1
|
Desgagné M, Désilets A, Ferková S, Lepage M, Perreault O, Joushomme A, Lemieux G, Guerrab W, Froehlich U, Comeau C, Sarret P, Leduc R, Boudreault PL. Rational In Silico Design of Selective TMPRSS6 Peptidomimetic Inhibitors via Exploitation of the S2 Subpocket. J Med Chem 2024; 67:12969-12983. [PMID: 39028865 PMCID: PMC11321340 DOI: 10.1021/acs.jmedchem.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
TMPRSS6 is a potential therapeutic target for the treatment of iron overload due to its role in regulating levels of hepcidin. Although potent TMPRSS6 inhibitors have been previously developed, their lack of specificity requires optimization to avoid potential side effects before pursuing preclinical development with in vivo models. Here, using computer-aided drug design based on a TMPRSS6 homology model, we reveal that the S2 position of TMPRSS6 offers a potential avenue to achieve selectivity against other members of the TTSP family. Accordingly, we synthesized novel peptidomimetic molecules containing lipophilic amino acids at the P2 position to exploit this unexplored pocket. This enabled us to identify TMPRSS6-selective small molecules with low nanomolar affinity. Finally, pharmacokinetic parameters were determined, and a compound was found to be potent in cellulo toward its primary target while retaining TTSP-subtype selectivity and showing no signs of alteration in in vitro TEER experiments.
Collapse
Affiliation(s)
- Michael Desgagné
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Sára Ferková
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Olivier Perreault
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Joushomme
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Walid Guerrab
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
2
|
Moksnes MR, Hansen AF, Wolford BN, Thomas LF, Rasheed H, Simić A, Bhatta L, Brantsæter AL, Surakka I, Zhou W, Magnus P, Njølstad PR, Andreassen OA, Syversen T, Zheng J, Fritsche LG, Evans DM, Warrington NM, Nøst TH, Åsvold BO, Flaten TP, Willer CJ, Hveem K, Brumpton BM. A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Commun Biol 2024; 7:432. [PMID: 38594418 PMCID: PMC11004147 DOI: 10.1038/s42003-024-06101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.
Collapse
Affiliation(s)
- Marta R Moksnes
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ailin F Hansen
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Brooke N Wolford
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent F Thomas
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Anica Simić
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tore Syversen
- Department of Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David M Evans
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Nicole M Warrington
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Therese H Nøst
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Peder Flaten
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen J Willer
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway
| | - Ben M Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
- HUNT Research Centre, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Levanger, Norway.
- Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
3
|
Al-Jamea LH, Woodman A, M. Heiba N, Elshazly SA, Ben Khalaf N, Al-Yami FS, Bilal Waheed K, Al Mutair A, Alsedi A, Quiambao JV, Alzahrani FM, Albaqami WF, Al Qahtani FH, Mohammed Aljarah N, Fathallah DM, Halim Deifalla A. TMPRSS6 gene mutations in six Saudi families with iron refractory iron deficiency anemia. Gene 2023; 851:146977. [DOI: 10.1016/j.gene.2022.146977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
4
|
Haase VH. The ins and outs of ferric citrate. Kidney Int 2022; 101:668-670. [PMID: 35314048 DOI: 10.1016/j.kint.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 10/18/2022]
Abstract
Ferric citrate is used clinically for the treatment of hyperphosphatemia in patients with chronic kidney disease and is approved as an oral iron replacement product for patients with iron-deficiency anemia. In this issue of Kidney International, Hanudel and colleagues take advantage of genetic models with and without chronic kidney injury to demonstrate that the enteric absorption of iron delivered by ferric citrate is dependent on ferroportin expression and does not involve paracellular iron transport.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Alcaraz-Sanabria A, Cabañas Morafraile E, Fernández-Hinojal G, Velasco G, Pérez-Segura P, Pandiella A, Győrffy B, Ocaña A. Transcriptomic Mapping of Non-Small Cell Lung Cancer K-RAS p.G12C Mutated Tumors: Identification of Surfaceome Targets and Immunologic Correlates. Front Immunol 2022; 12:786069. [PMID: 35178045 PMCID: PMC8843839 DOI: 10.3389/fimmu.2021.786069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Targeting K-RAS-mutant non-small cell lung cancer (NSCLC) with novel inhibitors has shown promising results with the recent approval of sotorasib in this indication. However, progression to this agent is expected, as it has previously been observed with other inhibitors. Recently, new immune therapeutics, including vectorized compounds with antibodies or modulators of the host immune response, have demonstrated clinical activity. By interrogating massive datasets, including TCGA, we identified genes that code for surface membrane proteins that are selectively expressed in K-RAS mutated NSCLC and that could be used to vectorize novel therapies. Two genes, CLDN10 and TMPRSS6, were selected for their clear differentiation. In addition, we discovered immunologic correlates of outcome that were clearly de-regulated in this particular tumor type and we matched them with immune cell populations. In conclusion, our article describes membrane proteins and immunologic correlates that could be used to better select and optimize current therapies.
Collapse
Affiliation(s)
- Ana Alcaraz-Sanabria
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
| | - Esther Cabañas Morafraile
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología Centro (CIBERONC), Madrid, Spain.,Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Gonzalo Fernández-Hinojal
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología Centro (CIBERONC), Madrid, Spain
| | - Guillermo Velasco
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología Centro (CIBERONC), Madrid, Spain.,Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología Centro (CIBERONC), Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CSIC), Instituto de Investigación Biomédica Salamanca (IBSAL) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Salamanca, Spain
| | - Balázs Győrffy
- Department of Bioinformatics and 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.,Research Centre for Natural Sciences (TTK) Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Alberto Ocaña
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain.,Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología Centro (CIBERONC), Madrid, Spain
| |
Collapse
|
6
|
Phuong Vu L, Zyulina M, Hingst A, Schnakenburg G, Gütschow M. Combinatorial Assembly, Traceless Generation and In Situ Evaluation of Inhibitors for Therapeutically Relevant Serine Proteases. Bioorg Chem 2022; 121:105676. [DOI: 10.1016/j.bioorg.2022.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
|
7
|
Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev 2021; 72:101510. [PMID: 34767974 DOI: 10.1016/j.arr.2021.101510] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.
Collapse
|
8
|
Al-Amer OM, Oyouni AAA, Alshehri MA, Alasmari A, Alzahrani OR, Aljohani SAS, Alasmael N, Theyab A, Algahtani M, Al Sadoun H, Alsharif KF, Hamad A, Abdali WA, Hawasawi YM. Association of SNPs within TMPRSS6 and BMP2 genes with iron deficiency status in Saudi Arabia. PLoS One 2021; 16:e0257895. [PMID: 34780475 PMCID: PMC8592490 DOI: 10.1371/journal.pone.0257895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Globally, iron-deficiency anemia (IDA) remains a major health obstacle. This health condition has been identified in 47% of pre-school students (aged 0 to 5 years), 42% of pregnant females, and 30% of non-pregnant females (aged 15 to 50 years) worldwide according to the WHO. Environmental and genetic factors play a crucial role in the development of IDA; genetic testing has revealed the association of a number of polymorphisms with iron status and serum ferritin. AIM The current study aims to reveal the association of TMPRSS6 rs141312 and BMP2 rs235756 with the iron status of females in Saudi Arabia. METHODS A cohort of 108 female university students aged 18-25 years was randomly selected to participate: 50 healthy and 58 classified as iron deficient. A 3-5 mL sample of blood was collected from each one and analyzed based on hematological and biochemical iron status followed by genotyping by PCR. RESULTS The genotype distribution of TMPRSS6 rs141312 was 8% (TT), 88% (TC) and 4% (CC) in the healthy group compared with 3.45% (TT), 89.66% (TC) and 6.89% (CC) in the iron-deficient group (P = 0.492), an insignificant difference in the allelic distribution. The genotype distribution of BMP2 rs235756 was 8% (TT), 90% (TC) and 2% (CC) in the healthy group compared with 3.45% (TT), 82.76% (TC) and 13.79% (CC) in iron-deficient group (P = 0.050) and was significantly associated with decreased ferritin status (P = 0.050). In addition, TMPRSS6 rs141312 is significantly (P<0.001) associated with dominant genotypes (TC+CC) and increased risk of IDA while BMP2 rs235756 is significantly (P<0.026) associated with recessive homozygote CC genotypes and increased risk of IDA. CONCLUSION Our finding potentially helps in the early prediction of iron deficiency in females through the genetic testing.
Collapse
Affiliation(s)
- Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Mohammed Ali Alshehri
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Abdulrahman Alasmari
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Othman R. Alzahrani
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Saad Ali S. Aljohani
- Department of Basic Medical Sciences, Faculty of Medicine, Alrayan Colleges, Almadinah Almunawarah, Kingdom of Saudi Arabia
| | - Noura Alasmael
- King Abdullah University for Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Abdullah Hamad
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Yousef MohammedRabaa Hawasawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Hu Y, Stilp AM, McHugh CP, Rao S, Jain D, Zheng X, Lane J, Méric de Bellefon S, Raffield LM, Chen MH, Yanek LR, Wheeler M, Yao Y, Ren C, Broome J, Moon JY, de Vries PS, Hobbs BD, Sun Q, Surendran P, Brody JA, Blackwell TW, Choquet H, Ryan K, Duggirala R, Heard-Costa N, Wang Z, Chami N, Preuss MH, Min N, Ekunwe L, Lange LA, Cushman M, Faraday N, Curran JE, Almasy L, Kundu K, Smith AV, Gabriel S, Rotter JI, Fornage M, Lloyd-Jones DM, Vasan RS, Smith NL, North KE, Boerwinkle E, Becker LC, Lewis JP, Abecasis GR, Hou L, O'Connell JR, Morrison AC, Beaty TH, Kaplan R, Correa A, Blangero J, Jorgenson E, Psaty BM, Kooperberg C, Walton RT, Kleinstiver BP, Tang H, Loos RJF, Soranzo N, Butterworth AS, Nickerson D, Rich SS, Mitchell BD, Johnson AD, Auer PL, Li Y, Mathias RA, Lettre G, Pankratz N, Laurie CC, Laurie CA, Bauer DE, Conomos MP, Reiner AP. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:874-893. [PMID: 33887194 DOI: 10.1016/j.ajhg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Nancy Heard-Costa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and Department of Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL 60208, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Russell T Walton
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
10
|
Kang W, Barad A, Clark AG, Wang Y, Lin X, Gu Z, O'Brien KO. Ethnic Differences in Iron Status. Adv Nutr 2021; 12:1838-1853. [PMID: 34009254 PMCID: PMC8483971 DOI: 10.1093/advances/nmab035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is unique among all minerals in that humans have no regulatable excretory pathway to eliminate excess iron after it is absorbed. Iron deficiency anemia occurs when absorbed iron is not sufficient to meet body iron demands, whereas iron overload and subsequent deposition of iron in key organs occur when absorbed iron exceeds body iron demands. Over time, iron accumulation in the body can increase risk of chronic diseases, including cirrhosis, diabetes, and heart failure. To date, only ∼30% of the interindividual variability in iron absorption can be captured by iron status biomarkers or iron regulatory hormones. Much of the regulation of iron absorption may be under genetic control, but these pathways have yet to be fully elucidated. Genome-wide and candidate gene association studies have identified several genetic variants that are associated with variations in iron status, but the majority of these data were generated in European populations. The purpose of this review is to summarize genetic variants that have been associated with alterations in iron status and to highlight the influence of ethnicity on the risk of iron deficiency or overload. Using extant data in the literature, linear mixed-effects models were constructed to explore ethnic differences in iron status biomarkers. This approach found that East Asians had significantly higher concentrations of iron status indicators (serum ferritin, transferrin saturation, and hemoglobin) than Europeans, African Americans, or South Asians. African Americans exhibited significantly lower hemoglobin concentrations compared with other ethnic groups. Further studies of the genetic basis for ethnic differences in iron metabolism and on how it affects disease susceptibility among different ethnic groups are needed to inform population-specific recommendations and personalized nutrition interventions for iron-related disorders.
Collapse
Affiliation(s)
- Wanhui Kang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Alexa Barad
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA,Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
11
|
Sharma P, Bhatia P, Singh M, Das R, Jain R, Bansal D, Attri SV, Trehan A. A case series highlighting structured hematological, biochemical and molecular approach to clinical oral iron refractoriness in children: A pressing need for a 3-tier system for classification of variants in TMPRSS6 gene. Blood Cells Mol Dis 2021; 89:102569. [PMID: 33930800 DOI: 10.1016/j.bcmd.2021.102569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
In current study, we discuss clinical oral iron refractoriness cases and highlight need for a classification system to define TMPRSS6 gene variants. Out of 231 cases of microcytic hypochromic anemia screened (Sept 2019-Dec 2020), 17 cases (7.35%) with unexplained iron refractoriness (URIDA) phenotype were enrolled after ruling out secondary causes and compliance related issues. 11 (65%) had absent/negligible response (0-0.4 g/dl Hb rise) while 6 (35%) partial (0.5-0.9 g/dl Hb rise) response to initial iron trial at 4-8 weeks. Of these 17 cases, inappropriate hepcidin levels (normal-high) were noted in 11/15 (73%) tested. TSAT/Hepcidin ratio was low in 13/15 (87%). Genetic analysis of TMPRSS6 gene by NGS revealed variations in 15/17 (88%) cases. 10/15 cases with variations harbored a common splice site INDEL that was noted to be pathogenic SNP (MAF-0.19) on case-control association study in combination with other known missense SNPs with an odds ratio of 6.38 and relative risk 2.66 (p- < 0.01).
Collapse
Affiliation(s)
- Pankaj Sharma
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, India
| | - Prateek Bhatia
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, India
| | - Minu Singh
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, India
| | - Reena Das
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Jain
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, India
| | - Deepak Bansal
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatric Centre, India
| | - Amita Trehan
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, India.
| |
Collapse
|
12
|
The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood 2021; 136:989-1001. [PMID: 32384154 DOI: 10.1182/blood.2020005222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease that plays a key role in suppressing hepatic hepcidin expression. MT2 is synthesized as a zymogen and undergoes autocleavage for activation. Previous studies suggest that MT2 suppresses hepcidin by cleaving hemojuvelin and other components of the bone morphogenetic protein-signaling pathway. However, the underlying mechanism is still debatable. Here we dissected the contributions of the nonproteolytic and proteolytic activities of Mt2 by taking advantage of Mt2 mutants and Tmprss6-/- mice. Studies of the protease-dead full-length Mt2 (Mt2S762A) and the truncated Mt2 that lacks the catalytic domain (Mt2mask) indicate that the catalytic domain, but not its proteolytic activity, was required for Mt2 to suppress hepcidin expression. This process was likely accomplished by the binding of Mt2 ectodomain to Hjv and Hfe. We found that Mt2 specifically cleaved the key components of the hepcidin-induction pathway, including Hjv, Alk3, ActRIIA, and Hfe, when overexpressed in hepatoma cells. Nevertheless, studies of a murine iron-refractory iron-deficiency anemia-causing mutant (Mt2I286F) in the complement protein subcomponents C1r/C1s, urchin embryonic growth factor, and bone morphogenetic protein 1 domain indicate that Mt2I286F can be activated, but it exhibited a largely compromised ability to suppress hepcidin expression. Coimmunoprecipitation analysis revealed that Mt2I286F, but not Mt2S762A, had reduced interactions with Hjv, ActRIIA, and Hfe. In addition, increased expression of a serine protease inhibitor, the hepatocyte growth factor activator inhibitor-2, in the liver failed to alter hepcidin. Together, these observations support the idea that the substrate interaction with Mt2 plays a determinant role and suggest that the proteolytic activity is not an appropriate target to modulate the function of MT2 for clinical applications.
Collapse
|
13
|
Timmer T, Tanck M, Penkett C, Stirrups K, Gleadall N, de Kort W, van der Schoot E, van den Hurk K. Genetic determinants of ferritin, haemoglobin levels and haemoglobin trajectories: results from Donor InSight. Vox Sang 2021; 116:755-765. [PMID: 33491795 DOI: 10.1111/vox.13066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Blood donors might develop iron deficiency as approximately 250 mg of iron is lost with every donation. Susceptibility to iron deficiency and low haemoglobin levels differs between individuals, which might be due to genetic variation. Therefore, the aim of this study was to investigate associations between single nucleotide polymorphisms (SNPs) and haemoglobin trajectories, haemoglobin levels and ferritin levels in blood donors. MATERIALS AND METHODS In 2655 donors participating in the observational cohort study Donor InSight-III (2015-2017), haemoglobin and ferritin levels were measured in venous EDTA whole blood and plasma samples, respectively. Haemoglobin trajectories (stable/declining) were determined by fitting growth-mixture models on repeated pre-donation capillary haemoglobin measurements. Genotyping was done using the UK Biobank - version 2 Axiom Array. Single SNP analyses adopting an additive genetic model on imputed genetic variants were performed for haemoglobin trajectories, haemoglobin levels and ferritin levels. Conditional analyses identified independent SNPs. RESULTS Twelve, twenty and twenty-four independent SNPs were associated with haemoglobin trajectories, haemoglobin levels and ferritin levels respectively (P < 1 x 10-5 ). Rs112016443 reached genome-wide significance for ferritin levels, which influences WDSUB1 expression. CONCLUSION Rs112016443 was genome-wide significantly associated with ferritin levels in Dutch donors. Further validation studies are needed, as well as studies towards underlying mechanisms and predicting iron deficiency using SNPs.
Collapse
Affiliation(s)
- Tiffany Timmer
- Department of Donor Medicine Research - Donor Studies, Sanquin Research, Amsterdam, The Netherlands.,Department of Public Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christopher Penkett
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.,NIHR BioResource, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Kathleen Stirrups
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.,NIHR BioResource, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Nicholas Gleadall
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.,Cambridge Biomedical Campus, NHS Blood and Transplant, Cambridge, UK
| | - Wim de Kort
- Department of Donor Medicine Research - Donor Studies, Sanquin Research, Amsterdam, The Netherlands.,Department of Public Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ellen van der Schoot
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
| | - Katja van den Hurk
- Department of Donor Medicine Research - Donor Studies, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Jia M, Wei M, Zhang Y, Zheng C. Transcriptomic Analysis of Streptococcus suis in Response to Ferrous Iron and Cobalt Toxicity. Genes (Basel) 2020; 11:genes11091035. [PMID: 32887434 PMCID: PMC7563783 DOI: 10.3390/genes11091035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing serious infections in swine and humans. Although metals are essential for life, excess amounts of metals are toxic to bacteria. Transcriptome-level data of the mechanisms for resistance to metal toxicity in S. suis are available for no metals other than zinc. Herein, we explored the transcriptome-level changes in S. suis in response to ferrous iron and cobalt toxicity by RNA sequencing. Many genes were differentially expressed in the presence of excess ferrous iron and cobalt. Most genes in response to cobalt toxicity showed the same expression trends as those in response to ferrous iron toxicity. qRT-PCR analysis of the selected genes confirmed the accuracy of RNA sequencing results. Bioinformatic analysis of the differentially expressed genes indicated that ferrous iron and cobalt have similar effects on the cellular processes of S. suis. Ferrous iron treatment resulted in down-regulation of several oxidative stress tolerance-related genes and up-regulation of the genes in an amino acid ABC transporter operon. Expression of several genes in the arginine deiminase system was down-regulated after ferrous iron and cobalt treatment. Collectively, our results suggested that S. suis alters the expression of multiple genes to respond to ferrous iron and cobalt toxicity.
Collapse
Affiliation(s)
- Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-1520-527-9658
| |
Collapse
|
15
|
Ścibior A, Hus I, Mańko J, Jawniak D. Evaluation of the level of selected iron-related proteins/receptors in the liver of rats during separate/combined vanadium and magnesium administration. J Trace Elem Med Biol 2020; 61:126550. [PMID: 32464446 DOI: 10.1016/j.jtemb.2020.126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Poland.
| | - Iwona Hus
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Joanna Mańko
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| | - Dariusz Jawniak
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| |
Collapse
|
16
|
Belot A, Gourbeyre O, Fay A, Palin A, Besson-Fournier C, Latour C, Hopkins CR, Tidmarsh GF, Coppin H, Roth MP, Ritter MR, Hong CC, Meynard D. LJ000328, a novel ALK2/3 kinase inhibitor, represses hepcidin and significantly improves the phenotype of IRIDA. Haematologica 2019; 105:e385-e388. [PMID: 31806689 DOI: 10.3324/haematol.2019.236133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Audrey Belot
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Ophélie Gourbeyre
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Alexis Fay
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Anais Palin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Chloé Latour
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Hélène Coppin
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Marie-Paule Roth
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Charles C Hong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Delphine Meynard
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
17
|
Béliveau F, Tarkar A, Dion SP, Désilets A, Ghinet MG, Boudreault PL, St-Georges C, Marsault É, Paone D, Collins J, Macphee CH, Campobasso N, Groy A, Cottom J, Ouellette M, Pope AJ, Leduc R. Discovery and Development of TMPRSS6 Inhibitors Modulating Hepcidin Levels in Human Hepatocytes. Cell Chem Biol 2019; 26:1559-1572.e9. [DOI: 10.1016/j.chembiol.2019.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
|
18
|
Shokrgozar N, Golafshan HA. Molecular perspective of iron uptake, related diseases, and treatments. Blood Res 2019; 54:10-16. [PMID: 30956958 PMCID: PMC6439303 DOI: 10.5045/br.2019.54.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency anemia and anemia of chronic disorders are the most common types of anemia. Disorders of iron metabolism lead to different clinical scenarios such as iron deficiency anemia, iron overload, iron overload with cataract and neurocognitive disorders. Regulation of iron in the body is a complex process and different regulatory proteins are involved in iron absorption and release from macrophages into hematopoietic tissues. Mutation in these regulatory genes is the most important cause of iron refractory iron deficiency anemia (IRIDA). This review provides a glance into the iron regulation process, diseases related to iron metabolism, and appropriate treatments at the molecular level.
Collapse
Affiliation(s)
- Negin Shokrgozar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Allah Golafshan
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Kong X, Dong X, Yang S, Qian J, Yang J, Jiang Q, Li X, Wang B, Yan D, Lu S, Zhu L, Li G, Li M, Yi S, Deng M, Sun L, Zhou X, Mao H, Gou X. Natural selection on TMPRSS6 associated with the blunted erythropoiesis and improved blood viscosity in Tibetan pigs. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:11-22. [PMID: 30885835 DOI: 10.1016/j.cbpb.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Tibetan pigs, indigenous to Tibetan plateau, are well adapted to hypoxia. So far, there have been not any definitively described genes and functional sites responsible for hypoxia adaptation for the Tibetan pig. The whole genome-wide association studies in human suggested that genetic variations in TMPRSS6 was associated with hemoglobin concentration (HGB) and red cell counts (RBC). Here we conducted resequencing of the nearly entire genomic region (40.1 kb) of the candidate gene TMPRSS6 in 40 domestic pigs and 40 wild boars along continuous altitudes and identified 708 SNPs, in addition to an indel (CGTG/----) in the intron 10. We conduct the CGTG indel in 838 domestic pigs, both the CGTG deletion frequency and the pairwise r2 linkage disequilibrium showed an increase with elevated altitudes, suggesting that TMPRSS6 has been under Darwinian positive selection. As the conserved core sequence of hypoxia-response elements (HREs), the deletion of CGTG in Tibetan pigs decreased the expression levels of TMPRSS6 mRNA and protein in the liver revealed by real-time quantitative PCR and western blot, respectively. We compared domestic pigs and Tibetan pigs living continuous altitudes, found that the blood-related traits with the increase of altitude, however, the HGB did not increase with the elevation in Tibetan pigs. Genotype association analysis results dissected a genetic effect on reducing HGB by 13.25 g/L in Gongbo'gyamda Tibetan pigs, decreasing mean corpuscular volume (MCV) by 4.79 fl in Diqing Tibetan pigs. In conclusion, the CGTG deletion of TMPRSS6 resulted in lower HGB and smaller MCV, which could reflect a blunting erythropoiesis and improving blood viscosity as well as erythrocyte deformability. It remains to be determined whether a blunting of erythropoiesis for TMPRSS6 or others genetic effects are the physiological adaptations among Tibetan pigs.
Collapse
Affiliation(s)
- Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhua Qian
- Department of Animal Science, Yuxi Agriculture Vocational-Technical College, Yuxi, Yunnan, China
| | - Jianfa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Xingrun Li
- Department of Animal Science, Dali Vocational and Technical College of Agriculture and Forestry, Dali, Yunnan, China
| | - Bo Wang
- Research Experimental Center, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gen Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minjuan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengnan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingyue Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Liyuan Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaoxia Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Xiao Gou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Jin L, Frazer DM, Lu Y, Wilkins SJ, Ayton S, Bush A, Anderson GJ. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics 2019; 11:959-967. [DOI: 10.1039/c8mt00370j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Knockout mice with constitutively low ferroportin show that ferroportin does not make a major contribution to manganese homeostasis in vivo.
Collapse
Affiliation(s)
- Lian Jin
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
- Faculty of Medicine
| | - David M. Frazer
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Yan Lu
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Sarah J. Wilkins
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre
- Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Melbourne
- Australia
| | - Ashley Bush
- Melbourne Dementia Research Centre
- Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Melbourne
- Australia
| | - Gregory J. Anderson
- Iron Metabolism Laboratory
- QIMR Berghofer Medical Research Institute
- Brisbane
- Australia
- Faculty of Medicine
| |
Collapse
|
21
|
Associations between single nucleotide polymorphisms and erythrocyte parameters in humans: A systematic literature review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:58-67. [DOI: 10.1016/j.mrrev.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/15/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
|
22
|
Mao P, Wortham AM, Enns CA, Zhang AS. The catalytic, stem, and transmembrane portions of matriptase-2 are required for suppressing the expression of the iron-regulatory hormone hepcidin. J Biol Chem 2018; 294:2060-2073. [PMID: 30559294 DOI: 10.1074/jbc.ra118.006468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Matriptase-2 (MT2) is a type-II transmembrane, trypsin-like serine protease that is predominantly expressed in the liver. It is a key suppressor for the expression of hepatic hepcidin, an iron-regulatory hormone that is induced via the bone morphogenetic protein signaling pathway. A current model predicts that MT2 suppresses hepcidin expression by cleaving multiple components of the induction pathway. MT2 is synthesized as a zymogen that undergoes autocleavage for activation and shedding. However, the biologically active form of MT2 and, importantly, the contributions of different MT2 domains to its function are largely unknown. Here we examined the activities of truncated MT2 that were generated by site-directed mutagenesis or Gibson assembly master mix, and found that the stem region of MT2 determines the specificity and efficacy for substrate cleavage. The transmembrane domain allowed MT2 activation after reaching the plasma membrane, and the cytoplasmic domain facilitated these processes. Further in vivo rescue studies indicated that the entire extracellular and transmembrane domains of MT2 are required to correct the low-hemoglobin, low-serum iron, and high-hepcidin status in MT2 -/- mice. Unlike in cell lines, no autocleavage of MT2 was detected in vivo in the liver, implying that MT2 may also function independently of its proteolytic activity. In conjunction with our previous studies implicating the cytoplasmic domain as an intracellular iron sensor, these observations reveal the importance of each MT2 domain for MT2-mediated substrate cleavage and for its biological function.
Collapse
Affiliation(s)
- Peizhong Mao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
23
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
24
|
Xia F, Jiang B, Chen Y, Du X, Peng Y, Wang W, Wang Z, Li X. Prediction of novel target genes and pathways involved in tall cell variant papillary thyroid carcinoma. Medicine (Baltimore) 2018; 97:e13802. [PMID: 30572540 PMCID: PMC6319788 DOI: 10.1097/md.0000000000013802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tall cell variant papillary thyroid carcinoma (TCPTC) is reportedly associated with aggressive clinicopathological parameters and poor outcomes; however, the molecular mechanisms underlying TCPTC remain poorly understood. METHODS The gene mutation types and mRNA expression profiles of patients with TCPTC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified. Pathways in the interaction network and the diagnostic approaches of candidate markers for TCPTC were investigated. RESULTS BRAF mutation was particularly prevalent in TCPTC with a mutation frequency of 78%. TCPTC was associated with a patient age >45 years, tumor multifocality, extrathyroidal extension, a higher T stage, advanced AJCC TNM stages, BRAF V600E mutation, and poor disease-free survival. We identified 4138 TCPTC-related DEGs and 301 TCPTC-specific DEGs. Intriguingly, the gene expression pattern revealed that the dysregulated levels of both putative oncogenes and tumor suppressors in TCPTC were higher than those in classical/conventional variant PTC (cPTC). Functional enrichment analyses revealed that these DEGs were involved in several cancer-related pathways. A protein-protein interaction (PPI) network was constructed from the 301 TCPTC-specific DEGs, and 3 subnetworks, and 8 hub genes were verified. Receiver operating characteristic (ROC) analyses revealed that 6 hub genes, including COL5A1, COL1A1, COL10A1, COL11A1, CCL20, and CXCL5, could be used not only for the differential diagnosis of PTC from normal samples, but also for the differential diagnosis of TCPTC from cPTC samples. CONCLUSIONS Our study might provide further insights into the investigations of the tumorigenesis mechanism of TCPTC and assists in the discovery of novel candidate diagnostic markers for TCPTC.
Collapse
|
25
|
Zhang Y, Guo Y, Ma J, Lu XZ, Luo XQ. [Association of FokI rs2228570 and TMPRSS6 rs855791 polymorphisms with cow's milk protein allergy in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:641-646. [PMID: 30111473 PMCID: PMC7389751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To study the association of polymorphisms of FokI rs2228570 in the vitamin D receptor (VDR) gene and TMPRSS6 rs855791 with cow's milk protein allergy (CMPA) in children. METHODS Quantitative real-time PCR was used to analyze the single nucleotide polymorphisms of FokI rs2228570 in the VDR gene and TMPRSS6 rs855791 in 100 children with CMPA and 100 healthy children (control group). The multivariate logistic regression model was used to identify the risk factors for CMPA. RESULTS There were significant differences in the frequencies of CC, CT, and TT genotypes of TMPRSS6 rs855791 between the CMPA and control groups (P=0.008), and the CMPA group had a significantly higher frequency of TT genotype. The multivariate logistic regression analysis showed that the children with TT genotype of rs855791 had an increased risk of CMPA (OR=3.473, P=0.011). However, there was no significant difference in the genotype distribution of FokI rs2228570 in the VDR gene between the two groups (P=0.686). CONCLUSIONS TMPRSS6 rs855791 polymorphism is associated with CMPA in children, and TT genotype may be the susceptible genotype of CMPA. FokI rs2228570 polymorphism is not associated with CMPA.
Collapse
Affiliation(s)
- Ye Zhang
- Guangdong Women and Children's Hospital Affiliated to Guangzhou Medical University, Guangzhou 511400, China.
| | | | | | | | | |
Collapse
|
26
|
Zhang Y, Guo Y, Ma J, Lu XZ, Luo XQ. [Association of FokI rs2228570 and TMPRSS6 rs855791 polymorphisms with cow's milk protein allergy in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:641-646. [PMID: 30111473 PMCID: PMC7389751 DOI: 10.7499/j.issn.1008-8830.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study the association of polymorphisms of FokI rs2228570 in the vitamin D receptor (VDR) gene and TMPRSS6 rs855791 with cow's milk protein allergy (CMPA) in children. METHODS Quantitative real-time PCR was used to analyze the single nucleotide polymorphisms of FokI rs2228570 in the VDR gene and TMPRSS6 rs855791 in 100 children with CMPA and 100 healthy children (control group). The multivariate logistic regression model was used to identify the risk factors for CMPA. RESULTS There were significant differences in the frequencies of CC, CT, and TT genotypes of TMPRSS6 rs855791 between the CMPA and control groups (P=0.008), and the CMPA group had a significantly higher frequency of TT genotype. The multivariate logistic regression analysis showed that the children with TT genotype of rs855791 had an increased risk of CMPA (OR=3.473, P=0.011). However, there was no significant difference in the genotype distribution of FokI rs2228570 in the VDR gene between the two groups (P=0.686). CONCLUSIONS TMPRSS6 rs855791 polymorphism is associated with CMPA in children, and TT genotype may be the susceptible genotype of CMPA. FokI rs2228570 polymorphism is not associated with CMPA.
Collapse
Affiliation(s)
- Ye Zhang
- Guangdong Women and Children's Hospital Affiliated to Guangzhou Medical University, Guangzhou 511400, China.
| | | | | | | | | |
Collapse
|
27
|
Matriptase-2 deficiency protects from obesity by modulating iron homeostasis. Nat Commun 2018; 9:1350. [PMID: 29636509 PMCID: PMC5893555 DOI: 10.1038/s41467-018-03853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Alterations in iron status have frequently been associated with obesity and other metabolic disorders. The hormone hepcidin stands out as a key regulator in the maintenance of iron homeostasis by controlling the main iron exporter, ferroportin. Here we demonstrate that the deficiency in the hepcidin repressor matriptase-2 (Tmprss6) protects from high-fat diet-induced obesity. Tmprss6−/− mice show a significant decrease in body fat, improved glucose tolerance and insulin sensitivity, and are protected against hepatic steatosis. Moreover, these mice exhibit a significant increase in fat lipolysis, consistent with their dramatic reduction in adiposity. Rescue experiments that block hepcidin up-regulation and restore iron levels in Tmprss6−/− mice via anti-hemojuvelin (HJV) therapy, revert the obesity-resistant phenotype of Tmprss6−/− mice. Overall, this study describes a role for matritpase-2 and hepcidin in obesity and highlights the relevance of iron regulation in the control of adipose tissue function. Iron homeostasis dysfunctions have been associated with several metabolic disorders including obesity, steatosis and diabetes. Here the authors demonstrate that the hepcidin repressor matriptase-2 regulates adiposity and its deficiency protects mice against obesity and promotes lipolysis.
Collapse
|
28
|
Dion SP, Béliveau F, Désilets A, Ghinet MG, Leduc R. Transcriptome analysis reveals TMPRSS6 isoforms with distinct functionalities. J Cell Mol Med 2018; 22:2498-2509. [PMID: 29441715 PMCID: PMC5867103 DOI: 10.1111/jcmm.13562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
TMPRSS6 (matriptase-2) is a type II transmembrane serine protease involved in iron homoeostasis. At the cell surface of hepatocytes, TMPRSS6 cleaves haemojuvelin (HJV) and regulates the BMP/SMAD signalling pathway leading to production of hepcidin, a key regulator of iron absorption. Although four TMPRSS6 human isoforms and three mice Tmprss6 isoforms are annotated in databases (Ensembl and RefSeq), their relative expression or activity has not been studied. Analyses of RNA-seq data and RT-PCR from human tissues reveal that TMPRSS6 isoform 1 (TMPRSS6-1) and 3 are mostly expressed in human testis while TMPRSS6-2 and TMPRSS6-4 are the main transcripts expressed in human liver, testis and pituitary. Furthermore, we confirm the existence and analyse the relative expression of three annotated mice Tmprss6 isoforms. Using heterologous expression in HEK293 and Hep3B cells, we show that all human TMPRSS6 isoforms reach the cell surface but only TMPRSS6-1 undergoes internalization. Moreover, truncated TMPRSS6-3 or catalytically altered TMPRSS6-4 interact with HJV and prevent its cleavage by TMPRSS6-2, suggesting their potential role as dominant negative isoforms. Taken together, our results highlight the importance of understanding the precise function of each TMPRSS6 isoforms both in human and in mouse.
Collapse
Affiliation(s)
- Sébastien P. Dion
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - François Béliveau
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Antoine Désilets
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Mariana Gabriela Ghinet
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Richard Leduc
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| |
Collapse
|
29
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
30
|
Abstract
The activity of proteases is tightly regulated, and dysregulation is linked to a variety of human diseases. For this reason, ABPP is a well-suited method to study protease biology and the design of protease probes has pushed the boundaries of ABPP. The development of highly selective protease probes is still a challenging task. After an introduction, the first section of this chapter discusses several strategies to enable detection of a single active protease species. These range from the usage of non-natural amino acids, combination of probes with antibodies, and engineering of the target proteases. A next section describes the different types of detection tags that facilitate the read-out possibilities including various types of imaging methods and mass spectrometry-based target identification. The power of protease ABPP is illustrated by examples for a selected number of proteases. It is expected that some protease probes that have been evaluated in animal models of human disease will find translation into clinical application in the near future.
Collapse
|
31
|
Zehra A, Saleh Abdullah SM, Saboor M, Moinuddin. Effect of Intravenous Iron Supplementation on Hepcidin Levels in Iron Deficient Pregnant Females in Second and Third Trimester. Indian J Hematol Blood Transfus 2017; 33:396-401. [PMID: 28824243 PMCID: PMC5544634 DOI: 10.1007/s12288-016-0736-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022] Open
Abstract
Objective of the study was to assess effect of iron therapy on serum hepcidin levels in iron deficient pregnant women and its correlation with hemoglobin, serum iron profile and C-reactive protein (CRP). A total of 100 pregnant women were enrolled in the study; 25 were included in the "control group" having normal hematological and biochemical parameters while 75 iron deficient pregnant women were enrolled in the "patient group" with low hematological and biochemical parameters. CRP was done to rule out inflammation and to observe its association with hepcidin. Intravenous iron was administered to the patient group. Post treatment CBC, serum iron, serum ferritin and serum hepcidin were determined. Difference between pre and post treatment hemoglobin, serum iron, serum ferritin and serum hepcidin levels were determined and correlation among them was calculated. Post treatment serum hepcidin levels were significantly higher than pretreatment level (p = 0.001). However, no correlation was seen between serum hepcidin, serum iron, serum ferritin and hemoglobin. Hepcidin levels remain low during pregnancy as there is increased demand for iron in pregnancy. Iron supplementation results in increased hepcidin levels; however no mathematical correlation was found between serum hepcidin level and serum iron profile.
Collapse
Affiliation(s)
- Amtuz Zehra
- Department of Pathology, Baqai Medical University, Karachi, Pakistan
| | | | - Muhammad Saboor
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Moinuddin
- Baqai Institute of Hematology, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
32
|
Rare coding variants pinpoint genes that control human hematological traits. PLoS Genet 2017; 13:e1006925. [PMID: 28787443 PMCID: PMC5560754 DOI: 10.1371/journal.pgen.1006925] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/17/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of rare coding or splice site variants remains the most straightforward strategy to link genes with human phenotypes. Here, we analyzed the association between 137,086 rare (minor allele frequency (MAF) <1%) coding or splice site variants and 15 hematological traits in up to 308,572 participants. We found 56 such rare coding or splice site variants at P<5x10-8, including 31 that are associated with a blood-cell phenotype for the first time. All but one of these 31 new independent variants map to loci previously implicated in hematopoiesis by genome-wide association studies (GWAS). This includes a rare splice acceptor variant (rs146597587, MAF = 0.5%) in interleukin 33 (IL33) associated with reduced eosinophil count (P = 2.4x10-23), and lower risk of asthma (P = 2.6x10-7, odds ratio [95% confidence interval] = 0.56 [0.45-0.70]) and allergic rhinitis (P = 4.2x10-4, odds ratio = 0.55 [0.39-0.76]). The single new locus identified in our study is defined by a rare p.Arg172Gly missense variant (rs145535174, MAF = 0.05%) in plasminogen (PLG) associated with increased platelet count (P = 6.8x10-9), and decreased D-dimer concentration (P = 0.018) and platelet reactivity (P<0.03). Finally, our results indicate that searching for rare coding or splice site variants in very large sample sizes can help prioritize causal genes at many GWAS loci associated with complex human diseases and traits.
Collapse
|
33
|
Pinto J, Nobre de Jesus G, Palma Anselmo M, Gonçalves L, Brás D, Madeira Lopes J, Meneses J, Victorino R, Faustino P. Iron Refractory Iron Deficiency Anemia in Dizygotic Twins Due to a Novel TMPRSS6 Gene Mutation in Addition to Polymorphisms Associated With High Susceptibility to Develop Ferropenic Anemia. J Investig Med High Impact Case Rep 2017; 5:2324709617701776. [PMID: 28491880 PMCID: PMC5405884 DOI: 10.1177/2324709617701776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 11/17/2022] Open
Abstract
Iron refractory iron deficiency anemia (IRIDA) is an autosomal recessive ferropenic anemia. Its hypochromic microcytic pattern is associated with low transferrin saturation, normal-high ferritin, and inappropriately high hepcidin level. This entity is caused by mutants of the TMPRSS6 gene that encodes the protein matriptase II, which influences hepcidin expression, an iron metabolism counterregulatory protein. We report two 29-year-old dizygotic female twins with ferropenic, hypochromic microcytic anemia with 20 years of evolution, refractory to oral iron therapy. After exclusion of gastrointestinal etiologies, IRIDA diagnosis was suspected and a novel mutation in the TMPRSS6 gene was identified. It was found in intron 11 (c.1396+4 A>T) and seems to affect the gene expression. In addition, 3 polymorphisms already associated with a higher risk of developing iron deficiency anemia were also found (D521D, V736A, and Y739Y). Our case reports an undescribed mutation causing IRIDA and supports the hypothesis that this clinical syndrome may be more common than previously thought and its genetics more heterogeneous than initially described.
Collapse
Affiliation(s)
| | | | | | - Lúcia Gonçalves
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Daniela Brás
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | | | | - Paula Faustino
- Universidade de Lisboa, Lisboa, Portugal.,Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| |
Collapse
|
34
|
Antalis TM, Conway GD, Peroutka RJ, Buzza MS. Membrane-anchored proteases in endothelial cell biology. Curr Opin Hematol 2016; 23:243-52. [PMID: 26906027 DOI: 10.1097/moh.0000000000000238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The endothelial cell plasma membrane is a metabolically active, dynamic, and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-anchored proteases may be expressed by endothelial cells as well as mural cells and leukocytes with distribution both inside and outside of the vascular system. Here, we will review the recent advances in our understanding of the direct and indirect roles of membrane-anchored proteases in vascular biology and the possible conservation of their extravascular functions in endothelial cell biology. RECENT FINDINGS Membrane-anchored proteases belonging to the serine or metalloprotease families contain amino-terminal or carboxy-terminal domains, which serve to tether their extracellular protease domains directly at the plasma membrane. This architecture enables protease function and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell membrane. These proteases are proving to be key components of the cell machinery for regulating vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, extracellular matrix proteolysis, and angiogenesis. SUMMARY A complex picture of the interdependence between membrane-anchored protease localization and function is emerging that may provide a mechanism for precise coordination of extracellular signals and intracellular responses through communication with the cytoskeleton and with cellular signaling molecules.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
35
|
Donker AE, Schaap CC, Novotny VMJ, Smeets R, Peters TMA, van den Heuvel BLP, Raphael MF, Rijneveld AW, Appel IM, Vlot AJ, Versluijs AB, van Gelder M, Granzen B, Janssen MC, Rennings AJ, van de Veerdonk FL, Brons PP, Bakkeren DL, Nijziel MR, Vlasveld LT, Swinkels DW. Iron refractory iron deficiency anemia: a heterogeneous disease that is not always iron refractory. Am J Hematol 2016; 91:E482-E490. [PMID: 27643674 PMCID: PMC6586001 DOI: 10.1002/ajh.24561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
TMPRSS6 variants that affect protein function result in impaired matriptase‐2 function and consequently uninhibited hepcidin production, leading to iron refractory iron deficiency anemia (IRIDA). This disease is characterized by microcytic, hypochromic anemia and serum hepcidin values that are inappropriately high for body iron levels. Much is still unknown about its pathophysiology, genotype–phenotype correlation, and optimal clinical management. We describe 14 different TMPRSS6 variants, of which 9 are novel, in 21 phenotypically affected IRIDA patients from 20 families living in the Netherlands; 16 out of 21 patients were female. In 7 out of 21 cases DNA sequencing and multiplex ligation dependent probe amplification demonstrated only heterozygous TMPRSS6 variants. The age at presentation, disease severity, and response to iron supplementation were highly variable, even for patients and relatives with similar TMPRSS6 genotypes. Mono‐allelic IRIDA patients had a milder phenotype with respect to hemoglobin and MCV and presented significantly later in life with anemia than bi‐allelic patients. Transferrin saturation (TSAT)/hepcidin ratios were lower in IRIDA probands than in healthy relatives. Most patients required parenteral iron. Genotype alone was not predictive for the response to oral iron. We conclude that IRIDA is a genotypically and phenotypically heterogeneous disease. The high proportion of female patients and the discrepancy between phenotypes of probands and relatives with the same genotype, suggest a complex interplay between genetic and acquired factors in the pathogenesis of IRIDA. In the absence of inflammation, the TSAT/hepcidin ratio is a promising diagnostic tool, even after iron supplementation has been given. Am. J. Hematol. 91:E482–E490, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Albertine E. Donker
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegen, The Netherlands
| | - Charlotte C.M. Schaap
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegen, The Netherlands
| | - Vera M. J. Novotny
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Department of HematologyRadboud University Medical CenterNijmegen The Netherlands
| | - Roel Smeets
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegen, The Netherlands
| | - Tessa M. A. Peters
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegen, The Netherlands
| | - Bert L. P. van den Heuvel
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegen, The Netherlands
| | - Martine F. Raphael
- Department of Pediatric HematologyUniversity Medical CenterUtrecht The Netherlands
| | | | - Inge M. Appel
- Department of Pediatric HematologyErasmus MC, Sophia Children's Hospital Rotterdam The Netherlands
| | - Andre J. Vlot
- Department of Internal MedicineRijnstate Hospital Arnhem, Arnhem The Netherlands
| | | | | | - Bernd Granzen
- Department of PediatricsMaastricht UMCMaastricht The Netherlands
| | - Mirian C.H. Janssen
- Department of Internal MedicineRadboud University Medical CenterNijmegen The Netherlands
| | - Alexander J.M. Rennings
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Department of Internal MedicineRadboud University Medical CenterNijmegen The Netherlands
| | | | - Paul P.T. Brons
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Department of Pediatric Hemato‐OncologyRadboud University Medical CenterNijmegen, The Netherlands
| | - Dirk L. Bakkeren
- Department of Laboratory MedicineMáxima Medical Center, VeldhovenEindhoven The Netherlands
| | - Marten R. Nijziel
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Department of HematologyRadboud University Medical CenterNijmegen The Netherlands
- Department of Hemato‐OncologyMáxima Medical CenterVeldhoven Eindhoven The Netherlands
| | - L. Thom Vlasveld
- Department of Internal MedicineBronovo HospitalThe Hague The Netherlands
| | - Dorine W. Swinkels
- Radboudumc Expert Center for Iron Disorders, Radboud University Medical CenterNijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegen, The Netherlands
| |
Collapse
|
36
|
Arsenault V, Mailloux C, Bonnefoy A, Lemyre E, Pastore Y. Iron-Refractory Iron Deficiency Anemia May Not Lead to Neurocognitive Dysfunction: A Case Report. Pediatrics 2016; 138:peds.2015-3608. [PMID: 27365303 DOI: 10.1542/peds.2015-3608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/18/2022] Open
Abstract
Iron deficiency is a common cause of anemia (IDA) in infancy and can be associated with neurocognitive impairments. Iron-refractory IDA (IRIDA) has recently been described as an inherited cause of IDA due to loss-of-function mutations in the TMPRSS6 gene. IRIDA is characterized by a lack of response to iron replacement. Here we report a new case of IRIDA with its biological parameters and its functional consequences, including neuropsychological impact. The latter was evaluated by the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition and subtests. We report a 5-year-old French Canadian boy who was incidentally diagnosed with a severe microcytic anemia at 2 years of age (hemoglobin 52 g/L, mean corpuscular volume 50 fL). Except mild pallor, he was asymptomatic of his anemia. Although he had a slight response to intravenous iron therapy, his hemoglobin remained <92 g/L, with persistent microcytosis, low serum iron, but normal ferritin levels. Blood hepcidin level was higher than those of his parents and control (patient 11.2 nM, father 9.06 nM, mother 4.07 nM). Compound heterozygosity for TMPRSS6 paternally inherited c.1324G>A and maternally inherited c.1807G>C mutations were eventually identified. The patient had normal development and growth. Neuropsychological evaluation revealed excellent performance, with high Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition scores (ie, 82nd percentile for both global intelligence and general ability index). In conclusion, TMPRSS6 c.1807G>C in conjunction with c.1324G>A results in IRIDA. In contrast to the usual form of IDA, IRIDA may not be associated with neuropsychological deficits.
Collapse
Affiliation(s)
- Valérie Arsenault
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Chantal Mailloux
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Arnaud Bonnefoy
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Emmanuelle Lemyre
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Yves Pastore
- CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Gozzelino R, Arosio P. Iron Homeostasis in Health and Disease. Int J Mol Sci 2016; 17:E130. [PMID: 26805813 PMCID: PMC4730371 DOI: 10.3390/ijms17010130] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.
Collapse
Affiliation(s)
- Raffaella Gozzelino
- Inflammation and Neurodegeneration Laboratory, Chronic Diseases Research Center (CEDOC), Nova Medical School (NMS)/Faculdade de Ciências Médicas, University of Lisbon, Lisbon 1150-082, Portugal.
| | - Paolo Arosio
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia 25123, Italy.
| |
Collapse
|
38
|
Miseta A, Nagy J, Nagy T, Poór VS, Fekete Z, Sipos K. Hepcidin and its potential clinical utility. Cell Biol Int 2015; 39:1191-202. [PMID: 26109250 DOI: 10.1002/cbin.10505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
A number of pathophysiological conditions are related to iron metabolism disturbances. Some of them are well known, others are newly discovered or special. Hepcidin is a newly identified iron metabolism regulating hormone, which could be a promising biomarker for many disorders. In this review, we provide background information about mammalian iron metabolism, cellular iron trafficking, and the regulation of expression of hepcidin. Beside these molecular biological processes, we summarize the methods that have been used to determine blood and urine hepcidin levels and present those pathological conditions (cancer, inflammation, neurological disorders) when hepcidin measurement may have clinical relevance.
Collapse
Affiliation(s)
- Attila Miseta
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Tamas Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Viktor Soma Poór
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Zsuzsanna Fekete
- Department of Medical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Rokus Street 2. Pecs, Hungary
| |
Collapse
|
39
|
Plasma Concentrations of Hepcidin in Anemic Zimbabwean Infants. PLoS One 2015; 10:e0135227. [PMID: 26252205 PMCID: PMC4529326 DOI: 10.1371/journal.pone.0135227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 07/20/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Anemia in infancy is a global public health problem. We evaluated the relative contributions of iron deficiency and inflammation to infant anemia. METHODS We measured plasma hepcidin, ferritin, soluble transferrin receptor (sTfR), alpha-1-acid glycoprotein and C-reactive protein (CRP) by ELISA on archived plasma from 289 HIV-unexposed anemic or non-anemic Zimbabwean infants at ages 3 mo, 6 mo and 12 mo. Among anemic infants, we determined the proportion with iron-deficiency anemia (IDA) and anemia of inflammation (AI). We undertook regression analyses of plasma hepcidin and anemia status, adjusting for sex, age and birthweight. RESULTS Anemic infants at 3 mo were more stunted and had higher CRP (median 0.45 vs 0.21 mg/L; P = 0.037) and hepcidin (median 14.7 vs 9.7 ng/mL; P = 0.022) than non-anemic infants, but similar levels of ferritin and sTfR; 11% infants had IDA and 15% had AI. Anemic infants at 6 mo had higher hepcidin (median 7.9 vs 4.5 ng/mL; P = 0.016) and CRP (median 2.33 vs 0.32 mg/L; P<0.001), but lower ferritin (median 13.2 vs 25.1 μg/L; P<0.001) than non-anemic infants; 56% infants had IDA and 12% had AI. Anemic infants at 12 mo had lower ferritin (median 3.2 vs 22.2 μg/L; P<0.001) and hepcidin (median 0.9 vs 1.9 ng/mL; P = 0.019), but similar CRP levels; 48% infants had IDA and 8% had AI. Comparing anemic with non-anemic infants, plasma hepcidin was 568% higher, 405% higher and 64% lower at 3 mo, 6 mo and 12 mo, respectively, after adjusting for sex and birthweight (all p<0.01). Plasma hepcidin declined significantly with age among anemic but not non-anemic infants. Girls had 61% higher hepcidin than boys, after adjusting for age, anemia and birthweight (p<0.001). CONCLUSION Anemia is driven partly by inflammation early in infancy, and by iron deficiency later in infancy, with plasma hepcidin concentrations reflecting the relative contribution of each. However, there is need to better characterize the drivers of hepcidin during infancy in developing countries.
Collapse
|
40
|
Gozzelino R, Arosio P. The importance of iron in pathophysiologic conditions. Front Pharmacol 2015; 6:26. [PMID: 25759669 PMCID: PMC4338679 DOI: 10.3389/fphar.2015.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| |
Collapse
|