension. JCI Insight 2024; 9:e172152. [PMID: 38716726 PMCID: PMC11141928 DOI: 10.1172/jci.insight.172152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.
Collapse
Affiliation(s)
- Ian Copeland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Edmond Wonkam-Tingang
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | | | - S. Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yixing Han
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Aarti Jajoo
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Nancy J. Hall
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Paula P. Hernandez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Natasha Lie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
- US Department of Agriculture Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Aparna Haldipur
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Zelene Desire
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Zeynep H. Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics
| | - Qing Li
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics; and
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Ana M. Zaske
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sanjay Shete
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - Neil A. Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Childhood Complex Disease Genomics Section, National Human Genome Research Institute, NIH, Bethesda, USA
| |
Collapse
|
3
|
Chiu MH, Chang CH, Tantoh DM, Hsu TW, Hsiao CH, Zhong JH, Liaw YP. Susceptibility to hypertension based on MTHFR rs1801133 single nucleotide polymorphism and MTHFR promoter methylation. Front Cardiovasc Med 2023; 10:1159764. [PMID: 37849939 PMCID: PMC10577234 DOI: 10.3389/fcvm.2023.1159764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background The aetio-pathologenesis of hypertension is multifactorial, encompassing genetic, epigenetic, and environmental factors. The combined effect of genetic and epigenetic changes on hypertension is not known. We evaluated the independent and interactive association of MTHFR rs1801133 single nucleotide polymorphism (SNP) and MTHFR promoter methylation with hypertension among Taiwanese adults. Methods We retrieved data including, MTHFR promoter methylation, MTHFR rs1801133 genotypes (CC, CT, and TT), basic demography, personal lifestyle habits, and disease history of 1,238 individuals from the Taiwan Biobank (TWB). Results The distributions of hypertension and MTHFR promoter methylation quartiles (β < 0.1338, 0.1338 ≤ β < 0.1385, 0.1385 ≤ β < 0.1423, and β ≥ 0.1423 corresponding to Conclusion Independently, rs1801133 TT was associated with a higher risk of hypertension, but methylation was not. Based on genotypes, lower methylation was dose-dependently associated with a higher risk of hypertension in individuals with the CC genotype. Our findings suggest that MTHFR rs1801133 and MTHFR promoter methylation could jointly influence hypertension susceptibility.
Collapse
Affiliation(s)
- Ming-Huang Chiu
- Department of Pulmonology and Respiratory Care, Cathay General Hospital, Taipei City, Taiwan
| | - Chia-Hsiu Chang
- Cardiovascular Center, Cathay General Hospital, Taipei City, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Tsui-Wen Hsu
- Superintendent Office, Institute of Medicine, Cathay General Hospital, Taipei City, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| |
Collapse
|
4
|
Masenga SK, Kirabo A. Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med 2023; 10:1205475. [PMID: 37342440 PMCID: PMC10277698 DOI: 10.3389/fcvm.2023.1205475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Hypertensive heart disease constitutes functional and structural dysfunction and pathogenesis occurring primarily in the left ventricle, the left atrium and the coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart disease is underreported and the mechanisms underlying its correlates and complications are not well elaborated. In this review, we summarize the current understanding of hypertensive heart disease, we discuss in detail the mechanisms associated with development and complications of hypertensive heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure and coronary artery disease. We also briefly highlight the role of dietary salt, immunity and genetic predisposition in hypertensive heart disease pathogenesis.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Cam-Pus, Livingstone, Zambia
- School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
5
|
Pérez-Gimeno G, Seral-Cortes M, Sabroso-Lasa S, Esteban LM, Lurbe E, Béghin L, Gottrand F, Meirhaeghe A, Muntaner M, Kafatos A, Molnár D, Leclercq C, Widhalm K, Kersting M, Nova E, Salazar-Tortosa DF, Gonzalez-Gross M, Breidenassel C, Sinningen K, De Ruyter T, Labayen I, Rupérez AI, Bueno-Lozano G, Moreno LA. Development of a genetic risk score to predict the risk of hypertension in European adolescents from the HELENA study. Front Cardiovasc Med 2023; 10:1118919. [PMID: 37324619 PMCID: PMC10267871 DOI: 10.3389/fcvm.2023.1118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction From genome wide association study (GWAS) a large number of single nucleotide polymorphisms (SNPs) have previously been associated with blood pressure (BP) levels. A combination of SNPs, forming a genetic risk score (GRS) could be considered as a useful genetic tool to identify individuals at risk of developing hypertension from early stages in life. Therefore, the aim of our study was to build a GRS being able to predict the genetic predisposition to hypertension (HTN) in European adolescents. Methods Data were extracted from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) cross-sectional study. A total of 869 adolescents (53% female), aged 12.5-17.5, with complete genetic and BP information were included. The sample was divided into altered (≥130 mmHg for systolic and/or ≥80 mmHg for diastolic) or normal BP. Based on the literature, a total of 1.534 SNPs from 57 candidate genes related with BP were selected from the HELENA GWAS database. Results From 1,534 SNPs available, An initial screening of SNPs univariately associated with HTN (p < 0.10) was established, to finally obtain a number of 16 SNPs significantly associated with HTN (p < 0.05) in the multivariate model. The unweighted GRS (uGRS) and weighted GRS (wGRS) were estimated. To validate the GRSs, the area under the curve (AUC) was explored using ten-fold internal cross-validation for uGRS (0.802) and wGRS (0.777). Further covariates of interest were added to the analyses, obtaining a higher predictive ability (AUC values of uGRS: 0.879; wGRS: 0.881 for BMI z-score). Furthermore, the differences between AUCs obtained with and without the addition of covariates were statistically significant (p < 0.05). Conclusions Both GRSs, the uGRS and wGRS, could be useful to evaluate the predisposition to hypertension in European adolescents.
Collapse
Affiliation(s)
- Gloria Pérez-Gimeno
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Seral-Cortes
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Sabroso-Lasa
- Genetic and Molecular Epidemiology Group (GMEG), Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Empar Lurbe
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Pediatric Department, Consorcio Hospital General, University of Valencia, Valencia, Spain
| | - Laurent Béghin
- Université Lille, Inserm, CHU Lille, INFINITE—Institute for Translational Research in Inflammation, Lille, France
| | - Frederic Gottrand
- Université Lille, Inserm, CHU Lille, INFINITE—Institute for Translational Research in Inflammation, Lille, France
| | - Aline Meirhaeghe
- Risk Factors and Molecular Determinants of Aging-Related Diseases (RID-AGE), Centre Hosp. Univ Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Manon Muntaner
- Risk Factors and Molecular Determinants of Aging-Related Diseases (RID-AGE), Centre Hosp. Univ Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Anthony Kafatos
- Department of Social Medicine, Preventive Medicine and Nutrition Clinic, University of Crete School of Medicine, Heraklion, Greece
| | - Dénes Molnár
- Department of Pediatrics, University of Pecs, Pecs, Hungary
| | - Catherine Leclercq
- INRAN, National Research Institute for Food and Nutrition, Food and Nutrition Research Centre-Council for Agricultural Research and Economics, Rome, Italy
| | - Kurt Widhalm
- Division of Clinical Nutrition and Prevention, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Mathilde Kersting
- Departement of Nutrition—Human Nutrition, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Esther Nova
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Diego F. Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
- PROFITH ‘PROmoting FITness and Health Through Physical Activity’ Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marcela Gonzalez-Gross
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- ImFine Research Group, Department of Health and Human Performance, Facultad de Ciencias de la Actividad Física y del Deporte-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | - Christina Breidenassel
- Departement of Nutrition—Human Nutrition, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- ImFine Research Group, Department of Health and Human Performance, Facultad de Ciencias de la Actividad Física y del Deporte-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | - Kathrin Sinningen
- Research Department of Child Nutrition, University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thaïs De Ruyter
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Idoia Labayen
- Department of Health Sciences, Institute for Innovation & Sustainable Food Chain Development, Public University of Navarra, Pamplona, Spain
| | - Azahara I. Rupérez
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Gloria Bueno-Lozano
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A. Moreno
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Park SJ, Shin JI. Diagnosis and Treatment of Monogenic Hypertension in Children. Yonsei Med J 2023; 64:77-86. [PMID: 36719014 PMCID: PMC9892546 DOI: 10.3349/ymj.2022.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023] Open
Abstract
Although the majority of individuals with hypertension (HTN) have primary and polygenic HTN, monogenic HTN is a secondary type that is widely thought to play a key role in pediatric HTN, which has the characteristics of early onset, refractory HTN with a positive family history, and electrolyte disorders. Monogenic HTN results from single genetic mutations that contribute to the dysregulation of blood pressure (BP) in the kidneys and adrenal glands. It is pathophysiologically associated with increased sodium reabsorption in the distal tubule, intravascular volume expansion, and HTN, as well as low renin and varying aldosterone levels. Simultaneously increased or decreased potassium levels also provide clues for the diagnosis of monogenic HTN. Discovering the genetic factors that cause an increase in BP has been shown to be related to the choice of and responses to antihypertensive medications. Therefore, early and precise diagnosis with genetic sequencing and effective treatment with accurate antihypertensive agents are critical in the management of monogenic HTN. In addition, understanding the genetic architecture of BP, causative molecular pathways perturbing BP regulation, and pharmacogenomics can help with the selection of precision and personalized medicine, as well as improve morbidity and mortality in adulthood.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Pratamawati TM, Alwi I. Summary of Known Genetic and Epigenetic Modification Contributed to Hypertension. Int J Hypertens 2023; 2023:5872362. [PMID: 37201134 PMCID: PMC10188269 DOI: 10.1155/2023/5872362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Hypertension is a multifactorial disease due to a complex interaction among genetic, epigenetic, and environmental factors. Characterized by raised blood pressure (BP), it is responsible for more than 7 million deaths per annum by acting as a leading preventable risk factor for cardiovascular disease. Reports suggest that genetic factors are estimated to be involved in approximately 30 to 50% of BP variation, and epigenetic marks are known to contribute to the initiation of the disease by influencing gene expression. Consequently, elucidating the genetic and epigenetic mediators associated with hypertension is essential for better discernment of its pathophysiology. By deciphering the unprecedented molecular hypertension basis, it could help to unravel an individual's inclination towards hypertension which eventually could result in an arrangement of potential strategies for prevention and therapy. In the present review, we discuss known genetic and epigenetic drivers that contributed to the hypertension development and summarize the novel variants that have currently been identified. The effect of these molecular alterations on endothelial function was also presented.
Collapse
Affiliation(s)
- Tiar Masykuroh Pratamawati
- Program Doctoral Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
8
|
Mashmoushi A, Wolf MTF. A narrative review of Hyporeninemic hypertension-an indicator for monogenic forms of hypertension. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2022; 5:21. [PMID: 36325202 PMCID: PMC9624485 DOI: 10.21037/pm-21-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE While the role of the renin-angiotensin-aldosterone system (RAAS) in the development of hypertension is well known, the significance and contribution of low renin hypertension is often overlooked. RAAS stimulation results in more tubular absorption of sodium and water along the nephron, contributing to a higher circulating vascular volume. In addition, members of the RAAS system, such as angiotensin II, have direct effects on vascular vasoconstriction, the heart, aldosterone synthesis in the adrenal glands, the sympathetic nervous system, and the central nervous system. This has resulted in a line of antihypertensive therapeutics targeting RAAS with angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and renin inhibitors, which prevent conversion of angiotensinogen to angiotensin. While general practitioners and nephrologists are well aware of the causes and the long-term consequences of elevated renin and aldosterone levels, the opposite situation with low renin and/or low aldosterone levels is frequently underappreciated. The objective of this review is to provide insight to the less common forms of hyporeninemic hypertension. METHODS We searched the PubMed online library for keywords related to hyporeninemic hypertension and focused on the pediatric population. For pathophysiology we focused on literature of the last 5 years. KEY CONTENT AND FINDINGS The low renin and aldosterone levels may be indicators of inherited (especially when associated with hypokalemia), monogenic forms of hypertension stimulating excessive tubular sodium and water absorption which subsequently results in plasma volume expansion and hypertension. These forms of hypertension require frequently specific forms of therapy. This underlines the importance of the practitioner to be familiar with these rare diseases. CONCLUSIONS In this review article, we outline the different forms of hypertension characterized by low renin/low aldosterone and low renin/high aldosterone levels, how to diagnose these forms of hypertension, and how to treat them.
Collapse
Affiliation(s)
- Ahmad Mashmoushi
- Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias T F Wolf
- Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Goulet D, O'Loughlin J, Sylvestre MP. Association of Genetic Variants With Body-Mass Index and Blood Pressure in Adolescents: A Replication Study. Front Genet 2021; 12:690335. [PMID: 34539733 PMCID: PMC8440872 DOI: 10.3389/fgene.2021.690335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The strong correlation between adiposity and blood pressure (BP) might be explained in part by shared genetic risk factors. A recent study identified three nucleotide variants [rs16933812 (PAX5), rs7638110 (MRPS22), and rs9930333 (FTO)] associated with both body mass index (BMI) and systolic blood pressure (SBP) in adolescents age 12-18years. We attempted to replicate these findings in a sample of adolescents of similar age. A total of 713 adolescents were genotyped and had anthropometric indicators and blood pressure measured at age 13, 15, 17, and 24years. Using linear mixed models, we assessed associations of these variants with BMI and SBP. In our data, rs9930333 (FTO) was associated with body mass index, but not systolic blood pressure. Neither rs16933812 (PAX5) nor rs7638110 (MRPS22) were associated with body mass index or systolic blood pressure. Although, differences in phenotypic definitions and in genetic architecture across populations may explain some of the discrepancy across studies, nucleotide variant selection in the initial study may have led to false-positive results that could not be replicated.
Collapse
Affiliation(s)
- Danick Goulet
- École de santé publique, Université de Montréal, Montréal, QC, Canada
| | - Jennifer O'Loughlin
- École de santé publique, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Pierre Sylvestre
- École de santé publique, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
10
|
S Machado IB, Tofanelli MR, Saldanha da Silva AA, Simões E Silva AC. Factors Associated with Primary Hypertension in Pediatric Patients: An Up-to-Date. Curr Pediatr Rev 2021; 17:15-37. [PMID: 33430749 DOI: 10.2174/1573396317999210111200222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arterial hypertension in children is considered a common alteration nowadays, mainly because obesity is a growing worldwide problem closely related to increased blood pressure. Childhood hypertension can be classified as primary or secondary, depending on the etiology. Primary or essential hypertension still has its pathophysiology not fully elucidated, and there is no consensus in the literature on most underlying mechanisms. In this review, genetic and environmental factors, including sodium and potassium intake, socioeconomic status, ethnicity, family structure, obesity, sedentary lifestyle, prematurity and low birth weight, prenatal and postnatal exposures are highlighted. OBJECTIVE The present study aimed to perform an update on primary hypertension in childhood, providing clinicians and researchers an overview of the current state of the literature regarding the influence of genetic and environmental factors. METHODS This integrative review searched for articles on genetic and environmental factors related to primary hypertension in pediatric patients. The databases evaluated were PubMed and Scopus. RESULTS The studies have provided insights regarding many genetic and environmental factors, in addition to their association with the pathophysiology of primary hypertension in childhood. Findings corroborated the idea that primary hypertension is a multifactorial disease. Further studies in the pediatric population are needed to elucidate the underlying mechanisms. CONCLUSION The study of primary hypertension in pediatrics has utmost importance for the adoption of preventive measures and the development of more efficient treatments, therefore reducing childhood morbidity and the incidence of cardiovascular diseases and other health consequences later in life.
Collapse
Affiliation(s)
- Isabella Barreto S Machado
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Matheus Rampinelli Tofanelli
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ariadna A Saldanha da Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Siddiqi N, Shatat IF. Antihypertensive agents: a long way to safe drug prescribing in children. Pediatr Nephrol 2020; 35:2049-2065. [PMID: 31676933 PMCID: PMC7515858 DOI: 10.1007/s00467-019-04314-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
Recently updated clinical guidelines have highlighted the gaps in our understanding and management of pediatric hypertension. With increased recognition and diagnosis of pediatric hypertension, the use of antihypertensive agents is also likely to increase. Drug selection to treat hypertension in the pediatric patient population remains challenging. This is primarily due to a lack of large, well-designed pediatric safety and efficacy trials, limited understanding of pharmacokinetics in children, and unknown risk of prolonged exposure to antihypertensive therapies. With newer legislation providing financial incentives for conducting clinical trials in children, along with publication of pediatric-focused guidelines, literature available for antihypertensive agents in pediatrics has increased over the last 20 years. The objective of this article is to review the literature for safety and efficacy of commonly prescribed antihypertensive agents in pediatrics. Thus far, the most data to support use in children was found for angiotensin-converting enzyme inhibitors (ACE-I), angiotensin receptor blockers (ARB), and calcium channel blockers (CCB). Several gaps were noted in the literature, particularly for beta blockers, vasodilators, and the long-term safety profile of antihypertensive agents in children. Further clinical trials are needed to guide safe and effective prescribing in the pediatric population.
Collapse
Affiliation(s)
- Nida Siddiqi
- Department of Pharmacy, Sidra Medicine, Doha, Qatar
| | - Ibrahim F Shatat
- Pediatric Nephrology and Hypertension, Sidra Medicine, HB. 7A. 106A, PO Box 26999, Doha, Qatar.
- Weill Cornell College of Medicine-Qatar, Ar-Rayyan, Qatar.
- Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
12
|
Arshad V, Samad Z, Das J, Almas A, Rashid N, Virani SS, Bloomfield GS, Jafar TH, Ahmed B. Prescribing Patterns of Antihypertensive Medications in Low- and Middle-Income Countries: A Systematic Review. Asia Pac J Public Health 2020; 33:14-22. [PMID: 33084371 DOI: 10.1177/1010539520965280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension is highly prevalent, but its pharmacological management has not been well evaluated in low- and middle-income countries (LMICs). This review examined the prescribing patterns of antihypertensives in LMICs. Data were extracted from a total of 26 studies spanning the time period 2000 to 2018. In 10 studies, calcium channel blockers (CCBs) were the most frequently prescribed medication for managing hypertension (range = 33% to 72%); in six studies, renin angiotensin system (RAS) blockers (range = 25% to 83%); in five studies, diuretics (range = 39% to 99%); and in five studies, β-blockers (BBs; range = 26% to 49%) were the most commonly prescribed antihypertensive medications. Prescribing sedatives and sublingual administration of captopril for controlling hypertension was also reported in 3 studies. Only 10 studies presented their findings in light of national or international guidelines. This review calls for further antihypertensive utilization and dispensation studies and a better understanding of clinician's perception and practice of hypertension management guidelines in LMICs.
Collapse
Affiliation(s)
| | | | - Jai Das
- The Aga Khan University, Karachi, Pakistan
| | | | | | - Salim S Virani
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
13
|
Fan P, Zhang D, Pan XC, Yang KQ, Zhang QY, Lu YT, Zhang Y, Liu XY, Ma WJ, Zhang HM, Song L, Cai J, Liu YX, Zhou XL. Premature Stroke Secondary to Severe Hypertension Results from Liddle Syndrome Caused by a Novel SCNN1B Mutation. Kidney Blood Press Res 2020; 45:603-611. [PMID: 32698182 DOI: 10.1159/000507580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/28/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Liddle syndrome (LS), an autosomal dominant and inherited monogenic hypertension syndrome caused by pathogenic mutations in the epithelial sodium channel (ENaC) genes SCNN1A, SCNN1B, and SCNN1G. OBJECTIVE This study was designed to identify a novel SCNN1B missense mutation in a Chinese family with a history of stroke, and to confirm that the identified mutation is responsible for LS in this family. METHODS DNA samples were collected from the proband and 11 additional relatives. Next-generation sequencing was performed in the proband to find candidate variants. In order to exclude genetic polymorphism, the candidate variantin SCNN1B was verified in other family members, 100 hypertensives, and 100 healthy controls by Sanger sequencing. RESULTS Genetic testing revealeda novel and rare heterozygous variant in SCNN1B in the proband. This variant resulted in a substitution of threonine instead of proline at codon 617, altering the PY motif of β-ENaC. The identified mutation was only verified in 5 relatives. In silico analyses indicated that this variant was highly pathogenic. In this family, phenotypic heterogeneity was present among 6 LS patients. Tailored medicine with amiloride was effective in controlling hypertension and improving the serum potassium concentration in patients with LS. CONCLUSIONS We identified a novel SCNN1B mutation (c.1849C>A) in a family affected by LS. Patients with LS, especially those with severe hypertension, should be alert for the occurrence of premature stroke. Timely diagnosis using genetic testing and tailored treatment with amiloride can help LS patients to avoid severe complications.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Cheng Pan
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong-Yu Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ying Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Nandakumar P, Lee D, Hoffmann TJ, Ehret GB, Arking D, Ranatunga D, Li M, Grove ML, Boerwinkle E, Schaefer C, Kwok PY, Iribarren C, Risch N, Chakravarti A. Analysis of putative cis-regulatory elements regulating blood pressure variation. Hum Mol Genet 2020; 29:1922-1932. [PMID: 32436959 PMCID: PMC7372556 DOI: 10.1093/hmg/ddaa098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/29/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of 'expressed' genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.
Collapse
Affiliation(s)
- Priyanka Nandakumar
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY 10016, USA
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Georg B Ehret
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY 10016, USA
- Cardiology, Department of Specialties of Internal Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Dan Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
| | - Dilrini Ranatunga
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Man Li
- Division of Nephrology, Department of Human Genetics, University of Utah, Salt Lake City, Utah 84132, USA
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Catherine Schaefer
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Carlos Iribarren
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Neil Risch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Aravinda Chakravarti
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Krasi G, Precone V, Paolacci S, Stuppia L, Nodari S, Romeo F, Perrone M, Bushati V, Dautaj A, Bertelli M. Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:7-19. [PMID: 31577248 PMCID: PMC7233637 DOI: 10.23750/abm.v90i10-s.8748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the main cause of death worldwide. The ability to accurately define individual susceptibility to these disorders is therefore of strategic importance. Linkage analysis and genome-wide association studies have been useful for the identification of genes related to cardiovascular diseases. The identification of variants predisposing to cardiovascular diseases contributes to the risk profile and the possibility of tailored preventive or therapeutic strategies. Molecular genetics and pharmacogenetics are playing an increasingly important role in the correct clinical management of patients. For instance, genetic testing can identify variants that influence how patients metabolize medications, making it possible to prescribe personalized, safer and more efficient treatments, reducing medical costs and improving clinical outcomes. In the near future we can expect a great increment in information and genetic testing, which should be acknowledged as a true branch of diagnostics in cardiology, like hemodynamics and electrophysiology. In this review we summarize the genetics and pharmacogenetics of the main cardiovascular diseases, showing the role played by genetic information in the identification of cardiovascular risk factors and in the diagnosis and therapy of these conditions. (www.actabiomedica.it)
Collapse
|
16
|
Precone V, Krasi G, Guerri G, Stuppia L, Romeo F, Perrone M, Marinelli C, Zulian A, Dallavilla T, Bertelli M. Monogenic hypertension. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:50-52. [PMID: 31577254 PMCID: PMC7233634 DOI: 10.23750/abm.v90i10-s.8759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Hypertension is a significant public health problem. Thirty percent of cases are caused by a single genetic mutation. Hypertension is the predominant and usually the only manifestation in monogenic hypertension Monogenic hypertension may involve mineralcorticoid-dependent or -independent increase in Na+ transport. Diagnosis is based on routine physical examination, blood pressure measurement and laboratory analysis of renin, aldosterone, cortisol and potassium. Genetic testing is useful for confirming diagnosis and for differential diagnosis. Monogenic hypertension has autosomal dominant or autosomal recessive inheritance. (www.actabiomedica.it)
Collapse
|
17
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Fan P, Lu CX, Yang KQ, Lu PP, Hao SF, Luo F, Zhang HM, Song L, Wu HY, Cai J, Zhang X, Zhou XL. Truncated Epithelial Sodium Channel β Subunit Responsible for Liddle Syndrome in a Chinese Family. Kidney Blood Press Res 2019; 44:942-949. [DOI: 10.1159/000500919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Liddle syndrome (LS) is a rare autosomal dominant disease caused by mutations in genes coding for epithelial sodium channel (ENaC) subunits. The aim of this study was to identify the mutation responsible for the LS in an extended Chinese family. Methods: DNA samples from the proband with early-onset, treatment-resistant hypertension, and hypokalemia and 19 additional relatives were all sequenced for mutations in exon 13 of the β-ENaC and γ-ENaC genes, using amplification by polymerase chain reaction and direct DNA sequencing. Results: Genetic testing of exon 13 of SCNN1B revealed duplication of guanine into a string of 3 guanines located at codon 602. This frameshift mutation is predicted to generate a premature stop codon at position 607, resulting in truncated β-ENaC lacking the remaining 34 amino acids, including the crucial PY motif. Among a total of 9 participants with the identical mutation, different phenotypes were identified. Tailored treatment with amiloride was safe and effective in alleviating disease symptoms in LS. No mutation of SCNN1G was identified in any of the examined participants. Conclusions: We report here a family affected by LS harboring a frameshift mutation (c.1806dupG) with a premature stop codon deleting the PY motif of β-ENaC. Our study demonstrates that the earlier LS patients are diagnosed by genetic testing and treated with tailored medication, the greater the likelihood of preventing or minimizing complications in the vasculature and target organs.
Collapse
|
19
|
Fan P, Zhao YM, Zhang D, Liao Y, Yang KQ, Tian T, Lou Y, Luo F, Ma WJ, Zhang HM, Song L, Cai J, Liu YX, Zhou XL. A Novel Frameshift Mutation of SCNN1G Causing Liddle Syndrome with Normokalemia. Am J Hypertens 2019; 32:752-758. [PMID: 30977777 PMCID: PMC6636789 DOI: 10.1093/ajh/hpz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liddle syndrome (LS) is an autosomal dominant disorder caused by single-gene mutations of the epithelial sodium channel (ENaC). It is characterized by early-onset hypertension, spontaneous hypokalemia and low plasma renin and aldosterone concentrations. In this study, we reported an LS pedigree with normokalemia resulting from a novel SCNN1G frameshift mutation. METHODS Peripheral blood samples were collected from the proband and eight family members for DNA extraction. Next-generation sequencing and Sanger sequencing were performed to identify the SCNN1G mutation. Clinical examinations were used to comprehensively evaluate the phenotypes of two patients. RESULTS Genetic analysis identified a novel SCNN1G frameshift mutation, p.Arg586Valfs*598, in the proband with LS. This heterozygous frameshift mutation generated a premature stop codon and deleted the vital PY motif of ENaC. The same mutation was present in his elder brother with LS, and his mother without any LS symptoms. Biochemical examination showed normokalemia in the three mutation carriers. The mutation identified was not found in any other family members, 100 hypertensives, or 100 healthy controls. CONCLUSIONS Our study identified a novel SCNN1G frameshift mutation in a Chinese family with LS, expanding the genetic spectrum of SCNN1G. Genetic testing helped us identify LS with a pathogenic mutation when the genotypes and phenotype were not completely consistent because of the hypokalemia. This case emphasizes that once a proband is diagnosed with LS by genetic testing, family genetic sequencing is necessary for early diagnosis and intervention for other family members, to protect against severe cardiovascular complications.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Mo Zhao
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Di Zhang
- Department of Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Liao
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Lou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Department of Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Vargas-Uricoechea H, Cáceres-Acosta MF. Blood pressure control and impact on cardiovascular events in patients with type 2 diabetes mellitus: A critical analysis of the literature. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 31:31-47. [PMID: 30274771 DOI: 10.1016/j.arteri.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Abstract
High blood pressure in individuals with type2 diabetes mellitus increases the risk of cardiovascular events. The international management guidelines recommend starting pharmacological treatment with blood pressure values >140/90mmHg. However, there is no optimal cut-off point from which cardiovascular events can be reduced without causing adverse events. A blood pressure range of >130/80 to <140/90mmHg seems to be adequate. These values can be achieved through non-pharmacological (diet, exercise) and pharmacological interventions (using drugs that have been shown to reduce cardiovascular events). The choice of one or several drugs must be individualised, according to factors including, ethnicity, age, and associated comorbidities, among others.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Grupo de estudio de enfermedades metabólicas, Facultad Ciencias de la Salud, Departamento de Medicina Interna, Universidad del Cauca, Popayán, Cauca, Colombia.
| | - Manuel Felipe Cáceres-Acosta
- Grupo de estudio de enfermedades metabólicas, Facultad Ciencias de la Salud, Departamento de Medicina Interna, Universidad del Cauca, Popayán, Cauca, Colombia
| |
Collapse
|
21
|
Vargas-Uricoechea H, Cáceres-Acosta MF. Control of Blood Pressure and Cardiovascular Outcomes in Type 2 Diabetes. Open Med (Wars) 2018; 13:304-323. [PMID: 30140748 PMCID: PMC6104200 DOI: 10.1515/med-2018-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
High blood pressure in patients with diabetes mellitus results in a significant increase in the risk of cardiovascular events and mortality. The current evidence regarding the impact of intervention on blood pressure levels (in accordance with a specific threshold) is not particularly robust. Blood pressure control is more difficult to achieve in patients with diabetes than in non-diabetic patients, and requires using combination therapy in most patients. Different management guidelines recommend initiating pharmacological therapy with values >140/90 mm/Hg; however, an optimal cut point for this population has not been established. Based on the available evidence, it appears that blood pressure targets will probably have to be lower than <140/90mmHg, and that values approaching 130/80mmHg should be recommended. Initial treatment of hypertension in diabetes should include drug classes demonstrated to reduce cardiovascular events; i.e., angiotensin converting-enzyme inhibitors, angiotensin receptor blockers, diuretics, or dihydropyridine calcium channel blockers. The start of therapy must be individualized in accordance with the patient's baseline characteristics, and factors such as associated comorbidities, race, and age, inter alia.
Collapse
Affiliation(s)
| | - Manuel Felipe Cáceres-Acosta
- Metabolic Diseases Study Group, Division of Endocrinology and Metabolism, Department of Internal Medicine, Universidad del Cauca, Popayán, Cauca, Colombia
| |
Collapse
|