1
|
Song K, Cao Q, Yang Y, Zuo Y, Wu X. ALKBH5 modulates bone cancer pain in a rat model by suppressing NR2B expression. Biotechnol Appl Biochem 2024; 71:1105-1115. [PMID: 38764325 DOI: 10.1002/bab.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Currently, the clinical treatment of bone cancer pain (BCP) is mainly related to its pathogenesis. The aim of the present study was to elucidate the potential role of N6-methyladenosine (m6A) in BCP in the spinal cord dorsal root ganglia (DRG) of BCP rats and its specific regulatory mechanism in N-methyl-d-aspartate receptor subunit 2B (NR2B). A rat model of BCP was constructed by tibial injection of Walker256 cells, and ALKBH5 and NR2B expression in the spinal cord DRG was detected. ALKBH5 was silenced or overexpressed in PC12 cells to verify the regulatory effect of ALKBH5 on NR2B. The specific mechanism underlying the interaction between ALKBH5 and NR2B was investigated using methylated RNA immunoprecipitation and dual-luciferase reporter gene assays. The results showed increased expression of m6A, decreased expression of ALKBH5, and increased expression of NR2B in the DRG of the BCP rat model. Overexpression of ALKBH5 inhibited NR2B expression, whereas interference with ALKBH5 caused an increase in NR2B expression. In NR2B, interference with ALKBH5 caused an increase in m6A modification, which caused an increase in NR2B. Taken together, ALKBH5 affected the expression of NR2B by influencing the stability of the m6A modification site of central NR2B, revealing that ALKBH5 is a therapeutic target for BCP.
Collapse
Affiliation(s)
- Kun Song
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qionghua Cao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Yang
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefen Zuo
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Xianping Wu
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| |
Collapse
|
2
|
Xu L, Zheng S, Chen L, Yang L, Zhang S, Liu B, Shen K, Feng Q, Zhou Q, Yao M. N4-acetylcytidine acetylation of neurexin 2 in the spinal dorsal horn regulates hypersensitivity in a rat model of cancer-induced bone pain. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102200. [PMID: 38831898 PMCID: PMC11145350 DOI: 10.1016/j.omtn.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
Cancer-induced bone pain (CIBP) significantly impacts the quality of life and survival of patients with advanced cancer. Despite the established role of neurexins in synaptic structure and function, their involvement in sensory processing during injury has not been extensively studied. In this study using a rat model of CIBP, we observed increased neurexin 2 expression in spinal cord neurons. Knockdown of neurexin 2 in the spinal cord reversed CIBP-related behaviors, sensitization of spinal c-Fos neurons, and pain-related negative emotional behaviors. Additionally, increased acetylation of neurexin 2 mRNA was identified in the spinal dorsal horn of CIBP rats. Decreasing the expression of N-acetyltransferase 10 (NAT10) reduced neurexin 2 mRNA acetylation and neurexin 2 expression. In PC12 cells, we confirmed that neurexin 2 mRNA acetylation enhanced its stability, and neurexin 2 expression was regulated by NAT10. Finally, we discovered that the NAT10/ac4C-neurexin 2 axis modulated neuronal synaptogenesis. This study demonstrated that the NAT10/ac4C-mediated posttranscriptional modulation of neurexin 2 expression led to the remodeling of spinal synapses and the development of conscious hypersensitivity in CIBP rats. Therefore, targeting the epigenetic modification of neurexin 2 mRNA ac4C may offer a new therapeutic approach for the treatment of nociceptive hypersensitivity in CIBP.
Collapse
Affiliation(s)
- Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Liping Chen
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shuyao Zhang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Kangli Shen
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Qinli Feng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Qinghe Zhou
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
3
|
Orel VB, Kurapov YA, Lytvyn SY, Orel VE, Galkin OY, Dasyukevich OY, Rykhalskyi OY, Diedkov AG, Ostafiichuk VV, Lyalkin SA, Burlaka AP, Virko SV, Skoryk MA, Zagorodnii VV, Stelmakh YA, Didikin GG, Oranska OI, Calcagnile L, Manno DE, Rinaldi R, Nedostup YV. Characterization and antitumor effect of doxorubicin-loaded Fe 3O 4-Au nanocomposite synthesized by electron beam evaporation for magnetic nanotheranostics. RSC Adv 2024; 14:14126-14138. [PMID: 38686287 PMCID: PMC11056945 DOI: 10.1039/d4ra01777c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded Fe3O4-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM). Tumor-bearing animals were divided into the control (no treatment), conventional doxorubicin (DOX), DOX-MNC and DOX-MNC + CMF + EMF groups. DOX-MNC + CMF + EMF resulted in 14% and 16% inhibition of tumor growth kinetics as compared with DOX and DOX-MNC, respectively. MRI visualization showed more substantial tumor necrotic changes after the combined treatment. Quantitative analysis of T2-weighted (T2W) images revealed the lowest value of skewness and a significant increase in tumor intensity in response to DOX-MNC + CMF + EMF as compared with the control (1.4 times), DOX (1.6 times) and DOX-MNC (1.8 times) groups. In addition, the lowest level of nitric oxide determined by ESR was found in DOX-MNC + CMF + EMF tumors, which was close to that of the muscle tissue in the contralateral limb. We propose that the reason for the relationship between the observed changes in MRI and ESR is the hyperfine interaction of nuclear and electron spins in mitochondria, as a source of free radical production. Therefore, these results point to the use of EB-PVD and magneto-mechanochemically synthesized Fe3O4-Au MNC loaded with DOX as a potential candidate for cancer magnetic nanotheranostic applications.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute Kyiv 03022 Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | | | | | - Valerii E Orel
- National Cancer Institute Kyiv 03022 Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | - Olexander Yu Galkin
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | | | | | | | | | | | - Anatoliy P Burlaka
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology Kyiv 03022 Ukraine
| | - Sergii V Virko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology Kyiv 03022 Ukraine
- V.E. Lashkaryov Institute of Semiconductor Physics Kyiv 03028 Ukraine
| | - Mykola A Skoryk
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine Kyiv 03142 Ukraine
| | - Viacheslav V Zagorodnii
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine Kyiv 03142 Ukraine
| | | | | | - Olena I Oranska
- Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine Kyiv 03164 Ukraine
| | | | | | | | - Yana V Nedostup
- Taras Shevchenko National University of Kyiv Kyiv 03680 Ukraine
| |
Collapse
|
4
|
Gu YJ, Qian HY, Zhou F, Zhang L, Chen L, Song Y, Chen YN, Zhang HL. Folic acid relieves bone cancer pain by downregulating P2X2/3 receptors in rats. Brain Res 2023; 1811:148405. [PMID: 37164174 DOI: 10.1016/j.brainres.2023.148405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bone cancer pain (BCP) remains a clinical challenge due to the limited and side effects of therapeutic methods. Folic acid has been known as an FDA approved dietary supplement and proved to have an analgesic effect in neuropathic pain. Here we investigate the role and mechanism of folic acid in bone cancer pain of a rat model. METHODS Walker 256 tumor cells were inoculated into the left tibia of rats to induce bone cancer pain model. Pain reflex were assessed by paw withdrawal threshold (PWT) response to Von Frey filaments and paw withdrawal latency (PWL) response to thermal stimulation. Folic acid was injected intraperitoneally to evaluate its analgesic effect in rats with bone cancer pain. Western blotting and qPCR were used to determine P2X2/3 receptor protein and mRNA levels in ipsilateral L4-6 dorsal root ganglion (DRG) and spinal dorsal horn (SDH). RESULTS The PWT and PWL of rats with bone cancer pain were obviously decreased compared to the naïve and sham rats. Interestingly, continuous folic acid treatment significantly increased the PWT and PWL of rats with bone cancer pain. P2X2 and P2X3 receptors were clearly upregulated at both mRNA and protein expression in L4-6 DRG and SDH of rats with bone cancer pain. P2X2 and P2X3 receptors were mainly localized with CGRP (calcitonin gene-related peptide) or IB4 (isolectin B4) positive neurons in L4-6 DRG of rats with bone cancer pain. Notably, continuous folic acid treatment significantly reduced the expression of P2X2 and P2X3 receptors in L4-6 DRG and SDH of rats with bone cancer pain. Finally, intrathecal injection of A317491 (a selective antagonist of P2X2/3 receptors) markedly elevated the PWT and PWL of rats with bone cancer pain. CONCLUSION These results suggest that folic acid has an effective antinociceptive effect on bone cancer pain, which is mediated by downregulating P2X2/3 receptors in L4-6 DRG and SDH of rats with bone cancer pain. Folic acid may be a novel therapeutic strategy in cancer patients for pain relief.
Collapse
Affiliation(s)
- Yong-Juan Gu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - He-Ya Qian
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Fang Zhou
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Long Chen
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Yu Song
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China
| | - Ya-Nan Chen
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Hai-Long Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Behavioral Voluntary and Social Bioassays Enabling Identification of Complex and Sex-Dependent Pain-(-Related) Phenotypes in Rats with Bone Cancer. Cancers (Basel) 2023; 15:cancers15051565. [PMID: 36900357 PMCID: PMC10000428 DOI: 10.3390/cancers15051565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a common and devastating symptom with limited treatment options in patients, significantly affecting their quality of life. The use of rodent models is the most common approach to uncovering the mechanisms underlying CIBP; however, the translation of results to the clinic may be hindered because the assessment of pain-related behavior is often based exclusively on reflexive-based methods, which are only partially indicative of relevant pain in patients. To improve the accuracy and strength of the preclinical, experimental model of CIBP in rodents, we used a battery of multimodal behavioral tests that were also aimed at identifying rodent-specific behavioral components by using a home-cage monitoring assay (HCM). Rats of all sexes received an injection with either heat-deactivated (sham-group) or potent mammary gland carcinoma Walker 256 cells into the tibia. By integrating multimodal datasets, we assessed pain-related behavioral trajectories of the CIBP-phenotype, including evoked and non-evoked based assays and HCM. Using principal component analysis (PCA), we discovered sex-specific differences in establishing the CIBP-phenotype, which occurred earlier (and differently) in males. Additionally, HCM phenotyping revealed the occurrence of sensory-affective states manifested by mechanical hypersensitivity in sham when housed with a tumor-bearing cagemate (CIBP) of the same sex. This multimodal battery allows for an in-depth characterization of the CIBP-phenotype under social aspects in rats. The detailed, sex-specific, and rat-specific social phenotyping of CIBP enabled by PCA provides the basis for mechanism-driven studies to ensure robustness and generalizability of results and provide information for targeted drug development in the future.
Collapse
|
6
|
β-Elemene Improves Morphine Tolerance in Bone Cancer Pain via N-Methyl-D-Aspartate Receptor 2B Subunit-Mediated μ-Opioid Receptor. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9897669. [PMID: 36164617 PMCID: PMC9509249 DOI: 10.1155/2022/9897669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Background Improving morphine tolerance (MT) is an urgent problem in the clinical treatment of bone cancer pain. Considering that β-Elemene is widely used in the treatment of cancer pain, we explored the effects and mechanism of β-Elemene in preventing MT of bone cancer pain. Method Bone cancer pain and chronic MT rat model was established by injecting MADB106 cells and morphine (10 mg/kg). SH-SY5Y cells were treated with morphine (10 μg/mL) for 48 h to establish a cell model. The mechanical withdrawal threshold and thermal withdrawal latency of rats were detected by mechanical allodynia and thermal hyperalgesia tests, respectively. The protein expressions of μ-opioid receptor (MOPR), cyclic adenosine monophosphate (cAMP), N-methyl-D-aspartate receptor subunit 2B (NR2B), phosphorylated-calmodulin-dependent protein kinase II (p-CaMKII), and CaMKII were detected by western blot. The viability of SH-SY5Y cells was determined by the cell counting kit-8 assay. cAMP content in SH-SY5Y cells was measured by a LANCE cAMP kit. Result Animal experiments showed that MT strengthened over time, while increased β-Elemene dosage alleviated MT. The viability of SH-SY5Y cells was down-regulated by high-dose β-Elemene. In the rat and cell models, long-term morphine treatment decreased the expression of MOPR and increased the cAMP and NR2B expressions and p-CaMKII/CaMKII, while β-Elemene and siNR2B counteracted the effects of morphine treatment. In addition, siNR2B reversed the effects of β-Elemene on related protein expressions and cAMP content in the cell model. Conclusion β-Elemene improved MT in bone cancer pain through the regulation of NR2B-mediated MOPR.
Collapse
|
7
|
Genetic Determination of Regressive Pattern of Walker 256 Carcinosarcoma in Rats with Hypothalamic Diabetes Insipidus. Bull Exp Biol Med 2022; 173:441-443. [DOI: 10.1007/s10517-022-05583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 10/14/2022]
|
8
|
Liu Q, Feng L, Han X, Zhang W, Zhang H, Xu L. The TRPA1 Channel Mediates Mechanical Allodynia and Thermal Hyperalgesia in a Rat Bone Cancer Pain Model. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 2:638620. [PMID: 35295475 PMCID: PMC8915568 DOI: 10.3389/fpain.2021.638620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Background: Bone cancer pain (BCP) significantly affects patient quality of life, results in great bodily and emotional pain, and creates difficulties in follow-up treatment and normal life. Transient receptor potential ankyrin 1 (TRPA1) is an essential transduction ion channel related to neuropathic and inflammatory pain. However, the role of TRPA1 in BCP remains poorly understood. This study aimed to explore the relationship between TRPA1 and BCP. Methods: A BCP model was induced by Walker256 cells to the left tibia. The sham group was induced by normal saline to the left tibia. Thereafter, pain behaviors and TRPA1 expression between the BCP group and the sham group were observed on the 14th day of modeling. The TRPA1 antagonist A967079 (10 mg/kg) was injected via tail vein. TRPA1 antisense oligodeoxynucleotide (AS-ODN, 5 nmol/10 μl) and missense oligodeoxynucleotide (MS-ODN, 5 nmol/10 μl) were intrathecally delivered via a mini-osmotic pump for 5 consecutive days to assess the effect of TRPA1 on BCP. Behavioral tests were assessed preoperatively and postoperatively. Real-time quantitative PCR and western blot analyses were used to measure TRPA1 levels among the different groups. Results: The BCP model was successfully established via X-ray and pathological sections at 14 days. Compared to the sham group, the BCP group was more sensitive to mechanical stimuli, cool stimuli and hot stimuli. Intravenously injected A967079 can relieve paw mechanical withdrawal threshold and paw withdrawal thermal latency in rats with BCP. Moreover, AS-ODN can relieve paw mechanical withdrawal threshold and paw withdrawal thermal latency in rats with BCP. Additionally, relative mRNA and protein expression of TRPA1 in the BCP group were much higher than those in the sham group (14.55 ± 1.97 vs. 1 ± 0.04, P < 0.01). Compared to the BCP group, the relative mRNA and protein expression of TRPA1 in the BCP+AS-ODN group was reduced (14.55 ± 1.97 vs. 2.59 ± 0.34, P < 0.01). Conclusions: The TRPA1 channel mediates mechanical allodynia and thermal hyperalgesia in a rat BCP model.
Collapse
Affiliation(s)
- Qiangwei Liu
- Department of Anesthesiology and Operation, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiujing Han
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weidong Zhang
- Department of Anesthesiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Anesthesiology and Operation, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Longhe Xu
- Department of Anesthesiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Liu X, Xie Z, Li S, He J, Cao S, Xiao Z. PRG-1 relieves pain and depressive-like behaviors in rats of bone cancer pain by regulation of dendritic spine in hippocampus. Int J Biol Sci 2021; 17:4005-4020. [PMID: 34671215 PMCID: PMC8495398 DOI: 10.7150/ijbs.59032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Pain and depression, which tend to occur simultaneously and share some common neural circuits and neurotransmitters, are highly prevalent complication in patients with advanced cancer. Exploring the underlying mechanisms is the cornerstone to prevent the comorbidity of chronic pain and depression in cancer patients. Plasticity-related gene 1 (PRG-1) protein regulates synaptic plasticity and brain functional reorganization during neuronal development or after cerebral lesion. Purinergic P2X7 receptor has been proposed as a therapeutic target for various pain and neurological disorders like depression in rodents. In this study, we investigated the roles of PRG-1 in the hippocampus in the comorbidity of pain and depressive-like behaviors in rats with bone cancer pain (BCP). Methods: The bone cancer pain rat model was established by intra-tibial cell inoculation of SHZ-88 mammary gland carcinoma cells. The animal pain behaviors were assessed by measuring the thermal withdrawal latency values by using radiant heat stimulation and mechanical withdrawal threshold by using electronic von Frey anesthesiometer, and depressive-like behavior was assessed by sucrose preference test and forced swim test. Alterations in the expression levels of PRG-1 and P2X7 receptor in hippocampus were separately detected by using western blot, immunofluorescence and immunohistochemistry analysis. The effects of intra-hippocampal injection of FTY720 (a PRG-1/PP2A interaction activator), PRG-1 overexpression or intra-hippocampal injection of A438079 (a selective competitive P2X7 receptor antagonist) were also observed. Results: Carcinoma intra-tibia injection caused thermal hyperalgesia, mechanical allodynia and depressive-like behaviors in rats, and also induced the deactivation of neurons and dendritic spine structural anomalies in the hippocampus. Western blot, immunofluorescence and immunohistochemistry analysis showed an increased expression of PRG-1 and P2X7 receptor in the hippocampus of BCP rats. Intra-hippocampal injection of FTY720 or A438079 attenuated both pain and depressive-like behaviors. Furthermore, overexpression of PRG-1 in hippocampus has similar analgesic efficacy to FTY720. In addition, they rescued neuron deactivation and dendritic spine anomalies. Conclusion: The results suggest that both PRG-1 and P2X7 receptor in the hippocampus play important roles in the development of pain and depressive-like behaviors in bone cancer condition in rats by dendritic spine regulation via P2X7R/PRG-1/PP2A pathway.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, China
| | - Zhuo Xie
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Site Li
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi 563000, China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
10
|
Liu X, He J, Xiao Z. Neurotropin alleviates rat osteocarcinoma pain via P 2X 3 receptor activation in the midbrain periaqueductal gray. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1395-1403. [PMID: 35096298 PMCID: PMC8769511 DOI: 10.22038/ijbms.2021.57965.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Clinically effective analgesia treatment for patients afflicted with osteocarcinoma lessens the intensity of pain. The midbrain periaqueductal gray (PAG) plays a critical role in pain modulation, and activation of P2X3 receptors in this region mediates pain processing. Neurotropin is a small molecule drug used for analgesic treatment of a number of chronic pain conditions. The present study aims at determining whether P2X3 receptor activation in PAG is responsible for the analgesic effect of neurotropin in rats with osteocarcinoma pain. MATERIALS AND METHODS The tibia of female Sprague-Dawley rats was inoculated with breast carcinoma cells to establish the osteocarcinoma pain model. The effects of intraperitoneal injection of 6, 12, and 18 neurotropin units (NU)/kg on pain threshold and receptor expression of P2X3 in the ventrolateral PAG (vlPAG) were assessed. The P2X3 receptor antagonist A-317491 (1.5 nmol/0.3 µl) was administered into vlPAG with a high-dose neurotropin (18 NU/kg) to determine the role of this receptor in the analgesic effect. RESULTS The pain thresholds of the rats with osteocarcinoma pain continuously decreased, whereas P2X3 receptor expression in vlPAG only slightly increased after osteocarcinoma cell inoculation. Neurotropin substantially elevated the pain threshold and P2X3 receptor expression in vlPAG in a dose-dependent manner. A-317491 microinjection into vlPAG significantly reduced the analgesic effects of neurotropin in the rats with osteocarcinoma pain. CONCLUSION Through these findings, it is shown that vlPAG P2X3 receptor activation participates in neurotropin-mediated analgesia mechanism in osteocarcinoma pain.
Collapse
Affiliation(s)
- Xingfeng Liu
- Key Laboratory of Brain Science, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China,Corresponding author: Zhi Xiao. Key Laboratory of Brain Science, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, China. Tel: +86-13087872315;
| |
Collapse
|
11
|
Fu J, Ni C, Ni H, Xu L, He Q, Pan H, Huang D, Sun Y, Luo G, Liu M, Yao M. Spinal Nrf2 translocation may inhibit neuronal NF-κB activation and alleviate allodynia in a rat model of bone cancer pain. J Neurochem 2021; 158:1110-1130. [PMID: 34254317 PMCID: PMC9292887 DOI: 10.1111/jnc.15468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Bone cancer pain (BCP) is a clinical pathology that urgently needs to be solved, but research on the mechanism of BCP has so far achieved limited success. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be involved in pain, but its involvement in BCP and the specific mechanism have yet to be examined. This study aimed to test the hypothesis that BCP induces the transfer of Nrf2 from the cytoplasm to the nucleus and further promotes nuclear transcription to activate heme oxygenase-1 (HO-1) and inhibit the activation of nuclear factor-kappa B (NF-κB) signalling, ultimately regulating the neuroinflammatory response. Von-Frey was used for behavioural analysis in rats with BCP, whereas western blotting, real-time quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect molecular expression changes, and immunofluorescence was used to detect cellular localization. We demonstrated that BCP induced increased Nrf2 nuclear protein expression with decreased cytoplasmic protein expression in the spinal cord. Further increases in Nrf2 nuclear protein expression can alleviate hyperalgesia and activate HO-1 to inhibit the expression of NF-κB nuclear protein and inflammatory factors. Strikingly, intrathecal administration of the corresponding siRNA reversed the above effects. In addition, the results of double immune labelling revealed that Nrf2 and NF-κB were coexpressed in spinal cord neurons of rats with BCP. In summary, these findings suggest that the entry of Nrf2 into the nucleus promotes the expression of HO-1, inhibiting activation of the NF-κB signalling pathway, reducing neuroinflammation and ultimately exerting an anti-nociceptive effect.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Hua‐Dong Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Long‐Sheng Xu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qiu‐Li He
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Huan Pan
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Dong‐Dong Huang
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yan‐Bao Sun
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ge Luo
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming‐Juan Liu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming Yao
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
12
|
Wei J, Dou Q, Ba F, Xu GY, Jiang GQ. Identification of lncRNA and mRNA expression profiles in dorsal root ganglion in rats with cancer-induced bone pain. Biochem Biophys Res Commun 2021; 572:98-104. [PMID: 34364296 DOI: 10.1016/j.bbrc.2021.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer-induced bone pain (CIBP) is one of the most severe types of chronic pain which the involved mechanisms are largely unknown. LncRNA has been found to play critical roles in chronic pain. However, its function in peripheral nervous system in CIBP remains unknown. Identifying the different lncRNA expression pattern is essential for understanding the genetic mechanisms underlying the pathogenesis of CIBP. METHODS The model was induced by injection of Walker 256 cells into the rat tibia canal. Behavior tests and X-ray microtomography (MicroCT) analysis were performed to verify the model's establishment. L2-L5 DRGs were harvested at 14-day post operation and the differential lncRNA and mRNA expression patterns were investigated by microarray analyses. RT-qPCR analysis and RNA interference were performed for expression and function verifications. Bioinformatics analysis was conducted for further function study. RESULTS CIBP rats showed hyperalgesia and the MicroCT analysis showed tibia destruction. A total of 73 lncRNAs and 187 mRNAs were dysregulated. The expressions of several lncRNAs and mRNAs were validated by RT-qPCR experiment. Biological analyses showed that the changed mRNAs were mainly related to cellular and single-organism process, cell and cell part, binding function and immune system pathway. The top 30 lncRNA-predicted mRNAs are mainly related to peroxisome, DNA-dependent DNA replication, double-stranded RNA binding, tuberculosis and purine metabolism. 56 lncRNAs (30 downregulated and 26 upregulated) and 179 DEGs (35 downregulated and 144 upregulated) have a significant correlation and constructed a co-expression network. Downregulation of lncRNA NONRATT021203.2 by siRNA intrathecal injection increased PWL and WBD in CIBP rats, alleviating cancer induced bone hyperalgesia. CONCLUSION LncRNA played important roles in regulation of CIBP or mRNA expression in peripheral neuropathy in CIBP. These alterd mRNAs and lncRNAs might be potential therapeutic targets for the treatment of CIBP.
Collapse
Affiliation(s)
- Jinrong Wei
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qianshu Dou
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Futing Ba
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Guo-Qin Jiang
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Yang Y, Chen Z, Hu R, Sun Y, Xiang Lv, Yan J, Jiang H. Activation of the spinal EGFR signaling pathway in a rat model of cancer-induced bone pain with morphine tolerance. Neuropharmacology 2021; 196:108703. [PMID: 34260958 DOI: 10.1016/j.neuropharm.2021.108703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Cancer-induced bone pain (CIBP) is considered to be one of the most difficult pain conditions to treat. Morphine, an analgesic drug, is widely used in clinical practice, and long-term use of morphine can lead to drug tolerance. Recent reports have suggested that inhibitors of epidermal growth factor receptor (EGFR) may have analgesic effects in cancer patients suffering from pain. Therefore, we sought to determine whether EGFR signaling was involved in morphine tolerance (MT) in a rat model of cancer-induced bone pain. In this study, Walker 256 mammary gland carcinoma cells were inoculated into the tibias of rats to provoke cancer-induced bone pain. Then, morphine was intrathecally administered twice daily for seven consecutive days to induce drug tolerance. We observed sustained increased in the protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 during the development of morphine tolerance in rats with cancer-induced bone pain by western blotting. The EGFR level was significantly increased in the MT and CIBP + MT groups, and EGFR was colocalized with markers of microglia and neurons in the spinal cords of rats. Inhibition of EGFR by a small molecule inhibitor markedly attenuated the degree of morphine tolerance and decreased the number of microglia, and the protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 were also reduced. In summary, our results suggest that the activation of the EGFR signaling pathway in spinal microglia plays an important modulatory role in the development of morphine tolerance and that inhibition of EGFR may provide a new therapeutic option for cancer-induced bone pain.
Collapse
Affiliation(s)
- Yaqiong Yang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Zhifeng Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Xiang Lv
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, PR China.
| |
Collapse
|
14
|
Xu H, Peng C, Chen XT, Yao YY, Chen LP, Yin Q, Shen W. Chemokine receptor CXCR4 activates the RhoA/ROCK2 pathway in spinal neurons that induces bone cancer pain. Mol Pain 2021; 16:1744806920919568. [PMID: 32349612 PMCID: PMC7227150 DOI: 10.1177/1744806920919568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Chemokine receptor CXCR4 has been found to be associated with spinal neuron and glial cell activation during bone cancer pain. However, the underlying mechanism remains unknown. Furthermore, the RhoA/ROCK2 pathway serves as a downstream pathway activated by CXCR4 during bone cancer pain. We first validated the increase in the expressions of CXCR4, p-RhoA, and p-ROCK2 in the spinal dorsal horn of a well-characterized tumor cell implantation-induced cancer pain rat model and how these expressions contributed to the pain behavior in tumor cell implantation rats. We hypothesized that spinal blockade of the CXCR4-RhoA/ROCK2 pathway is a potential analgesic therapy for cancer pain management. Methods Adult female Sprague–Dawley rats (body weight of 180–220 g) and six- to seven-week old female Sprague–Dawley rats (body weight of 80–90 g) were taken. Ascitic cancer cells were extracted from the rats (body weight of 80–90 g) with intraperitoneally implanted Walker 256 mammary gland carcinoma cells. Walker 256 rat mammary gland carcinoma cells were then injected (tumor cell implantation) into the intramedullary space of the tibia to establish a rat model of bone cancer pain. Results We found increased expressions of CXCR4, p-RhoA, and p-ROCK2 in the neurons in the spinal cord. p-RhoA and p-ROCK2 were co-expressed in the neurons and promoted by overexpressed CXCR4. Intrathecal delivery of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil abrogated tumor cell implantation-induced pain hypersensitivity and tumor cell implantation-induced increase in p-RhoA and p-ROCK2 expressions. Intrathecal injection of stromal-derived factor-1, the principal ligand for CXCR4, accelerated p-RhoA expression in naive rats, which was prevented by postadministration of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil. Conclusions Collectively, the spinal RhoA/ROCK2 pathway could be a critical downstream target for CXCR4-mediated neuronal sensitization and pain hypersensitivity in bone cancer pain, and it may serve as a potent therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying-Ying Yao
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qin Yin
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Cai X, Xi X, Li X, Zhang X, Zhang X, Huang Z, Yan Z. Antinociceptive effects of macrophage-derived extracellular vesicles by carrying microRNA-216a. Am J Transl Res 2021; 13:1971-1989. [PMID: 34017370 PMCID: PMC8129326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Cancer-induced bone pain (CIBP) represents the pain induced by bone metastases from malignancies. The role of extracellular vesicles (Evs) has been underscored in bone metastasis. However, the function of Evs, especially these derived from M2 macrophages (M2φ-Evs) in CIBP is unclear. Therefore, this investigation aimed to probe the possible antinociceptive effect of M2φ-Evs in CIBP and the underlying mechanism of action. Using the C57bl/6 mice, a CIBP animal model was established by the administration of Walker 256 mammary gland carcinoma cells, followed by M2φ-Evs administration. It was found that CIBP mice treated with M2φ-Evs had significantly reduced nociception and serum inflammatory factors. Microarray sequencing revealed that microRNA-216a (miR-216a) was the most upregulated miRNA in Evs-treated mouse spinal cord tissues. Subsequent bioinformatics, GSEA and KEGG enrichment analyses demonstrated that HMGB1 and TLR4-NF-κB pathway were the downstream effectors of miR-216a and were both downregulated in spinal cord tissues of CIBP mice treated with M2φ-Evs. Rescue experiments displayed that after we reduced miR-216a expression in M2φ-Evs, the antinociceptive effect of M2φ-Evs on CIBP mice was inhibited, and the HMGB1 expression and the TLR4-NF-κB signaling were significantly activated. Together, M2φ-Evs relieve CIBP by carrying miR-216a, which was elicited through the HMGB1/TLR4-NF-κB axis.
Collapse
Affiliation(s)
- Xinxin Cai
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Xi Xi
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical UniversityKunming 650101, Yunnan, P. R. China
| | - Xiangming Li
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Xiaomei Zhang
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Xiaolina Zhang
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Zhangxiang Huang
- Department of Pain Management, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, P. R. China
| | - Zhiwen Yan
- Department of Anatomy, Kunming Medical University Haiyuan CollegeKunming 650101, Yunnan, P. R. China
| |
Collapse
|
16
|
Rauschner M, Lange L, Hüsing T, Reime S, Nolze A, Maschek M, Thews O, Riemann A. Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:10. [PMID: 33407762 PMCID: PMC7786478 DOI: 10.1186/s13046-020-01815-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.
Collapse
Affiliation(s)
- Mandy Rauschner
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Luisa Lange
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Thea Hüsing
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Sarah Reime
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Alexander Nolze
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Marcel Maschek
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Oliver Thews
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Anne Riemann
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany.
| |
Collapse
|
17
|
Hchicha K, Korb M, Badraoui R, Naïli H. A novel sulfate-bridged binuclear copper( ii) complex: structure, optical, ADMET and in vivo approach in a murine model of bone metastasis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02388h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel complex, formulated as [Cu2(μ3-SO4)2(C4H6N2)4], showed significant ameliorative effects on tumor osteolytic lesions in malignant Walker 256/B breast cancer-induced bone metastases.
Collapse
Affiliation(s)
- Khouloud Hchicha
- Laboratoire Physico-Chimie de l’Etat Solide
- Département de Chimie
- Faculté des Sciences de Sfax
- Université de Sfax
- Tunisia
| | - Marcus Korb
- The University of Western Australia
- Faculty of Sciences
- School of Molecular Sciences
- Perth
- Australia
| | - Riadh Badraoui
- Laboratory of General Biology
- Department of Biology
- University of Ha’il
- 81451 Ha’il
- Saudi Arabia
| | - Houcine Naïli
- Laboratoire Physico-Chimie de l’Etat Solide
- Département de Chimie
- Faculté des Sciences de Sfax
- Université de Sfax
- Tunisia
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The prevalence of cancer pain will continue to rise as pain is common among the survivorship and general cancer population. As interest in cannabis and cannabinoids for medicinal use including pain management continues to rise, there is growing need to update and review the current state of evidence for their use. The literature was searched for articles in English with key words cannabis, cannabinoids, and cancer pain. The sources of articles were PubMed, Embase, and open Google search. RECENT FINDINGS In a double-blind randomized placebo-controlled trial including a 3-week treatment period of nabiximol for advanced cancer patients with pain refractory to optimized opiate therapy, improvements in average pain were seen in the intention to treat population (P = 0.0854) and per- protocol population (P = 0.0378). SUMMARY To date, preclinical data has demonstrated evidence to suggest promising potential for cancer pain and the urgent need to translate this into clinical practice. Unfortunately, due to limited data, for adults with advanced cancer being treated with opiate therapy, the addition of cannabis or cannabinoids is not currently supported to address cancer pain effectively.
Collapse
|
19
|
Badraoui R, Rebai T, Elkahoui S, Alreshidi M, N. Veettil V, Noumi E, A. Al-Motair K, Aouadi K, Kadri A, De Feo V, Snoussi M. Allium subhirsutum L. as a Potential Source of Antioxidant and Anticancer Bioactive Molecules: HR-LCMS Phytochemical Profiling, In Vitro and In Vivo Pharmacological Study. Antioxidants (Basel) 2020; 9:E1003. [PMID: 33081189 PMCID: PMC7602730 DOI: 10.3390/antiox9101003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study investigated Allium subhirsutum L. (AS) anticancer and antioxidant effects and inhibition of tumor angiogenesis in a murine model of skeletal metastases due to inoculation of Walker 256/B cells. Phytochemical composition of AS extract (ASE) was studied by High Resolution-Liquid Chromatography Mass Spectroscopy (HR-LCMS). Total phenolic and flavonoid contents (TPC and TFC) were determined. In vitro, the antioxidant properties were evaluated by reducing power and antiradical activity against DPPH. Cancer cells' proliferation, apoptosis, metastatic development and angiogenesis were evaluated using Walker 256/B and MatLyLu cells. The p-coumaric acid was the major phenolic acid (1700 µg/g extract). ASE showed high levels of TPC and TFC and proved potent antioxidant effects. ASE inhibited Walker 256/B and MatLyLu cells' proliferation (Half-maximal inhibitory concentration: IC50 ≃ 150 µg/mL) and induced apoptosis. In silico and in vivo assays confirmed these findings. ASE effectively acts as a chemo-preventive compound, induces apoptosis and attenuates angiogenesis and osteolytic metastases due to Walker 256/B malignant cells.
Collapse
Affiliation(s)
- Riadh Badraoui
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta, Road Djebal Lakhdhar, Tunis 1007, Tunisia
- Department of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia;
| | - Tarek Rebai
- Department of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia;
| | - Salem Elkahoui
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia
| | - Mousa Alreshidi
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
| | - Vajid N. Veettil
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
| | - Emira Noumi
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Laboratory of Bioressources: Integrative Biology & Recovery, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Khaled A. Al-Motair
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65527, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, BP 1117, Sfax 3000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy;
| | - Mejdi Snoussi
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
20
|
The analgesic effects of pioglitazone in the bone cancer pain rats via regulating the PPARγ/PTEN/mTOR signaling pathway in the spinal dorsal horn. Biomed Pharmacother 2020; 131:110692. [PMID: 32942156 DOI: 10.1016/j.biopha.2020.110692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Bone cancer pain (BCP) remains a difficult clinical problem. This study examined whether pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is effective for attenuating BCP, and investigated the interaction between activation of PPARγ and phosphatase and tensin homolog deleted from chromosome 10 (PTEN) / mammalian target of rapamycin (mTOR) signal in the spinal dorsal horn (SDH) of BCP rats. METHODS We tested the effects of intrathecal (i.t.) injection of adenovirus-mediated PTEN (Ad-PTEN), PTEN antisense oligonucleotide (Ad-antisense PTEN), mTOR inhibitor rapamycin, pioglitazone and PPARγ antagonist GW9662 on bone cancer-induced mechanical allodynia by measuring the paw withdrawal threshold (PWT). Western blot or immunofluorescence examined the expression of spinal PPARγ, PTEN, mTOR, p-mTOR and p-S6K1. RESULTS Bone cancer did not alter total mTOR expression but caused significant downregulation of PTEN and upregulation of p-mTOR and p-S6K1 in spinal neurons. Rapamycin markedly reduced BCP. Upregulation of spinal PTEN by i.t. Ad-PTEN significantly relieved BCP and downregulated p-mTOR and p-S6K1; while i.t. Ad-antisense PTEN led to the opposite effects of Ad-PTEN. Spinal PPARγ expression increased in BCP rats, co-localizing mainly with neurons and a few astrocytes, but not in microglia. Pioglitazone (500 μg/day i.t. for one week, from 7 days after surgery) attenuated BCP, further increased expression of PPARγ, and inhibited downregulation of PTEN and upregulation of p-mTOR and p-S6K1 in the SDH. Pioglitazone's analgesic effect was enhanced by Ad-PTEN and attenuated by Ad-antisense PTEN. Blockade of PPARγ with GW9662 (300 μg i.t. 15 min prior to pioglitazone) reversed the effects of pioglitazone on BCP and regulations of PPARγ/PTEN/mTOR signal. CONCLUSIONS Intrathecal pioglitazone administration alleviates BCP by regulating the PPARγ/PTEN/mTOR signal in the SDH. Our data provided new insight in the therapeutic strategy in BCP management.
Collapse
|
21
|
Dai WL, Bao YN, Fan JF, Ma B, Li SS, Zhao WL, Yu BY, Liu JH. Blockade of spinal dopamine D1/D2 receptor suppresses activation of NMDA receptor through Gαq and Src kinase to attenuate chronic bone cancer pain. J Adv Res 2020; 28:139-148. [PMID: 33364051 PMCID: PMC7753228 DOI: 10.1016/j.jare.2020.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Spinal N-methyl-D-aspartate receptor (NMDAR) is vital in chronic pain, while NMDAR antagonists have severe side effects. NMDAR has been reported to be controlled by G protein coupled receptors (GPCRs), which might present new therapeutic targets to attenuate chronic pain. Dopamine receptors which belong to GPCRs have been reported could modulate the NMDA-mediated currents, while their exact effects on NMDAR in chronic bone cancer pain have not been elucidated. Objectives This study was aim to explore the effects and mechanisms of dopamine D1 receptor (D1DR) and D2 receptor (D2DR) on NMDAR in chronic bone cancer pain. Methods A model for bone cancer pain was established using intra-tibia bone cavity tumor cell implantation (TCI) of Walker 256 in rats. The nociception was assessed by Von Frey assay. A range of techniques including the fluorescent imaging plate reader, western blotting, and immunofluorescence were used to detect cell signaling pathways. Primary cultures of spinal neurons were used for in vitro evaluation. Results Both D1DR and D2DR antagonists decreased NMDA-induced upregulation of Ca2+ oscillations in primary culture spinal neurons. Additionally, D1DR/D2DR antagonists inhibited spinal Calcitonin Gene-Related Peptide (CGRP) and c-Fos expression and alleviated bone cancer pain induced by TCI which could both be reversed by NMDA. And D1DR/D2DR antagonists decreased p-NR1, p-NR2B, and Gαq protein, p-Src expression. Both Gαq protein and Src inhibitors attenuated TCI-induced bone cancer pain, which also be reversed by NMDA. The Gαq protein inhibitor decreased p-Src expression. In addition, D1DR/D2DR antagonists, Src, and Gαq inhibitors inhibited spinal mitogen-activated protein kinase (MAPK) expression in TCI rats, which could be reversed by NMDA. Conclusions Spinal D1DR/D2DR inhibition eliminated NMDAR-mediated spinal neuron activation through Src kinase in a Gαq-protein-dependent manner to attenuate TCI-induced bone cancer pain, which might present a new therapeutic strategy for bone cancer pain.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yi-Ni Bao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ji-Fa Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bin Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shan-Shan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wan-Li Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
22
|
Ma S, Zheng X, Zheng T, Huang F, Jiang J, Luo H, Guo Q, Hu B. Amitriptyline influences the mechanical withdrawal threshold in bone cancer pain rats by regulating glutamate transporter GLAST. Mol Pain 2020; 15:1744806919855834. [PMID: 31218920 PMCID: PMC6637840 DOI: 10.1177/1744806919855834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with cancer, especially breast, prostate, and lung cancer, commonly experience bone metastases that are difficult to manage and are associated with bone cancer pain. Amitriptyline is often used to treat chronic pain, such as neuropathic pain. In this study, the effects of amitriptyline on the mechanical withdrawal threshold and its underlying mechanisms were evaluated in rat models of bone cancer pain. Walker 256 rat mammary gland carcinoma cells were injected into the bone marrow cavity of the right tibia of rats to provoke bone cancer pain. Then, amitriptyline was intraperitoneally administered twice daily from fifth day after the operation. Rats with bone cancer showed an apparent decline in the mechanical withdrawal threshold at day 11 after Walker 256 cells inoculation. The levels of the glutamate-aspartate transporter in the spinal cord dorsal horn decreased remarkably, and the concentration of the excitatory amino acid glutamate in the cerebrospinal fluid increased substantially. Amitriptyline injection could prevent the decline of mechanical withdrawal threshold in bone cancer pain rats. In addition, glutamate-aspartate transporter was upregulated on the glial cell surface, and glutamate levels were reduced in the cerebrospinal fluid. However, amitriptyline injection could not prevent the bone cancer pain-induced reduction in glutamate-aspartate transporter in the glial cell cytosol, it further downregulated cytosolic glutamate-aspartate transporter. Amitriptyline had no significant effect on GLAST messenger RNA expression, and bone cancer pain-invoked protein kinase A/protein kinase C upregulation was prevented. Taken together, these results suggest that the intraperitoneal injection of amitriptyline can prevent the decrease of mechanical withdrawal threshold in bone cancer pain rats, the underlying mechanisms may be associated with the inhibition of protein kinase A/protein kinase C expression, thus promoting glutamate-aspartate transporter trafficking onto the glial cell surface and reducing excitatory amino acid concentrations in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Simeng Ma
- 1 Fujian Provincial Hospital, Fuzhou, China
| | | | - Ting Zheng
- 1 Fujian Provincial Hospital, Fuzhou, China
| | | | | | | | | | - Bin Hu
- 1 Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
23
|
Geraldelli D, Ribeiro MC, Medeiros TC, Comiran PK, Martins KO, Oliveira MF, Oliveira GA, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF. Tumor development in rats and cancer cachexia are reduced by treatment with botryosphaeran by increasing apoptosis and improving the metabolic profile. Life Sci 2020; 252:117608. [PMID: 32289434 DOI: 10.1016/j.lfs.2020.117608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022]
Abstract
AIMS Cancer is a multifactorial disease characterized by an uncontrolled growth of cells that can lead to cachexia-anorexia syndrome. Botryosphaeran, a fungal (1 → 3)(1 → 6)-β-D-glucan produced by Botryosphaeria rhodina MAMB-05, has presented antimutagenic, antiproliferative, pro-apoptotic, hypoglycemic and hypocholesterolemic effects. This study evaluated the effects of botryosphaeran (30 mg/kg b.w./day) on tumor development and cachexia syndrome in Walker-256 tumor-bearing rats, and also the metabolic and hematological profiles of these animals. MATERIALS AND METHODS Male Wistar rats were divided into 3 groups: control (C), control tumor (CT) and control tumor botryosphaeran (CTB). On the first day, 1 × 107 Walker-256 tumor cells were inoculated subcutaneously into the right flank of the CT and CTB rats, and concomitantly treatment with botryosphaeran (30 mg/kg b.w./day) started. After the 15th day of treatment, biological parameters, tumor development, cachexia, glucose and lipid profiles, hemogram and protein expression were analyzed. KEY FINDINGS Botryosphaeran significantly reduced tumor development (p = 0.0024) and cancer cachexia, modulated the levels of glucose, triglycerides and HDL-cholesterol, and corrected macrocytic anemia. Botryosphaeran also increased significantly the bax expression in the tumor tissue (p = 0.038) demonstrating that this (1 → 3)(1 → 6)-β-D-glucan is increasing the apoptosis of tumor cells. p53, p27, bcl-2, caspase-3 and Forkhead transcription factor 3a (FOXO3a) protein expression were similar among the groups. SIGNIFICANCE This study demonstrated that botryosphaeran was effective in decreasing tumor development and cachexia by direct and indirect mechanisms increasing apoptosis and improving the metabolic and hematological profiles.
Collapse
Affiliation(s)
- Danielli Geraldelli
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Mariana C Ribeiro
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Túlio C Medeiros
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Patricia K Comiran
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Kamila O Martins
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Matheus F Oliveira
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Gabriela A Oliveira
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química - CCE, Universidade Estadual de Londrina, CEP: 85503-390 Londrina, PR, Brazil
| | - Pâmela Alegranci
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde (NUPADS), Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78550-728 Sinop, MT, Brazil.
| |
Collapse
|
24
|
Zhang C, Xia C, Zhang X, Li W, Miao X, Zhou Q. Wrist-ankle acupuncture attenuates cancer-induced bone pain by regulating descending pain-modulating system in a rat model. Chin Med 2020; 15:13. [PMID: 32042305 PMCID: PMC7001307 DOI: 10.1186/s13020-020-0289-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/09/2020] [Indexed: 01/26/2023] Open
Abstract
Background Cancer-induced bone pain (CIBP) presents a multiple-mechanism of chronic pain involving both inflammatory and neuropathic pain, and its pathogenesis is closely related to endogenous descending system of pain control. However, the action mechanism underlying the effects of wrist–ankle acupuncture (WAA) versus electroacupuncture (EA) on CIBP remains unknown. Methods Thirty-two Wistar rats were divided into sham, CIBP, EA-treated and WAA-treated groups. CIBP was induced in rats of the latter three groups. Time courses of weight and mechanical hyperalgesia threshold (MHT) were evaluated. After 6 days of EA or WAA treatment, the expressions of 5-hydroxytryotamine type 3A receptor (5-HT3AR) and μ-opioid receptor (MOR) in rostral ventromedial medulla (RVM) and/or spinal cord, as well as the levels of 5-HT, β-endorphin, endomorphin-1 and endomorphin-2 in RVM and spinal cord, were detected. Results Injection of cancer cells caused decreased MHT, which was attenuated by EA or WAA (P < 0.05). WAA had a quicker analgesic effect than EA (P < 0.05). No significant difference of MOR in RVM was found among the four groups. EA or WAA counteracted the cancer-driven upregulation of 5-HT3AR and downregulation of MOR in spinal cord (P < 0.05), and upregulation of 5-HT and downregulation of endomorphin-1 in both RVM and spinal cord (P < 0.05). β-endorphin and endomorphin-2 in RVM and spinal cord decreased in CIBP group compared with sham group (P < 0.05), but EA or WAA showed no significant effect on them, although a tendency of increasing effect was observed. Conclusion WAA, similar to EA, alleviated mechanical hyperalgesia in CIBP rats by suppressing the expressions of 5-HT and 5-HT3AR, and increasing the expressions of MOR and endomorphin-1 in RVM-spinal cord pathway of the descending pain-modulating system. However, WAA produced a quicker analgesic effect than EA, the mechanisms of which need further investigation.
Collapse
Affiliation(s)
- Chunpeng Zhang
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Chen Xia
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Xiaowen Zhang
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Weimin Li
- 2Laboratory of Neuronal Network and Systems Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xuerong Miao
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Qinghui Zhou
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| |
Collapse
|
25
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Pereira GC, Lückemeyer DD, Antoniazzi CT, Kudsi SQ, Araújo DMPA, Oliveira SM, Ferreira J, Trevisan G. Role of transient receptor potential ankyrin 1 (TRPA1) on nociception caused by a murine model of breast carcinoma. Pharmacol Res 2020; 152:104576. [DOI: 10.1016/j.phrs.2019.104576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
|
26
|
miR-300 mitigates cancer-induced bone pain through targeting HMGB1 in rat models. Genes Genomics 2019; 42:309-316. [PMID: 31872385 DOI: 10.1007/s13258-019-00904-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer-induced bone pain (CIBP) is the pain caused by bone metastasis from malignant tumors, and the largest source of pain for cancer patients. miR-300 is an important miRNA in cancer. It has been shown that miR-300 regulates tumorigenesis of various tumors. OBJECTIVE This study aims to investigate the role of miR-300 in CIBP and its underlying molecular mechanisms in vitro and in vivo. METHODS We constructed CIBP model in rats and investigated the mechanism through which miR-300 affects CIBP. We first examined expression level of miR-300 in CIBP rats and then tested the effect of its overexpression. Next, we identified the target of miR-300 using TargetScan analysis and double luciferase assay. Finally, we studied genetic interactions between miR-300 and its target and their roles in CIBP. RESULTS We found that miR-300 was downregulated in CIBP rats. Overexpression of miR-300 significantly attenuated cancer-induced neuropathic pain (p < 0.01). Furthermore, TargetScan analysis and double luciferase assay show High Mobility Group Box 1 (HMGB1) is a target of miR-300. Notably, HMGB1 is overexpressed in CIBP rats, while up-regulation of miR-300 significantly suppresses expression of HMGB1 (p < 0.01). Moreover, knockdown of HMGB1 by siRNA significantly relieves cancer-induced neuropathic pain in rats (p < 0.01). On the other hand, HMGB1 overexpression partially blocked the effect of miR-300 on cancer-induced nerve pain. CONCLUSION miR-300 relieves cancer-induced neuropathic pain by inhibiting HMGB1 expression. These results may be beneficial for the treatment of CIBP in clinical practice.
Collapse
|
27
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Dalenogare DP, Pereira GC, Ritter CDS, Peres DS, Antoniazzi CTDD, Stein C, Moresco RN, Oliveira SM, Trevisan G. Characterization of Cancer-Induced Nociception in a Murine Model of Breast Carcinoma. Cell Mol Neurobiol 2019; 39:605-617. [PMID: 30850915 DOI: 10.1007/s10571-019-00666-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Severe and poorly treated pain often accompanies breast cancer. Thus, novel mechanisms involved in breast cancer-induced pain should be investigated. Then, it is necessary to characterize animal models that are reliable with the symptoms and progression of the disease as observed in humans. Explaining cancer-induced nociception in a murine model of breast carcinoma was the aim of this study. 4T1 (104) lineage cells were inoculated in the right fourth mammary fat pad of female BALB/c mice; after this, mechanical and cold allodynia, or mouse grimace scale (MGS) were observed for 30 days. To determine the presence of bone metastasis, we performed the metastatic clonogenic test and measure calcium serum levels. At 20 days after tumor induction, the antinociceptive effect of analgesics used to relieve pain in cancer patients (acetaminophen, naproxen, codeine or morphine) or a cannabinoid agonist (WIN 55,212-2) was tested. Mice inoculated with 4T1 cells developed mechanical and cold allodynia and increased MGS. Bone metastasis was confirmed using the clonogenic assay, and hypercalcemia was observed 20 days after cells inoculation. All analgesic drugs reduced the mechanical and cold allodynia, while the MGS was decreased only by the administration of naproxen, codeine, or morphine. Also, WIN 55,212-2 improved all nociceptive measures. This pain model could be a reliable form to observe the mechanisms of breast cancer-induced pain or to observe the efficacy of novel analgesic compounds.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Flávia Karine Rigo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Samira Dal-Toé De Prá
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Alessandra Marcone Milioli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Diéssica Padilha Dalenogare
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriele Cheiran Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Camila Dos Santos Ritter
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Diulle Spat Peres
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Carolina Stein
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
28
|
Li P, Zhang Q, Xiao Z, Yu S, Yan Y, Qin Y. Activation of the P2X 7 receptor in midbrain periaqueductal gray participates in the analgesic effect of tramadol in bone cancer pain rats. Mol Pain 2018; 14:1744806918803039. [PMID: 30198382 PMCID: PMC6176534 DOI: 10.1177/1744806918803039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Cancer pain is a well-known serious complication in metastatic or terminal cancer patients. Current pain management remains unsatisfactory. The activation of spinal and supraspinal P2X7 receptors plays a crucial role in the induction and maintenance mechanisms of various kinds of acute or chronic pain. The midbrain periaqueductal gray is a vital supraspinal site of the endogenous descending pain-modulating system. Tramadol is a synthetic, centrally acting analgesic agent that exhibits considerable efficacy in clinically relieving pain. The purpose of this study was to determine whether the activation of P2X7 receptor in the ventrolateral region of the periaqueductal gray (vlPAG) participates in the analgesic mechanisms of tramadol on bone cancer pain in rats. The bone cancer pain rat model was established by intratibial cell inoculation of SHZ-88 mammary gland carcinoma cells. The analgesic effects of different doses of tramadol (10, 20, and 40 mg/kg) were assessed by measuring the mechanical withdrawal threshold and thermal withdrawal latency values in rats by using an electronic von Frey anesthesiometer and radiant heat stimulation, respectively. Alterations in the number of P2X7 receptor-positive cells and P2X7 protein levels in vlPAG were separately detected by using immunohistochemistry and Western blot assay. The effect of intra-vlPAG injection of A-740003 (100 nmol), a selective competitive P2X7 receptor antagonist, on the analgesic effect of tramadol was also observed. Results The expression of P2X7 receptor in the vlPAG on bone cancer pain rats was mildly elevated, and the tramadol (10, 20, and 40 mg/kg) dose dependently relieved pain-related behaviors in bone cancer pain rats and further upregulated the expression of P2X7 receptor in the vlPAG. The intra-vlPAG injection of A-740003 pretreatment partly but significantly antagonized the analgesic effect of tramadol on bone cancer pain rats. Conclusions The injection of tramadol can dose dependently elicit analgesic effect on bone cancer pain rats by promoting the expression of the P2X7 receptor in vlPAG.
Collapse
Affiliation(s)
- Pengtao Li
- 1 Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Quan Zhang
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China.,3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China.,3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shouyang Yu
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Yan
- 2 Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China.,3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Qin
- 3 Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
29
|
Shenoy PA, Kuo A, Khan N, Gorham L, Nicholson JR, Corradini L, Vetter I, Smith MT. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol 2018; 9:495. [PMID: 29867498 PMCID: PMC5962878 DOI: 10.3389/fphar.2018.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
In the majority of patients with breast cancer in the advanced stages, skeletal metastases are common, which may cause excruciating pain. Currently available drug treatments for relief of breast cancer-induced bone pain (BCIBP) include non-steroidal anti-inflammatory drugs and strong opioid analgesics along with inhibitors of osteoclast activity such as bisphosphonates and monoclonal antibodies such as denosumab. However, these medications often lack efficacy and/or they may produce serious dose-limiting side effects. In the present study, we show that J-2156, a somatostatin receptor type 4 (SST4 receptor) selective agonist, reverses pain-like behaviors in a rat model of BCIBP induced by unilateral intra-tibial injection of Walker 256 breast cancer cells. Following intraperitoneal administration, the ED50 of J-2156 for the relief of mechanical allodynia and mechanical hyperalgesia in the ipsilateral hindpaws was 3.7 and 8.0 mg/kg, respectively. Importantly, the vast majority of somatosensory neurons in the dorsal root ganglia including small diameter C-fibers and medium-large diameter fibers, that play a crucial role in cancer pain hypersensitivities, expressed the SST4 receptor. J-2156 mediated pain relief in BCIBP-rats was confirmed by observations of a reduction in the levels of phosphorylated extracellular signal-regulated kinase (pERK), a protein essential for central sensitization and persistent pain, in the spinal dorsal horn. Our results demonstrate the potential of the SST4 receptor as a pharmacological target for relief of BCIBP and we anticipate the present work to be a starting point for further mechanism-based studies.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Louise Gorham
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Hu XF, He XT, Zhou KX, Zhang C, Zhao WJ, Zhang T, Li JL, Deng JP, Dong YL. The analgesic effects of triptolide in the bone cancer pain rats via inhibiting the upregulation of HDACs in spinal glial cells. J Neuroinflammation 2017; 14:213. [PMID: 29096654 PMCID: PMC5668986 DOI: 10.1186/s12974-017-0988-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background Bone cancer pain (BCP) severely compromises the quality of life, while current treatments are still unsatisfactory. Here, we tested the antinociceptive effects of triptolide (T10), a substance with considerable anti-tumor efficacies on BCP, and investigated the underlying mechanisms targeting the spinal dorsal horn (SDH). Methods Intratibial inoculation of Walker 256 mammary gland carcinoma cells was used to establish a BCP model in rats. T10 was intrathecally injected, and mechanical allodynia was tested by measuring the paw withdrawal thresholds (PWTs). In mechanism study, the activation of microglia, astrocytes, and the mitogen-activated protein kinase (MAPK) pathways in the SDH were evaluated by immunofluorescence staining or Western blot analysis of Iba-1, GFAP, p-ERK, p-p38, and p-JNK. The expression and cellular localization of histone deacetylases (HDACs) 1 and 2 were also detected to investigate molecular mechanism. Results Intrathecal injection of T10 inhibited the bone cancer-induced mechanical allodynia with an ED50 of 5.874 μg/kg. This effect was still observed 6 days after drug withdrawal. Bone cancer caused significantly increased expression of HDAC1 in spinal microglia and neurons, with HDAC2 markedly increased in spinal astrocytes, which were accompanied by the upregulation of MAPK pathways and the activation of microglia and astrocytes in the SDH. T10 reversed the increase of HDACs, especially those in glial cells, and inhibited the glial activation. Conclusions Our results suggest that the upregulation of HDACs contributes to the pathological activation of spinal glial cells and the chronic pain caused by bone cancer, while T10 help to relieve BCP possibly via inhibiting the upregulation of HDACs in the glial cells in the SDH and then blocking the neuroinflammation induced by glial activation.
Collapse
Affiliation(s)
- Xiao-Fan Hu
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tao He
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Zhang
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Jun Zhao
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Zhang
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Lian Li
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Yu-Lin Dong
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
31
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
32
|
HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring μ-opioid receptor in spinal cord. Brain Res 2017; 1669:97-105. [DOI: 10.1016/j.brainres.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/09/2023]
|
33
|
Shenoy P, Kuo A, Vetter I, Smith MT. Optimization and In Vivo Profiling of a Refined Rat Model of Walker 256 Breast Cancer Cell-Induced Bone Pain Using Behavioral, Radiological, Histological, Immunohistochemical and Pharmacological Methods. Front Pharmacol 2017; 8:442. [PMID: 28729837 PMCID: PMC5498471 DOI: 10.3389/fphar.2017.00442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
In the majority of patients with advanced breast cancer, there is metastatic spread to bones resulting in pain. Clinically available drug treatments for alleviation of breast cancer-induced bone pain (BCIBP) often produce inadequate pain relief due to dose-limiting side-effects. A major impediment to the discovery of novel well-tolerated analgesic agents for the relief of pain due to bony metastases is the fact that most cancer-induced bone pain models in rodents relied on the systemic injection of cancer cells, causing widespread formation of cancer metastases and poor general animal health. Herein, we have established an optimized, clinically relevant Wistar Han female rat model of breast cancer induced bone pain which was characterized using behavioral assessments, radiology, histology, immunohistochemistry and pharmacological methods. In this model that is based on unilateral intra-tibial injection (ITI) of Walker 256 carcinoma cells, animals maintained good health for at least 66 days post-ITI. The temporal development of hindpaw hypersensitivity depended on the initial number of Walker 256 cells inoculated in the tibiae. Hindpaw hypersensitivity resolved after approximately 25 days, in the continued presence of bone tumors as evidenced by ex vivo histology, micro-computed tomography scans and immunohistochemical assessments of tibiae. A possible role for the endogenous opioid system as an internal factor mediating the self-resolving nature of BCIBP was identified based upon the observation that naloxone, a non-selective opioid antagonist, caused the re-emergence of hindpaw hypersensitivity. Bolus dose injections of morphine, gabapentin, amitriptyline and meloxicam all alleviated hindpaw hypersensitivity in a dose-dependent manner. This is a first systematic pharmacological profiling of this model by testing standard analgesic drugs from four important diverse classes, which are used to treat cancer induced bone pain in the clinical setting. Our refined rat model more closely mimics the pathophysiology of this condition in humans and hence is well-suited for probing the mechanisms underpinning breast cancer induced bone pain. In addition, the model may be suitable for efficacy profiling of new molecules from drug discovery programs with potential to be developed as novel agents for alleviation of intractable pain associated with disseminated breast cancer induced bony metastases.
Collapse
Affiliation(s)
- Priyank Shenoy
- Centre for Integrated Preclinical Drug Development, Centre for Clinical Research, The University of Queensland, BrisbaneQLD, Australia.,School of Biomedical Sciences, The University of Queensland, BrisbaneQLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, Centre for Clinical Research, The University of Queensland, BrisbaneQLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, BrisbaneQLD, Australia.,School of Pharmacy, The University of Queensland, BrisbaneQLD, Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, Centre for Clinical Research, The University of Queensland, BrisbaneQLD, Australia.,School of Pharmacy, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
34
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|