1
|
Deng R, Li J, Wu H, Wang M. Mechanistic insight into the adjuvant effect of co-exposure to ultrafine carbon black and high humidity on allergic asthma. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9653-9667. [PMID: 37794280 DOI: 10.1007/s10653-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
2
|
Mitrić A, Castellano I. Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radic Biol Med 2023; 208:672-683. [PMID: 37739139 DOI: 10.1016/j.freeradbiomed.2023.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Gamma-glutamyl transpeptidase (GGT) is an enzyme located on the outer membrane of the cells where it regulates the metabolism of glutathione (GSH), the most abundant intracellular antioxidant thiol. GGT plays a key role in the control of redox homeostasis, by hydrolyzing extracellular GSH and providing the cell with the recovery of cysteine, which is necessary for de novo intracellular GSH and protein biosynthesis. Therefore, the upregulation of GGT confers to the cell greater resistance to oxidative stress and the advantage of growing fast. Indeed, GGT is upregulated in inflammatory conditions and in the progression of various human tumors and it is involved in many physiological disorders related to oxidative stress, such as cardiovascular disease and diabetes. Currently, increased GGT expression is considered a marker of liver damage, cancer, and low-grade chronic inflammation. This review addresses the current knowledge on the structure-function relationship of GGT, focusing on human GGT, and provides information on the pleiotropic biological role and relevance of the enzyme as a target of drugs aimed at alleviating oxidative stress-related diseases. The development of new GGT inhibitors is critically discussed, as are the advantages and disadvantages of their potential use in clinics. Considering its pleiotropic activities and evolved functions, GGT is a potential "moonlighting protein".
Collapse
Affiliation(s)
- Aleksandra Mitrić
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
3
|
Zhang C, Xu H, Netto KG, Sokulsky LA, Miao Y, Mo Z, Meng Y, Du Y, Wu C, Han L, Zhang L, Liu C, Zhang G, Li F, Yang M. Inhibition of γ-glutamyl transferase suppresses airway hyperresponsiveness and airway inflammation in a mouse model of steroid resistant asthma exacerbation. Front Immunol 2023; 14:1132939. [PMID: 37377967 PMCID: PMC10292800 DOI: 10.3389/fimmu.2023.1132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Despite recent advances, there are limited treatments available for acute asthma exacerbations. Here, we investigated the therapeutic potential of GGsTop, a γ-glutamyl transferase inhibitor, on the disease with a murine model of asthma exacerbation. Methods GGsTop was administered to mice that received lipopolysaccharide (LPS) and ovalbumin (OVA) challenges. Airway hyperresponsiveness (AHR), lung histology, mucus hypersecretion, and collagen deposition were analyzed to evaluate the hallmark features of asthma exacerbation. The level of proinflammatory cytokines and glutathione were determined with/without GGsTop. The transcription profiles were also examined. Results GGsTop attenuates hallmark features of the disease with a murine model of LPS and OVA driven asthma exacerbation. Airway hyperresponsiveness (AHR), mucus hypersecretion, collagen deposition, and expression of inflammatory cytokines were dramatically inhibited by GGsTop treatment. Additionally, GGsTop restored the level of glutathione. Using RNA-sequencing and pathway analysis, we demonstrated that the activation of LPS/NFκB signaling pathway in airway was downregulated by GGsTop. Interestingly, further analysis revealed that GGsTop significantly inhibited not only IFNγ responses but also the expression of glucocorticoid-associated molecules, implicating that GGsTop profoundly attenuates inflammatory pathways. Conclusions Our study suggests that GGsTop is a viable treatment for asthma exacerbation by broadly inhibiting the activation of multiple inflammatory pathways.
Collapse
Affiliation(s)
- Cancan Zhang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huisha Xu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keilah G. Netto
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Leon A. Sokulsky
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yiyan Miao
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Mo
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Meng
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Du
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chengyong Wu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyou Han
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, Japan
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
4
|
Liu J, Yang N, Yi X, Wang G, Wang C, Lin H, Sun L, Wang F, Zhu D. Integration of transcriptomics and metabolomics to reveal the effect of ginsenoside Rg3 on allergic rhinitis in mice. Food Funct 2023; 14:2416-2431. [PMID: 36786409 DOI: 10.1039/d2fo03885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Increasing studies have demonstrated that ginsenoside Rg3 (Rg3) plays an important role in the prevention and treatment of various diseases, including allergic lower airway inflammation such as asthma. To investigate the role of Rg3 in allergic upper airway disease, the effect and therapeutic mechanism of Rg3 in allergic rhinitis (AR) were studied. Ovalbumin-induced AR model mice were intragastrically administered with Rg3. Nasal symptoms, levels of IgE, IL-4, IL-5, IL-13, SOD and MDA in serum, and histopathological analysis of nasal mucosa were used to evaluate the effect of Rg3 on ameliorating AR in mice. Moreover, nasal mucosa samples from the normal control group, AR model group and high dosage of Rg3 were collected to perform omics analysis. The differentially expressed genes and significantly changed metabolites were screened based on transcriptomics and metabolomics analyses, respectively. Integrative analysis was further performed to confirm the hub genes, metabolites and pathways. After Rg3 intervention, the nasal symptoms and inflammatory infiltration were effectively improved, the levels of IgE, IL-4, IL-5, IL-13 and MDA were significantly reduced, and the level of SOD was obviously increased. The results of the qRT-PCR assay complemented the transcriptomic findings. Integrated analysis showed that Rg3 played an anti-AR role mainly by regulating the interaction network, which was constructed by 12 genes, 8 metabolites and 4 pathways. Our findings suggested that Rg3 had a therapeutic effect on ovalbumin-induced AR in mice by inhibiting inflammation development and reducing oxidative stress. The present study could provide a potential natural agent for the treatment of AR.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Na Yang
- Clinical Pharmacy Department, First Hospital of Jilin University, Changchun 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun 130021, China
| |
Collapse
|
5
|
Gamma-glutamyl transferase and risk of all-cause and disease-specific mortality: a nationwide cohort study. Sci Rep 2023; 13:1751. [PMID: 36720971 PMCID: PMC9888340 DOI: 10.1038/s41598-022-25970-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023] Open
Abstract
Population-based data regarding the prognostic implication of gamma-glutamyl transferase (GGT) have been inconsistent. We examined the association of GGT with all-cause and disease-specific mortality. Using the Korean nationwide database, we included 9,687,066 subjects without viral hepatitis or cirrhosis who underwent a health examination in 2009. Subjects were classified into three groups by sex-specific tertile of serum GGT levels. The underlying causes of death were classified by 10th Revision of the International Classification of Diseases codes. During the median follow-up period of 8.3 years, 460,699 deaths were identified. All-cause mortality increased as serum GGT levels became higher (hazard ratio [HR], 95% confidence interval [CI] 1.05, 1.04-1.05 in the middle tertile, and 1.33, 1.32-1.34 in the high tertile) compared to the low tertile of serum GGT levels. Similar trends were observed for cardiovascular disease (CVD) (HR, 95% CI 1.07, 1.05-1.09 in the middle tertile, 1.29, 1.26-1.31 in the high tertile), cancer (HR, 95% CI 1.08, 1.07-1.10 in the middle tertile, 1.38, 1.36-1.39 in the high tertile), respiratory disease (HR, 95% CI 1.10, 1.08-1.13 in the middle tertile, 1.39, 1.35-1.43 in the high tertile), and liver disease mortality (HR, 95% CI 1.74, 1.66-1.83 in the middle tertile, 6.73, 6.46-7.01 in the high tertile). Regardless of smoking, alcohol consumption and history of previous CVD and cancer, a higher serum GGT levels were associated with a higher risk of mortality. Serum GGT levels may be useful for risk assessment of all-cause and disease-specific mortality in general population.
Collapse
|
6
|
Nguyen L, Schultz DC, Terzyan SS, Rezaei M, Songb J, Li C, You Y, Hanigan MH. Design and evaluation of novel analogs of 2-amino-4-boronobutanoic acid (ABBA) as inhibitors of human gamma-glutamyl transpeptidase. Bioorg Med Chem 2022; 73:116986. [PMID: 36208545 DOI: 10.1016/j.bmc.2022.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4‑boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Simon S Terzyan
- Laboratory of Biomolecular Structure and Function, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Rezaei
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Jinhua Songb
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
7
|
Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65100-65111. [PMID: 35484453 DOI: 10.1007/s11356-022-20349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 μg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
8
|
Reay WR, Geaghan MP, Cairns MJ. The genetic architecture of pneumonia susceptibility implicates mucin biology and a relationship with psychiatric illness. Nat Commun 2022; 13:3756. [PMID: 35768473 PMCID: PMC9243103 DOI: 10.1038/s41467-022-31473-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/17/2022] [Indexed: 01/25/2023] Open
Abstract
Pneumonia remains one of the leading causes of death worldwide. In this study, we use genome-wide meta-analysis of lifetime pneumonia diagnosis (N = 391,044) to identify four association signals outside of the previously implicated major histocompatibility complex region. Integrative analyses and finemapping of these signals support clinically tractable targets, including the mucin MUC5AC and tumour necrosis factor receptor superfamily member TNFRSF1A. Moreover, we demonstrate widespread evidence of genetic overlap with pneumonia susceptibility across the human phenome, including particularly significant correlations with psychiatric phenotypes that remain significant after testing differing phenotype definitions for pneumonia or genetically conditioning on smoking behaviour. Finally, we show how polygenic risk could be utilised for precision treatment formulation or drug repurposing through pneumonia risk scores constructed using variants mapped to pathways with known drug targets. In summary, we provide insights into the genetic architecture of pneumonia susceptibility and genetics informed targets for drug development or repositioning.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Program, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Michael P Geaghan
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Program, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Program, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
9
|
Lee Y, Chen H, Chen W, Qi Q, Afshar M, Cai J, Daviglus ML, Thyagarajan B, North KE, London SJ, Boerwinkle E, Celedón JC, Kaplan RC, Yu B. Metabolomic Associations of Asthma in the Hispanic Community Health Study/Study of Latinos. Metabolites 2022; 12:metabo12040359. [PMID: 35448546 PMCID: PMC9028429 DOI: 10.3390/metabo12040359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022] Open
Abstract
Asthma disproportionally affects Hispanic and/or Latino backgrounds; however, the relation between circulating metabolites and asthma remains unclear. We conducted a cross-sectional study associating 640 individual serum metabolites, as well as twelve metabolite modules, with asthma in 3347 Hispanic/Latino background participants (514 asthmatics, 15.36%) from the Hispanic/Latino Community Health Study/Study of Latinos. Using survey logistic regression, per standard deviation (SD) increase in 1-arachidonoyl-GPA (20:4) was significantly associated with 32% high odds of asthma after accounting for clinical risk factors (p = 6.27 × 10−5), and per SD of the green module, constructed using weighted gene co-expression network, was suggestively associated with 25% high odds of asthma (p = 0.006). In the stratified analyses by sex and Hispanic and/or Latino backgrounds, the effect of 1-arachidonoyl-GPA (20:4) and the green module was predominantly observed in women (OR = 1.24 and 1.37, p < 0.001) and people of Cuban and Puerto-Rican backgrounds (OR = 1.25 and 1.27, p < 0.01). Mutations in Fatty Acid Desaturase 2 (FADS2) affected the levels of 1-arachidonoyl-GPA (20:4), and Mendelian Randomization analyses revealed that high genetically regulated 1-arachidonoyl-GPA (20:4) levels were associated with increased odds of asthma (p < 0.001). The findings reinforce a molecular basis for asthma etiology, and the potential causal effect of 1-arachidonoyl-GPA (20:4) on asthma provides an opportunity for future intervention.
Collapse
Affiliation(s)
- Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
| | - Han Chen
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
| | - Wei Chen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (W.C.); (J.C.C.)
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Majid Afshar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA; (M.A.); (R.C.K.)
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Martha L. Daviglus
- Institute of Minority Health Research, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware Street, Minneapolis, MN 55455, USA;
| | - Kari E. North
- Department of Epidemiology and Carolina Center for Genome Sciences, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Stephanie J. London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
| | - Juan C. Celedón
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (W.C.); (J.C.C.)
- Division of Pulmonary Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Robert C. Kaplan
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA; (M.A.); (R.C.K.)
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.L.); (H.C.); (E.B.)
- Correspondence:
| |
Collapse
|
10
|
Arnhold J. Heme Peroxidases at Unperturbed and Inflamed Mucous Surfaces. Antioxidants (Basel) 2021; 10:antiox10111805. [PMID: 34829676 PMCID: PMC8614983 DOI: 10.3390/antiox10111805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
In our organism, mucous surfaces are important boundaries against the environmental milieu with defined fluxes of metabolites through these surfaces and specific rules for defense reactions. Major mucous surfaces are formed by epithelia of the respiratory system and the digestive tract. The heme peroxidases lactoperoxidase (LPO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO) contribute to immune protection at epithelial surfaces and in secretions. Whereas LPO is secreted from epithelial cells and maintains microbes in surface linings on low level, MPO and EPO are released from recruited neutrophils and eosinophils, respectively, at inflamed mucous surfaces. Activated heme peroxidases are able to oxidize (pseudo)halides to hypohalous acids and hypothiocyanite. These products are involved in the defense against pathogens, but can also contribute to cell and tissue damage under pathological conditions. This review highlights the beneficial and harmful functions of LPO, MPO, and EPO at unperturbed and inflamed mucous surfaces. Among the disorders, special attention is directed to cystic fibrosis and allergic reactions.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| |
Collapse
|
11
|
Takeuchi I, Kawamata R, Makino K. Effects of GGsTop ® on Collagen and Glutathione in the Oral Mucosa Using a Rat Model of 5-Fluorouracil-Induced Oral Mucositis. In Vivo 2021; 35:175-180. [PMID: 33402464 DOI: 10.21873/invivo.12246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM To evaluate the usefulness of GGsTop® for oral mucositis, a quantitative study focusing on oral mucosal tissues is necessary. In this study, we aimed to quantify collagen and glutathione using a rat model of 5-fluorouracil-induced oral mucositis. MATERIALS AND METHODS Changes in ulcer area and erythrocyte count were measured to confirm the usefulness of GGsTop® for oral mucositis. The effect of GGsTop on collagen was evaluated by observing oral mucosal tissue sections and measuring the collagen concentration in the tissues. The total glutathione concentration and the oxidized glutathione concentration were measured, and the concentration of the reduced form was calculated. RESULTS GGsTop® shortened the treatment period for oral mucositis without affecting the white blood cell count. In addition, GGsTop® promoted collagen production and alleviated oxidative stress conditions. CONCLUSION GGsTop affects collagen and glutathione in the treatment of oral mucositis.
Collapse
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Chiba, Japan
| | - Riko Kawamata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan; .,Center for Drug Delivery Research, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
12
|
Elhosseiny NM, Elhezawy NB, Sayed RM, Khattab MS, El Far MY, Attia AS. γ-Glutamyltransferase as a Novel Virulence Factor of Acinetobacter baumannii Inducing Alveolar Wall Destruction and Renal Damage in Systemic Disease. J Infect Dis 2021; 222:871-879. [PMID: 32421167 DOI: 10.1093/infdis/jiaa262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023] Open
Abstract
A thorough understanding of Acinetobacter baumannii pathogenicity is the key to identifying novel drug targets. In the current study, we characterize the γ-glutamyltransferase enzyme (GGT) as a novel virulence factor. A GGT assay showed that the enzyme is secreted via the type II secretion system and results in higher extracellular activity for the hypervirulent AB5075 than the laboratory-adapted strain American Type Culture Collection 17978. Enzyme-linked immunosorbent assay revealed that the former secretes larger amounts of GGT, and a rifampicin messenger RNA stability study showed that one reason for this could be the longer AB5075 ggt transcript half-life. Infection models confirmed that GGT is required for the virulence of A. baumannii. Finally, we show that clinical isolates with significantly higher extracellular GGT activity resulted in more severe infections, and assay of immune response and tissue damage markers confirm this correlation. The current findings establish for the first time the role of the GGT in the pathogenicity of A. baumannii.
Collapse
Affiliation(s)
- Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada B Elhezawy
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab M Sayed
- Natural Product Research Department, National Center of Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Miran Y El Far
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Terzyan SS, Nguyen LT, Burgett AWG, Heroux A, Smith CA, You Y, Hanigan MH. Crystal structures of glutathione- and inhibitor-bound human GGT1: critical interactions within the cysteinylglycine binding site. J Biol Chem 2021; 296:100066. [PMID: 33187988 PMCID: PMC7949050 DOI: 10.1074/jbc.ra120.016265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site. These are the first structures of any eukaryotic GGT with the cysteinylglycine region of the substrate-binding site occupied. These structures and the structure of apo-hGGT reveal movement of amino acid residues within the active site as the substrate binds. Asn-401 and Thr-381 each form hydrogen bonds with two atoms of GSH spanning the γ-glutamyl bond. Three different atoms of hGGT1 interact with the carboxyl oxygen of the cysteine of GSH. Interactions between the enzyme and substrate change as the substrate moves deeper into the active site cleft. The substrate reorients and a new hydrogen bond is formed between the substrate and the oxyanion hole. Thr-381 is locked into a single conformation as an acyl bond forms between the substrate and the enzyme. These data provide insight on a molecular level into the substrate specificity of hGGT1 and provide an explanation for seemingly disparate observations regarding the enzymatic activity of hGGT1 mutants. This knowledge will aid in the design of clinically useful hGGT1 inhibitors.
Collapse
Affiliation(s)
- Simon S Terzyan
- Laboratory of Biomolecular Structure and Function, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Luong T Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Anthony W G Burgett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science Division, Brookhaven National Laboratory, Upton, New York, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
14
|
Corti A, Belcastro E, Dominici S, Maellaro E, Pompella A. The dark side of gamma-glutamyltransferase (GGT): Pathogenic effects of an 'antioxidant' enzyme. Free Radic Biol Med 2020; 160:807-819. [PMID: 32916278 DOI: 10.1016/j.freeradbiomed.2020.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Having long been regarded as just a member in the cellular antioxidant systems, as well as a clinical biomarker of hepatobiliary diseases and alcohol abuse, gamma-glutamyltransferase (GGT) enzyme activity has been highlighted by more recent research as a critical factor in modulation of redox equilibria within the cell and in its surroundings. Moreover, due to the prooxidant reactions which can originate during its metabolic function in selected conditions, experimental and clinical studies are increasingly involving GGT in the pathogenesis of several important disease conditions, such as atherosclerosis, cardiovascular diseases, cancer, lung inflammation, neuroinflammation and bone disorders. The present article is an overview of the laboratory findings that have prompted an evolution in interpretation of the significance of GGT in human pathophysiology.
Collapse
Affiliation(s)
- Alessandro Corti
- Dept. of Translational Research NTMS, University of Pisa Medical School, Italy
| | - Eugenia Belcastro
- Dept. of Translational Research NTMS, University of Pisa Medical School, Italy
| | - Silvia Dominici
- Dept. of Translational Research NTMS, University of Pisa Medical School, Italy
| | - Emilia Maellaro
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Alfonso Pompella
- Dept. of Translational Research NTMS, University of Pisa Medical School, Italy.
| |
Collapse
|
15
|
Kubota R, Hayashi N, Kinoshita K, Saito T, Ozaki K, Ueda Y, Tsuchishima M, Tsutsumi M, George J. Inhibition of γ-glutamyltransferase ameliorates ischaemia-reoxygenation tissue damage in rats with hepatic steatosis. Br J Pharmacol 2020; 177:5195-5207. [PMID: 32910829 DOI: 10.1111/bph.15258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Hepatic steatosis may be associated with an increased γ-glutamyltransferase (γ-GT) levels. Ischaemia-reoxygenation (IR) injury causes several deleterious effects. We evaluated the protective effects of a selective inhibitor of γ-GT in experimentally induced IR injury in rats with obesity and steatosis. EXPERIMENTAL APPROACH Otsuka Long-Evans Tokushima Fatty (OLETF) rats with hepatic steatosis were used in the current study. The portal vein and hepatic artery of left lateral and median lobes were clamped to induce ischaemia. Before clamping, 1 ml of saline (IR group) or 1-ml saline containing 1 mg·kg-1 body weight of GGsTop (γ-GT inhibitor; IR-GGsTop group) was injected into the liver via the inferior vena cava. Blood flow was restored after at 30 min of the start of ischaemia. Blood was collected before, at 30 min after ischaemia and at 2 h and 6 h after reoxygenation. All the animals were killed at 6 h and the livers were collected. KEY RESULTS Treatment with GGsTop resulted in significant reduction of serum ALT, AST and γ-GT levels and hepatic γ-GT, malondialdehyde, 4-hydroxy-2-nonenal and HMGB1 at 6 h after reoxygenation. Inhibition of γ-GT retained normal hepatic glutathione levels. There was prominent hepatic necrosis in IR group, which is significantly reduced in IR-GGsTop group. CONCLUSION AND IMPLICATIONS Treatment with GGsTop significantly increased hepatic glutathione content, reduced hepatic MDA, 4-HNE and HMGB1 levels and, remarkably, ameliorated hepatic necrosis after ischaemia-reoxygenation. The results indicated that GGsTop could be an appropriate therapeutic agent to reduce IR-induced liver injury in obesity and steatosis.
Collapse
Affiliation(s)
- Ryuichi Kubota
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan
| | - Nobuhiko Hayashi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan.,Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Japan
| | - Kaori Kinoshita
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan.,Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Japan
| | - Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan
| | - Kazuaki Ozaki
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | | | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan.,Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Japan.,Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Japan
| |
Collapse
|
16
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
17
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Milito A, Brancaccio M, Lisurek M, Masullo M, Palumbo A, Castellano I. Probing the Interactions of Sulfur-Containing Histidine Compounds with Human Gamma-Glutamyl Transpeptidase. Mar Drugs 2019; 17:md17120650. [PMID: 31757046 PMCID: PMC6949936 DOI: 10.3390/md17120650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) is a cell surface enzyme involved in glutathione metabolism and maintenance of redox homeostasis. High expression of GGT on tumor cells is associated with an increase of cell proliferation and resistance against chemotherapy. GGT inhibitors that have been evaluated in clinical trials are too toxic for human use. We have previously identified ovothiols, 5(Nπ)-methyl-thiohistidines of marine origin, as non-competitive-like inhibitors of GGT that are more potent than the known GGT inhibitor, 6-diazo-5-oxo-l-norleucine (DON), and are not toxic for human embryonic cells. We extended these studies to the desmethylated form of ovothiol, 5-thiohistidine, and confirmed that this ovothiol derivative also acts as a non-competitive-like GGT inhibitor, with a potency comparable to ovothiol. We also found that both 5-thiohistidine derivatives act as reversible GGT inhibitors compared to the irreversible DON. Finally, we probed the interactions of 5-thiohistidines with GGT by docking analysis and compared them with the 2-thiohistidine ergothioneine, the physiological substrate glutathione, and the DON inhibitor. Overall, our results provide new insight for further development of 5-thiohistidine derivatives as therapeutics for GGT-positive tumors.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Michael Lisurek
- Department of Computational Chemistry and Drug Design, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
| | - Mariorosario Masullo
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
- Correspondence: ; Tel.: +39-081-5833206
| |
Collapse
|
19
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
20
|
Koyama T, Tsubota A, Sawano T, Tawa M, Watanabe B, Hiratake J, Nakagawa K, Matsumura Y, Ohkita M. Involvement of γ-Glutamyl Transpeptidase in Ischemia/Reperfusion-Induced Cardiac Dysfunction in Isolated Rat Hearts. Biol Pharm Bull 2019; 42:1947-1952. [DOI: 10.1248/bpb.b19-00434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takeshi Koyama
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Akari Tsubota
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Tatsuya Sawano
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
- Division of Pharmacology, Faculty of Medicine, Tottori University
| | - Masashi Tawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
- Department of Pharmacology, Kanazawa Medical University
| | | | - Jun Hiratake
- Institute for Chemical Research, Kyoto University
| | - Keisuke Nakagawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Yasuo Matsumura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
21
|
Brancaccio M, Russo M, Masullo M, Palumbo A, Russo GL, Castellano I. Sulfur-containing histidine compounds inhibit γ-glutamyl transpeptidase activity in human cancer cells. J Biol Chem 2019; 294:14603-14614. [PMID: 31375562 DOI: 10.1074/jbc.ra119.009304] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
γ-Glutamyl transpeptidase (GGT) is an enzyme located on the surface of cellular membranes and involved in GSH metabolism and maintenance of redox homeostasis. High GGT expression on tumor cells is associated with increased cell proliferation and resistance against chemotherapy. GGT inhibitors evaluated so far in clinical trials are too toxic for human use. In this study, using enzyme kinetics analyses, we demonstrate that ovothiols, 5(Nπ)-methyl thiohistidines of marine origin, act as noncompetitive inhibitors of GGT, with an apparent Ki of 21 μm, when we fixed the concentrations of the donor substrate. We found that these compounds are more potent than the known GGT inhibitor 6-diazo-5-oxo-l-norleucine and are not toxic toward human embryonic cells. In particular, cellular process-specific fluorescence-based assays revealed that ovothiols induce a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, including human liver cancer and chronic B leukemic cells. The findings of our study provide the basis for further development of 5-thiohistidines as therapeutics for GGT-positive tumors and highlight that GGT inhibition is involved in autophagy.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Mariorosario Masullo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope," 80133 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.,Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
22
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
23
|
Hatem E, El Banna N, Huang ME. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxid Redox Signal 2017; 27:1217-1234. [PMID: 28537430 DOI: 10.1089/ars.2017.7134] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Glutathione is the most abundant antioxidant molecule in living organisms and has multiple functions. Intracellular glutathione homeostasis, through its synthesis, consumption, and degradation, is an intricately balanced process. Glutathione levels are often high in tumor cells before treatment, and there is a strong correlation between elevated levels of intracellular glutathione/sustained glutathione-mediated redox activity and resistance to pro-oxidant anticancer therapy. Recent Advances: Ample evidence demonstrates that glutathione and glutathione-based systems are particularly relevant in cancer initiation, progression, and the development of anticancer drug resistance. CRITICAL ISSUES This review highlights the multifaceted roles of glutathione and glutathione-based systems in carcinogenesis, anticancer drug resistance, and clinical applications. FUTURE DIRECTIONS The evidence summarized here underscores the important role played by glutathione and the glutathione-based systems in carcinogenesis and anticancer drug resistance. Future studies should address mechanistic questions regarding the distinct roles of glutathione in different stages of cancer development and cancer cell death. It will be important to study how metabolic alterations in cancer cells can influence glutathione homeostasis. Sensitive approaches to monitor glutathione dynamics in subcellular compartments will be an indispensible step. Therapeutic perspectives should focus on mechanism-based rational drug combinations that are directed against multiple redox targets using effective, specific, and clinically safe inhibitors. This new strategy is expected to produce a synergistic effect, prevent drug resistance, and diminish doses of single drugs. Antioxid. Redox Signal. 27, 1217-1234.
Collapse
Affiliation(s)
- Elie Hatem
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Nadine El Banna
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Meng-Er Huang
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
24
|
Watanabe B, Tabuchi Y, Wada K, Hiratake J. Synthesis and evaluation of the inhibitory activity of the four stereoisomers of the potent and selective human γ-glutamyl transpeptidase inhibitor GGsTop. Bioorg Med Chem Lett 2017; 27:4920-4924. [PMID: 28985998 DOI: 10.1016/j.bmcl.2017.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon=174M-1s-1) was ca. 8-fold more potent than the d-isomer (kon=21.5M-1s-1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon=21.5-174M-1s-1), while the RP-isomers were inactive even at concentrations of 0.1mM.
Collapse
Affiliation(s)
- Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Yukiko Tabuchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
25
|
Watanabe B, Morikita T, Tabuchi Y, Kobayashi R, Li C, Yamamoto M, Koeduka T, Hiratake J. An improved synthesis of the potent and selective γ-glutamyl transpeptidase inhibitor GGsTop together with an inhibitory activity evaluation of its potential hydrolysis products. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Terzyan SS, Cook PF, Heroux A, Hanigan MH. Structure of 6-diazo-5-oxo-norleucine-bound human gamma-glutamyl transpeptidase 1, a novel mechanism of inactivation. Protein Sci 2017; 26:1196-1205. [PMID: 28378915 PMCID: PMC5441403 DOI: 10.1002/pro.3172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023]
Abstract
Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM-1 min-1 and the Ki was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.
Collapse
Affiliation(s)
- Simon S. Terzyan
- Laboratory of Biomolecular Structure and FunctionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| | - Paul F. Cook
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahoma73019
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science DivisionBrookhaven National LaboratoryUptonNew York11973
| | - Marie H. Hanigan
- Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma73104
| |
Collapse
|
27
|
Tamura K, Hayashi N, George J, Toshikuni N, Arisawa T, Hiratake J, Tsuchishima M, Tsutsumi M. GGsTop, a novel and specific γ-glutamyl transpeptidase inhibitor, protects hepatic ischemia-reperfusion injury in rats. Am J Physiol Gastrointest Liver Physiol 2016; 311:G305-12. [PMID: 27365338 DOI: 10.1152/ajpgi.00439.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/27/2016] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion (IR) injury is a major clinical problem and is associated with numerous adverse effects. GGsTop [2-amino-4{[3-(carboxymethyl)phenyl](methyl)phosphono}butanoic acid] is a highly specific and irreversible γ-glutamyl transpeptidase (γ-GT) inhibitor. We studied the protective effects of GGsTop on IR-induced hepatic injury in rats. Ischemia was induced by clamping the portal vein and hepatic artery of left lateral and median lobes of the liver. Before clamping, saline (IR group) or saline containing 1 mg/kg body wt of GGsTop (IR-GGsTop group) was injected into the liver through the inferior vena cava. At 90 min of ischemia, blood flow was restored. Blood was collected before induction of ischemia and prior to restoration of blood flow and at 12, 24, and 48 h after reperfusion. All the animals were euthanized at 48 h after reperfusion and the livers were harvested. Serum levels of alanine transaminase, aspartate transaminase, and γ-GT were significantly lower after reperfusion in the IR-GGsTop group compared with the IR group. Massive hepatic necrosis was present in the IR group, while only few necroses were present in the IR-GGsTop group. Treatment with GGsTop increased hepatic GSH content, which was significantly reduced in the IR group. Furthermore, GGsTop prevented increase of hepatic γ-GT, malondialdehyde, 4-hydroxynonenal, and TNF-α while all these molecules significantly increased in the IR group. In conclusion, treatment with GGsTop increased glutathione levels and prevented formation of free radicals in the hepatic tissue that led to decreased IR-induced liver injury. GGsTop could be used as a pharmacological agent to prevent IR-induced liver injury and the related adverse events.
Collapse
Affiliation(s)
- Kaneto Tamura
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Nobuhiko Hayashi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Nobuyuki Toshikuni
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tomiyasu Arisawa
- Department of Gastroenterology, Kanazawa Medical University, Uchinada, Ishikawa, Japan; and
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan;
| |
Collapse
|
28
|
Park S, Lim SY, Bae SM, Kim SY, Myung SJ, Kim HJ. Indocyanine-Based Activatable Fluorescence Turn-On Probe for γ-Glutamyltranspeptidase and Its Application to the Mouse Model of Colon Cancer. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00249] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seokan Park
- Department
of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea
| | - Soo-Yeon Lim
- Department
of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea
| | | | | | | | - Hae-Jo Kim
- Department
of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea
| |
Collapse
|
29
|
Park S, Bae DJ, Ryu YM, Kim SY, Myung SJ, Kim HJ. Mitochondria-targeting ratiometric fluorescent probe for γ-glutamyltranspeptidase and its application to colon cancer. Chem Commun (Camb) 2016; 52:10400-2. [DOI: 10.1039/c6cc05573g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An indocyanine-based probe for γ-glutamyltranspeptidase exhibited ratiometric fluorescence in mitochondria through an enzyme-mediated amide-to-amine transformation reaction applicable for colon cancer detection.
Collapse
Affiliation(s)
- Seokan Park
- Department of Chemistry
- Hankuk University of Foreign Studies
- Yongin 449-791
- Korea
| | - Dong Jun Bae
- ASAN Institute for Life Sciences
- ASAN Medical Center
- University of Ulsan College of Medicine
- Seoul 138-736
- Republic of Korea
| | - Yeon-Mi Ryu
- ASAN Institute for Life Sciences
- ASAN Medical Center
- University of Ulsan College of Medicine
- Seoul 138-736
- Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Sciences
- ASAN Medical Center
- University of Ulsan College of Medicine
- Seoul 138-736
- Republic of Korea
| | - Seung-Jae Myung
- ASAN Institute for Life Sciences
- ASAN Medical Center
- University of Ulsan College of Medicine
- Seoul 138-736
- Republic of Korea
| | - Hae-Jo Kim
- Department of Chemistry
- Hankuk University of Foreign Studies
- Yongin 449-791
- Korea
| |
Collapse
|
30
|
Terzyan SS, Burgett AWG, Heroux A, Smith CA, Mooers BHM, Hanigan MH. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS. J Biol Chem 2015; 290:17576-86. [PMID: 26013825 DOI: 10.1074/jbc.m115.659680] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Indexed: 12/31/2022] Open
Abstract
γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Simon S Terzyan
- From the Macromolecular Crystallography Laboratory, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Anthony W G Burgett
- the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Annie Heroux
- the Energy Sciences Directorate/Photon Science Division, Brookhaven National Laboratory, Upton, New York 11973
| | - Clyde A Smith
- the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Blaine H M Mooers
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Marie H Hanigan
- the Department of Cell Biology, University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
31
|
Pompella A, Corti A. Editorial: the changing faces of glutathione, a cellular protagonist. Front Pharmacol 2015; 6:98. [PMID: 26029106 PMCID: PMC4432574 DOI: 10.3389/fphar.2015.00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023] Open
Affiliation(s)
- Alfonso Pompella
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| |
Collapse
|
32
|
Pompella A, Corti A. Editorial: the changing faces of glutathione, a cellular protagonist. Front Pharmacol 2015. [PMID: 26029106 DOI: 10.3389/fphar.2015.00098/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Affiliation(s)
- Alfonso Pompella
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research NTMC, University of Pisa Pisa, Italy
| |
Collapse
|