1
|
Lin L, Xu H, Yao Z, Zeng X, Kang L, Li Y, Zhou G, Wang S, Zhang Y, Cheng D, Chen Q, Zhao X, Li R. Jin-Xin-Kang alleviates heart failure by mitigating mitochondrial dysfunction through the Calcineurin/Dynamin-Related Protein 1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118685. [PMID: 39127116 DOI: 10.1016/j.jep.2024.118685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic heart failure (CHF) is a severe consequence of cardiovascular disease, marked by cardiac dysfunction. Jin-Xin-Kang (JXK) is a traditional Chinese herbal formula used for the treatment of CHF. This formula consists of seven medicinal herbs, including Ginseng (Ginseng quinquefolium (L.) Alph.Wood), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge), Salvia miltiorrhiza (Salvia miltiorrhiza Bunge), Descurainiae Semen Lepidii Semen (Descurainia sophia (L.) Webb ex Prantl), Leonuri Herba (Leonurus japonicus Houtt.), Cinnamomi Ramulus (Cinnamomum cassia (L.) J.Presl), and Ilex pubescens (Ilex pubescens Hook. & Arn.). Its clinical efficacy has been validated through prospective randomized controlled studies. However, the specific mechanisms of action for this formula have yet to be elucidated. AIM OF THE STUDY This study aimed to investigate the effect of JXK on mitochondrial function and its mechanism in the treatment of CHF. METHODS JXK components were qualitatively analyzed using UPLC-Q-Orbitrap-MS. HF was induced in mice via transverse aortic constriction (TAC). After successful model establishment, lyophilized JXK-L (4.38 g/kg) and JXK-H (13.14 g/kg) were administered for 8 weeks. In vitro, hypertrophic myocardium was induced using angiotensin II (Ang II) for 48 h, followed by JXK-L and JXK-H treatment. Network pharmacology and molecular docking techniques were used to predict the relevant targets of JXK. Cardiac function, serum markers, and histopathological changes were evaluated to assess cardiac function. Immunofluorescence of Tomm20, mitochondrial membrane potential, and ROS were measured to assess mitochondrial dysfunction. Protein expression of calcineurin (CaN) and Drp1 in the myocardium was assessed by Western blot analysis. RESULTS We detected that the active components of JXK include terpenes, glycosides, flavonoids, amino acids, and alkaloids, among others. In mice with CHF, JXK improved cardiac function and reversed ventricular remodeling. Network pharmacology indicated that JXK can inhibit the calcium signaling pathway. The molecular docking results demonstrated that the active components of JXK effectively bind with CaN. Both in vitro and in vivo experiments confirmed that JXK regulated the CaN/Drp1 pathway and alleviated mitochondrial dysfunction. CONCLUSION JXK can inhibit the CaN/Drp1 pathway to improve mitochondrial function, and consequently treat CHF.
Collapse
Affiliation(s)
- Liwen Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China; Innovation Research Center, Shandong University of Chinese Medicine, Jinan, China
| | - Zhengyang Yao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianyou Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihua Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guiting Zhou
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shushu Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danling Cheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Chen
- Department of Cardiology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xinjun Zhao
- Cardiology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| | - Rong Li
- Cardiology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Dong X, Zhuang HW, Wen RJ, Huang YS, Liang BX, Li H, Xian SX, Li C, Wang LJ, Wang JY. Xinyang tablet alleviated cardiac dysfunction in a cardiac pressure overload model by regulating the receptor-interacting serum/three-protein kinase 3/FUN14 domain containing 1-mediated mitochondrial unfolded protein response and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118152. [PMID: 38614260 DOI: 10.1016/j.jep.2024.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hao-Wen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rui-Jia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing-Xue Liang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jun-Yan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Alemu WK, Worku LA, Bachheti RK, Bachheti A, Engida AM. Exploring Phytochemical Profile, Pharmaceutical Activities, and Medicinal and Nutritional Value of Wild Edible Plants in Ethiopia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6408892. [PMID: 39105166 PMCID: PMC11300060 DOI: 10.1155/2024/6408892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
In many parts of the world, wild edible plants (WEPs) constitute an essential component of the global food basket, providing an alternative source of wholesome and nourishing food. Ethiopia is one of countries of the world having largest concentrations of WEPs. In the country, various parts of WEPs, such as fruits, stems, leaves, tubers, roots, or entire plant sections, are frequently consumed and used as food sources for famine relief during seasonal food shortages, as well as for commercial purposes. WEPs have been also used in the country as sources of phytochemicals, traditional medicine, and pharmaceutical applications. Approximately 30%-40% of WEPs and over 413 different kinds of WEPs are commonly consumed by Ethiopians regularly. Most plant families utilized as WEPs are Moraceae, Fabaceae, Flacourtiaceae, Myrtaceae, Rosaceae, and Tiliaceae. The most widely used plant parts of WEPs were fruits. WEPs can be used as substitutes for traditional plant-based human diets because of their high nutritional value, which includes proteins, vitamins B2 and C, and low moisture content. This review focuses on using edible wild plants for pharmacological purposes, dietary supplements, and alternative medicine. Many obstacles prevent people from consuming WEPs, even when they are easily accessible and available. The use of WEPs must be encouraged by nutrition policies as one of the pillars of food and nutrition security. To increase yield, diversify the revenue streams of small-scale farmers, and protect the diminishing wild edible fruit resources, it is imperative to domesticate and enhance WEPs.
Collapse
Affiliation(s)
- Woinshet Kassie Alemu
- Department of Industrial ChemistryCollege of Natural and Applied SciencesAddis Ababa Sciences and Technology University, P.O. Box-16417, Addis Ababa, Ethiopia
| | - Limenew Abate Worku
- Department of ChemistryCollege of Natural and Computational ScienceDebre Tabor University, Debre Tabor, Ethiopia
| | - Rakesh Kumar Bachheti
- Department of Industrial ChemistryCollege of Natural and Applied SciencesAddis Ababa Sciences and Technology University, P.O. Box-16417, Addis Ababa, Ethiopia
- Department of Allied SciencesGraphic Era Hill University, Society Area, Clement Town 248002, Dehradun, Uttarakhand, India
| | - Archana Bachheti
- Department of Environment ScienceGraphic Era (Deemed to Be University) 248002, Dehradun, Uttarakhand, India
| | - Adam Mekonnen Engida
- Department of Industrial ChemistryCollege of Natural and Applied SciencesAddis Ababa Sciences and Technology University, P.O. Box-16417, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Szűcs Z, Cziáky Z, Volánszki L, Máthé C, Vasas G, Gonda S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1288. [PMID: 38794359 PMCID: PMC11124948 DOI: 10.3390/plants13101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Medicinal plant tissue cultures are potential sources of bioactive compounds. In this study, we report the chemical characterization of the callus cultures of three medicinal Tilia spp. (Tilia cordata, Tilia vulgaris and Tilia tomentosa), along with the comparison to bracts and flowers of the same species. Our aim was to show that calli of Tilia spp. are good alternatives to the calli of T. americana for the production of polyphenols and are better sources of a subset of polyphenolic metabolites, compared to the original organs. Calli were initiated from young bracts and grown on woody plant medium containing 1 mg L-1 2,4-D and 0.1 mg L-1 BAP. For chemical characterization, a quality-controlled untargeted metabolomics approach and the quantification of several bioactive compounds was performed with the use of LC-ESI-MS/MS. While bracts and flowers contained flavonoid glycosides (astragalin, isoquercitrin) as major polyphenols, calli of all species contained catechins, coumarins (fraxin, esculin and scopoletin) and flavane aglyca. T. tomentosa calli contained 5397 µg g DW-1 catechin, 201 µg g DW-1 esculin, 218 µg g DW-1 taxifolin and 273 µg g DW-1 eriodictyol, while calli from other species contained lower amounts. T. cordata and T. tomentosa flowers were rich in isoquercitrin, containing 8134 and 6385 µg g DW-1, respectively. The currently tested species contained many of the bioactive metabolites described from T. americana. The production of catechin was shown to be comparable to the most efficient tissue cultures reported. Flowers and bracts contained flavonoid glycosides, including tiliroside, resembling bioactive fractions of T. americana. In addition, untargeted metabolomics has shown fingerprint-like differences among species, highlighting possible chemotaxonomic and quality control applications, especially for bracts.
Collapse
Affiliation(s)
- Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Sóstói út 31/b, 4400 Nyíregyháza, Hungary;
| | - László Volánszki
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Balaton Limnological Research Institute, HUN-REN (Hungarian Research Network), Klebelsberg K. u. 3, 8237 Tihany, Hungary
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| |
Collapse
|
5
|
Giday M, Teklehaymanot T. Use of wild edible and nutraceutical plants in Raya-Azebo District of Tigray Region, northern Ethiopia. Trop Med Health 2023; 51:58. [PMID: 37872596 PMCID: PMC10594744 DOI: 10.1186/s41182-023-00550-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Although there is a wide use of wild edible plants (WEPs) in Ethiopia, very little work has so far been done, particularly, in the Tigray Region, northern Ethiopia, to properly document the associated knowledge. The purpose of this study was, therefore, to document knowledge and analyze data related to the use of wild edible and nutraceutical plants in Raya-Azebo District of Tigray Region. The district was prioritized for the study to avoid the further loss of local knowledge and discontinuation of the associated practices because of the depletion of wild edible plants in the area mainly due to agricultural expansion and largely by private investors. METHODS A cross-sectional ethnobotanical study was carried out in the study District to collect data through individual interviews held with purposively selected informants, observation, market surveys, and ranking exercises. Descriptive and inferential statistical methods were employed to analyze and summarize the data using Statistical Package for Social Sciences (SPSS) version 16. RESULTS The study documented 59 WEPs, the majority of which (57.63%) were sought for their fruits. Most of the WEPs (49 species) were consumed in the autumn, locally called qewei, which includes the months of September, October, and November. Ziziphus spina-christi L. Desf., Balanites aegyptiaca (L.) Del. and Opuntia ficus-indica (L.) Miller were the most preferred WEPs. Both interviews and local market surveys revealed the marketability of Opuntia ficus-indica, Ziziphus spina-christi, Ficus vasta Forssk., Ficus sur Forssk., and Balanites aegyptiaca. Of the total WEPs, 21 were reported to have medicinal (nutraceutical) values, of which Balanites aegyptiaca and Acacia etbaica scored the highest rank order priority (ROP) values for their uses to treat anthrax and skin infections, respectively. CONCLUSIONS The current investigation demonstrated the wide use of WEPs in the district. In future nutritional composition analysis studies, priority should be given to the most popular WEPs, and nutraceutical plants with the highest ROP values.
Collapse
Affiliation(s)
- Mirutse Giday
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Tilahun Teklehaymanot
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Benítez G, Molero-Mesa J, González-Tejero MR. Wild Edible Plants of Andalusia: Traditional Uses and Potential of Eating Wild in a Highly Diverse Region. PLANTS (BASEL, SWITZERLAND) 2023; 12:1218. [PMID: 36986907 PMCID: PMC10051205 DOI: 10.3390/plants12061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A review of ethnobotanical sources focused on traditionally-used wild food plants in Andalusia (southern Spain), one of the most biodiverse regions in Europe, is carried out. With 21 original sources plus some previously unpublished data, the dataset shows a high diversity of these traditional resources, reaching 336 species or c. 7% of the total wild flora. Cultural aspects related to the use of some species are discussed and data are compared with similar works. The results are discussed through the lens of conservation and bromatology. For 24% of the edible plants, informants also mentioned a medicinal use (achieved by consuming the same part of the plant). In addition, a list of 166 potentially edible species is provided based on a review of data from other Spanish territories.
Collapse
|
7
|
Zhang N, Xie P, Huang K, Yin H, Mo P, Wang Y. The complete chloroplast genome sequence of Centaurea cyanus (Asteraceae). Mitochondrial DNA B Resour 2023; 8:393-397. [PMID: 36926644 PMCID: PMC10013558 DOI: 10.1080/23802359.2023.2185470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Centaurea cyanus has been a weed in farmland for a long time. In this study, the chloroplast genome of C. cyanus was sequenced to establish the phylogenetic relationship between its genomic characteristics and other related species. The chloroplast gene structure of C. cyanus is a circular molecule with a length of 152,433 bp, including a large single-copy (LSC) region of 83,464 bp, a small single-copy (SSC) region of 18,545 bp, and a pair of inverted repeats sequences (IRs) region of 25,212 bp. The whole genome contains 130 genes, including 86 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that C. cyanus is close to Carthamus. tinctorius, C. tinctorius, C. diffusa, and C. maculosa, and all of them were in one clade. This study provides genetic resource information for the further study of Centaurea.
Collapse
Affiliation(s)
- NingYun Zhang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of life and environmental sciences, Hunan University of Arts and Science, Hunan, China
| | - Peng Xie
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of life and environmental sciences, Hunan University of Arts and Science, Hunan, China
| | - Kerui Huang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of life and environmental sciences, Hunan University of Arts and Science, Hunan, China
| | - Hanbin Yin
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of life and environmental sciences, Hunan University of Arts and Science, Hunan, China
| | - Ping Mo
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of life and environmental sciences, Hunan University of Arts and Science, Hunan, China
| | - Yun Wang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of life and environmental sciences, Hunan University of Arts and Science, Hunan, China
| |
Collapse
|
8
|
Khatib S, Sobeh M, Faraloni C, Bouissane L. Tanacetum species: Bridging empirical knowledge, phytochemistry, nutritional value, health benefits and clinical evidence. Front Pharmacol 2023; 14:1169629. [PMID: 37153781 PMCID: PMC10157496 DOI: 10.3389/fphar.2023.1169629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The Tanacetum genus consists of 160 accepted flowering species thriving throughout temperate regions, mainly in the Mediterranean Basin, Northern America, and southwestern and eastern Asia. Tanacetum species bear a long-standing record of use in the folk medicine of indigenous tribes and communities worldwide, along with multitudinous applications in traditional cuisines, cosmeceuticals, and agricultural fields. Methods: Up-to-date data related to traditional uses, phytochemistry, biological activities, toxicity and clinical trials of the genus Tanacetum were systematically reviewed from several online scientific engines, including PubMed, Web of Science, Scopus, SciFinder, Wiley Online, Science Direct, and Cochrane library. Results and discussion: Over the past three decades, 241 metabolites have been isolated from nearly twenty species, including phenolic acids, flavonoids, coumarins, fatty acids and alkanes, aldehydes, volatile compounds, and naphthoquinones. Some unique metabolites have also been identified, such as the ceramides tanacetamide (A-D) from T. artemisioides, pyrethrins from T. cinerariifolium, and sesquiterpene lactones from several species. However, these secondary metabolites are still poorly studied despite in vitro clues highlighting their colossal pharmacological properties, especially as hypotensive, neuroprotective, anticancer, and antimicrobial agents. Scientific studies have validated some traditional claims of the plant, such as antidiabetic, anticancer, anthelmintic, insecticide, antioxidant, and hepatoprotective activities, as well as against festering wounds, skin ulcers, urinary tract infections, and sexually transmitted diseases. Other ethnomedicinal uses for arthritis, gout, rheumatism, anemia, and as a litholytic, antivenom and diaphoretic have not yet been supported and would constitute the subject of further research.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- *Correspondence: Latifa Bouissane, ; Mansour Sobeh,
| | - Cecilia Faraloni
- Institute of BioEconomy, IBE, National Research Council, Florence, Italy
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- *Correspondence: Latifa Bouissane, ; Mansour Sobeh,
| |
Collapse
|
9
|
Zymone K, Raudone L, Žvikas V, Jakštas V, Janulis V. Phytoprofiling of Sorbus L. Inflorescences: A Valuable and Promising Resource for Phenolics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243421. [PMID: 36559532 PMCID: PMC9780963 DOI: 10.3390/plants11243421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The leaves and fruits of various Sorbus L. genotypes have long ethnopharmacological and food-usage histories, but inflorescences are still underutilized and neglected materials with scarce phytochemical scientific evidence. The aim of this study was to determine the phenolic profiles of inflorescence extracts of 26 Sorbus species, genotypes, and cultivars. HPLC and UPLS with MS detection were applied, and coupled data revealed unique phytochemical phenolic profiles. Neochlorogenic and chlorogenic acids were the key compounds, reaching up to 5.8 mg/g of dw. Rutin, isoquercitrin, quercetin 3-O-malonylglucoside, isorhamnetin 3-O-rutinoside, sexangularetin derivative, and kaempferol acetyl hexoside were detected in all Sorbus inflorescence samples. Overall, high quantitative heterogeneity across the various Sorbus genotypes was found by profiling. Phenolic fingerprint profiles and sexangularetin derivatives could serve as markers in authenticity studies and quality control schemes. The species S. amurensis, S. arranensis, S. commixta, and S. discolor and the cultivars 'Chamsis Louing', 'Coral Beauty', and 'Edulis' could be used as target genotypes for production of smart and innovative inflorescence matrix-based ingredients.
Collapse
Affiliation(s)
- Kristina Zymone
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Vaidotas Žvikas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakštas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
10
|
Vitalini S, Garzoli S, Sisto F, Pezzani R, Argentieri MP, Scarafoni A, Ciappellano S, Zorzan M, Capraro J, Collazuol D, Iriti M. Digestive and gastroprotective effects of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (syn. A. moschata Wulfen) (Asteraceae): From traditional uses to preclinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115670. [PMID: 36038090 DOI: 10.1016/j.jep.2022.115670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (syn. A. moschata Wulfen) (Asteraceae) is an alpine endemic plant whose aerial parts are harvested by the locals mainly for the digestive properties. Despite its widespread use, few studies have been conducted to date to verify its bioactivity. AIM OF THE STUDY The purpose of the work was to meet the tradition confirming with experimental data the popular belief that the consumption of this species offers beneficial effects to the gastrointestinal system. MATERIALS AND METHODS Using Soxhlet apparatus, the dried aerial parts of A. erba-rotta subsp. moschata were successively extracted with petroleum ether (PET), dichloromethane (DCM) and methanol (MeOH). The essential oil (EO) was obtained by hydrodistillation using a Clevenger apparatus while infusion (AE) was prepared following the traditional local recipe. Their chemical characterization was performed by various techniques including SPME-GC/MS, GC/MS and HPLC/MS-MS. An in vitro biological screening was carried out. The influence of AE on lipid digestion was monitored by titration of free fatty acids (FFA) during pancreatic lipase activity with the pH-stat method. For all extracts and EO, the anti-Helicobacter pylori activity was assessed by the broth microdilution method, the influence on cell viability was evaluated against NCI-N87, OE21 and Caco-2 cell lines and a preliminary toxicity evaluation was done using Brine Shrimp lethality (BSL) assay. The anti-inflammatory potential was evidenced by interleukin IL-1- induced IL8 expression on Caco-2 cells. RESULTS AE increased by 15% the FFA releasing compared to the pancreatic lipase alone. PET, DCM and MeOH extracts as well as AE and EO were considered active against the growth of both antimicrobial susceptible and resistant strains of H. pylori with MIC values starting from 16 μg/mL. PET and DCM (IC50 = 89 μg/mL and 96 μg/mL, respectively, against Caco-2 cell line) extracts showed the high effect on cell viability while the EO reduced in 50% of cell viability at 1.48 μL/mL (NCI-N87 cells), 1.42 μL/mL (OE21 cells), and 3.44 μL/mL (Caco-2 cells) corroborating the BSL results. In different degrees, all extracts and EO inhibited the IL-1β-stimulated IL-8 production in Caco-2 cells. CONCLUSIONS The obtained data are encouraging and provide a scientific basis for the traditional use of A. erba-rotta subsp. moschata as a digestive agent although they need to be further corroborated by studies involving the investigation of both the in vivo activities and the role of the compounds detected in the extracts.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, P. le Aldo Moro 5, 00185, Rome, Italy.
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy.
| | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | - Maria Pia Argentieri
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy.
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Salvatore Ciappellano
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Maira Zorzan
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy.
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Daniela Collazuol
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy.
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
11
|
Shi G, Kong J, Wang Y, Xuan Z, Xu F. Glycyrrhiza uralensis Fisch. alleviates dextran sulfate sodium-induced colitis in mice through inhibiting of NF-κB signaling pathways and modulating intestinal microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115640. [PMID: 36030029 DOI: 10.1016/j.jep.2022.115640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is widely used in traditional Chinese Medicine (TCM) for compound compatibility, which could reduce toxicity and increase efficacy of certain herbal medicine, and its active components prominently effects of inhibit of inflammation and regulate of immunity. AIM OF THE STUDY The study probed into the mechanism of the anti-inflammatory and immunomodulatory effects of licorice based on the domination of the T helper type 17/regulatory T cells (Th17/Treg) differentiation balance and the composition and structure of the intestinal flora through the nuclear factor kappa B (NF-κB) signaling pathway. MATERIALS AND METHODS BALB/c mice were inoculated with dextran sulfate sodium (DSS) to establish animal models of ulcerative colitis (UC). For the pharmacodynamic study, UC mice were observed for the anti-inflammatory effect of licorice water extraction (LWE) in vivo, including clinical observation and measurement of colon length. Hematoxylin-eosin (HE) staining was used to evaluate pathological conditions. Immunohistochemistry (IHC) and transmission electron microscopy (TEM) were performed to observe the intestinal barrier of the colons. Inflammatory cytokine levels were measured using with enzyme-linked immunosorbent assay (ELISA) kits. The proportions of T helper (Th) cells in the colons was assessed using flow cytometry. Gut microbiota diversity was detected using 16S ribosomal (r)DNA sequencing. In addition, Western blot (WB) assays were used to verify ROR-γt, Foxp3, TLR4, MyD88 and NF-κB expression according to a standard protocol. RESULTS LWE exerted a pharmacological anti-inflammatory effect by attenuating inflammation in the colonic tissues through affecting the protein expression of TLR4/MyD88/NF-κB, and increasing the expression of tight junction (TJ) protein in the colons, improving the integrity of the intestinal mucosal barrier in vivo. Moreover, LWE reversed the imbalance in Th17/Treg cells differentiation and influenced the protein expression of ROR-γt and Foxp3 in UC mouse colons. In particular, LWE significantly affected the diversity of the gut microbiota in UC mice, ameliorated the composition of dominant species, and significantly increased the type and quantity of probiotics. CONCLUSION Licorice tends to reduce inflammation and enhance the protective action of the intestinal mucosal barrier via the TLR4/MyD88/NF-κB signal transduction pathway and alter the imbalance of Th-cell differentiation. Notably, licorice may affect the diversity of intestinal microbiota and the content of beneficial bacteria in the colon, which is a potential mechanism for understanding anti-inflammatory and immunomodulatory effects in UC mice in vivo.
Collapse
Affiliation(s)
- Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Jinrong Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| |
Collapse
|
12
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|
13
|
Kurt-Celep I, Zheleva-Dimitrova D, Gevrenova R, Uba AI, Zengin G, Yıldıztugay E, Picot-Allain CMN, Lorenzo JM, Mahomoodally MF, Montesano D. An In-Depth Study on the Metabolite Profile and Biological Properties of Primula auriculata Extracts: A Fascinating Sparkle on the Way from Nature to Functional Applications. Antioxidants (Basel) 2022; 11:1377. [PMID: 35883868 PMCID: PMC9312287 DOI: 10.3390/antiox11071377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
The biological activity of the aerial part and rhizomes of Primula auriculata were assessed for the first time. The biological activities (antioxidant properties, enzyme inhibition, and AGE inhibition) as well as the phenolic and flavonoid contents of the ethyl acetate, ethanol, hydro-ethanol and water extracts of P. auriculata aerial parts and rhizomes were determined. Cell viability assays and gelatin zymography were also performed for MMP-2/-9 to determine the molecular mechanisms of action. The gene expression for MMPs was described with RT-PCR. The levels of various proteins, including phospho-Nf-κB, BCL-2, BAX, p-53, and cyclin D1 as well as RAGE were measured using Western blot analysis. The hydro-ethanol extract of the aerial part possessed the highest phenolic (56.81 mg GAE/g) and flavonoid (63.92 mg RE/g) contents. In-depth profiling of the specialized metabolites by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) allowed for the identification and annotation of 65 compounds, including phenolic acids and glycosides, flavones, flavonols, chalcones, dihydrochalcones, and saponins. The hydro-ethanol extract of the aerial parts (132.65, 180.87, 172.46, and 108.37 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) and the ethanol extract of the rhizomes (415.06, 638.30, 477.77, and 301.02 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) exhibited the highest free radical scavenging and reducing activities. The ethanol and hydro-ethanol extracts of both the P. auriculata aerial part and rhizomes exhibited higher inhibitory activity against acetylcholinesterase, while the hydro-ethanol extracts (1.16 mmol ACAE/g, for both the aerial part and rhizomes extracts) were more active in the inhibition of α-glucosidase. After the treatment of an HT-29 colorectal cancer cell line with the extracts, the apoptosis mechanism was initiated, the integrity of the ECM was remodeled, and cell proliferation was also taken under control. In this way, Primula extracts were shown to be potential drug sources in the treatment of colorectal cancer. They were also detected as natural MMP inhibitors. The findings presented in the present study appraise the bioactivity of P. auriculata, an understudied species. Additional assessment is required to evaluate the cytotoxicity of P. auriculata as well as its activity in ex vivo systems.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, 42079 Konya, Turkey;
| | - Carene Marie Nancy Picot-Allain
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
14
|
León-Lobos P, Díaz-Forestier J, Díaz R, Celis-Diez JL, Diazgranados M, Ulian T. Patterns of Traditional and Modern Uses of Wild Edible Native Plants of Chile: Challenges and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2022; 11:744. [PMID: 35336626 PMCID: PMC8953413 DOI: 10.3390/plants11060744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Wild Edible Plants (WEPs) still play a vital role in the subsistence of many traditional communities, while they are receiving increasing recognition in tackling food security and nutrition at the international level. This paper reviews the use patterns of native WEPs in Chile and discusses their role as future crops and sources of food products. We conducted an extensive literature review by assessing their taxonomic diversity, life forms, consumption and preparation methods, types of use (traditional and modern), and nutritional properties. We found that 330 native species were documented as food plants, which represent 7.8% of the total flora of Chile. These species belong to 196 genera and 84 families. The most diverse families are Asteraceae (34), Cactaceae (21), Fabaceae (21), Solanaceae (20) and Apiaceae (19), and the richest genera in terms of number of species are Solanum (9), Ribes (8), Berberis (7), Hypochaeris (7) and Oxalis (6). Perennial herbs are the predominant life form (40%), followed by shrubs (35%), trees (14%), and annual and biannual herbs (11%). Fruits (35.8%), roots (21.5%) and leaves (20.0%) are the parts of plants consumed the most. Nine different food preparation categories were identified, with 'raw' forming the largest group (43%), followed by 'beverages' (27%), 'savoury preparations' (27%), and 'sweet' (13%). Almost all native Chilean WEPs have reported traditional food uses, while only a few of them have contemporary uses, with food products mainly sold in local and specialised markets. Species' richness, taxonomic diversity and family representation have similar patterns to those observed for the world flora and other countries where surveys have been carried out. Some Chilean native WEPs have the potential to become new crops and important sources of nutritious and healthy products in the food industry. However, there are still many gaps in knowledge about their nutritional, anti-nutritional and biochemical characteristics; future research is recommended to unveil their properties and potential uses in agriculture and the food industry.
Collapse
Affiliation(s)
- Pedro León-Lobos
- Grupo de Especialidad en Recursos Genéticos, Centro Regional de Investigación La Platina, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago CP 8831314, Chile
| | - Javiera Díaz-Forestier
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Quillota CP 2260000, Chile;
| | - Rodrigo Díaz
- Grupo de Especialidad en Recursos Genéticos, Centro Regional de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillan CP 3800062, Chile;
| | - Juan L. Celis-Diez
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota CP 2260000, Chile;
| | - Mauricio Diazgranados
- Royal Botanic Gardens, Kew, Welcome Trust Millennium Building, Wakehurst, Ardingly RH17 6TN, UK; (M.D.); (T.U.)
| | - Tiziana Ulian
- Royal Botanic Gardens, Kew, Welcome Trust Millennium Building, Wakehurst, Ardingly RH17 6TN, UK; (M.D.); (T.U.)
| |
Collapse
|
15
|
Aldayarov N, Tulobaev A, Salykov R, Jumabekova J, Kydyralieva B, Omurzakova N, Kurmanbekova G, Imanberdieva N, Usubaliev B, Borkoev B, Salieva K, Salieva Z, Omurzakov T, Chekirov K. An ethnoveterinary study of wild medicinal plants used by the Kyrgyz farmers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114842. [PMID: 34798160 DOI: 10.1016/j.jep.2021.114842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In their centuries-old nomadic life, since their livestock was the backbone of their lives, the Kyrgyz people used a variety of wild medicinal plants for ethnoveterinary practices. However, the plants used for the treatment of livestock ailments never have been recorded, except rarely in local publications. In this study, we present the HSHR (homemade single species herbal remedy reports), their methods of preparation and application, and the livestock ailments for which these remedies were used. AIMS The collect data from the five different high-altitude valleys of the Kyrgyz Republic on common HSHR used for the treatment of the livestock ailments and describe their preparation procedure, administration, and target animal species. MATERIALS AND METHODS The plant species mentioned for ethnoveterinary use were collected from five different high-altitude valleys (pastures) in the Kyrgyz Republic during 2016 and 2018. Data were gathered with the help of dialog partners (experienced local shepherds, farmers and veterinarians) through semi-structured interviews. In total, 166 dialog partners were interviewed. The special characteristics of HSHR mentioned for ethnoveterinary use and practices were documented. Plant samples and voucher specimens were collected for taxonomic identification, and preserved for future reference. RESULTS A total of 2388 HSHR referred to 66 plant species mentioned for ethnoveterinary use belonging to 27 families and 49 genera. According to the data, species of the family Asteraceae were most frequently used HSHRs in the Kyrgyz ethnoveterinary practice (599 HSHR, 25%), followed by Polygonaceae (166 HSHR, 7%), Lamiaceae (141 HSHR, 6%), Ranunculaceae (121 HSHR, 5%), Nitrariaceae (119 HSHR, 4.9%), Apiaceae (113 HSHR, 4.7%), Cupressaceae (111 HSHR, 4.6%), Urticaceae (100 HSHR, 4.2%), Gentianaceae (92 HSHR, 3.8%), Amaranthaceae (87 HSHR, 3.6%). A total of 2785 UR (use reports) were collected for the 2388 HSHR. Infection diseases (572 UR, 20.5%), parasitic diseases (531 UR, 19%), gastrointestinal disorders (523 UR, 18.77%) and wounds (522 UR, 18.74%) were almost evenly reported indications. The largest number use reports (UR) were for cattle (967 UR, 34.7%) and horses (919 UR, 33%), followed by 607 UR (21.8%) for sheep and 292 UR (10.48%) for other domestic animals, including dogs (106 UR, 3.8%), goats (103 UR, 3.69%) and donkeys (83 UR, 2.98%). CONCLUSION In this study, we identified the folk ethnoveterinary knowledge of the HSHR used by the Kyrgyz farmers in their daily veterinary practice. All the characterized HSHR are of value to the local animal breeders. This knowledge has previously been limited to local shepherds, farmers and vets. Many of these need scientific confirmation using modern methods of phytochemistry and pharmacology.
Collapse
Affiliation(s)
- Nurbek Aldayarov
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic.
| | - Askarbek Tulobaev
- Department of Basic Sciences, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Ruslan Salykov
- Department of Basic Sciences, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Jarkynai Jumabekova
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Bermet Kydyralieva
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Nurjamal Omurzakova
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Gulbubu Kurmanbekova
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Nazgul Imanberdieva
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Birzhan Usubaliev
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Bakyt Borkoev
- Department of Chemical Engineering, Faculty of Engineering, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Kalipa Salieva
- Department of Chemical Engineering, Faculty of Engineering, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic
| | - Ziyadat Salieva
- Department of Food Production, Faculty of Technology, Kyrgyz State Technical I. Razzakov University, Bishkek, 720044, Kyrgyz Republic
| | - Talaibek Omurzakov
- Department of Chemistry, Faculty of Biology and Chemistry, Kyrgyz State I. Arabaev University, Bishkek, 720026, Kyrgyz Republic
| | - Kadyrbai Chekirov
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, 720042, Kyrgyz Republic.
| |
Collapse
|
16
|
Rathod L, Bhowmick S, Patel P, Sawant K. Calendula flower extract loaded PVA hydrogel sheet for wound management: Optimization, characterization and in-vivo study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Witkamp RF. Bioactive Components in Traditional Foods Aimed at Health Promotion: A Route to Novel Mechanistic Insights and Lead Molecules? Annu Rev Food Sci Technol 2022; 13:315-336. [PMID: 35041794 DOI: 10.1146/annurev-food-052720-092845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional foods and diets can provide health benefits beyond their nutrient composition because of the presence of bioactive compounds. In various traditional healthcare systems, diet-based approaches have always played an important role, which has often survived until today. Therefore, investigating traditional foods aimed at health promotion could render not only novel bioactive substances but also mechanistic insights. However, compared to pharmacologically focused research on natural products, investigating such nutrition-based interventions is even more complicated owing to interacting compounds, less potent and relatively subtle effects, the food matrix, and variations in composition and intake. At the same time, technical advances in 'omics' technologies, cheminformatics, and big data analysis create new opportunities, further strengthened by increasing insights into the biology of health and homeostatic resilience. These are to be combined with state-of-the-art ethnobotanical research, which is key to obtaining reliable and reproducible data. Unfortunately, socioeconomic developments and climate change threaten traditional use and knowledge as well as biodiversity. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
18
|
SIVAMARUTHI BS, PRASANTH MI, KESIKA P, Tencomnao T, CHAIYASUT C. Functional properties of Streblus asper Lour.: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Tewin Tencomnao
- Chulalongkorn University, Thailand; Chulalongkorn University, Thailand
| | | |
Collapse
|
19
|
Abdul Aziz M, Ullah Z, Adnan M, Sõukand R, Pieroni A. The Fading Wild Plant Food-Medicines in Upper Chitral, NW Pakistan. Foods 2021; 10:2494. [PMID: 34681546 PMCID: PMC8536072 DOI: 10.3390/foods10102494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022] Open
Abstract
The subject of food-medicines (foods ingested in order to obtain a therapeutic activity or to prevent diseases) is garnering increasing attention from both ethnobiologists and ethnopharmacologists as diet-related chronic diseases are one of the major problems resulting in a large proportion of deaths globally, which calls for interest from the scientific community to make sensible decisions in the field of food and medicine. In this regard, the current study is an important attempt at providing baseline data for developing healthy and curative food ingredients. This study aimed at recording the culinary and medicinal uses of wild food plants (WFPs) in the remote Mastuj Valley, located at the extreme north of Chitral District, Pakistan. An ethnobotanical survey was completed via 30 in-depth semi-structured interviews with local knowledge holders to record the food and medicinal uses of WFPs in the study area. A total of 43 WFPs were recorded, most of which were used as cooked vegetables and raw snacks. Leaves were the most frequently used plant part. A remarkable proportion (81%) of use reports for the recorded wild plant taxa were quoted as food-medicines or medicinal foods, while very few were reported as either food or medicines, without any relationship between uses in these two domains. Previous ethnomedicinal studies from nearby regions have shown that most of the recorded wild plants have been used as medicines, thus supporting the findings of the current study. A literature survey revealed that many of the reported medicinal uses (33%) for the quoted WFPs were not verifiable on PubMed as they have not been studied for their respective medicinal actions. We observed that most of the plants quoted here have disappeared from the traditional food and medicinal system, which may be attributed to the invasion of the food market and the prevalence of allopathic medicine. However, knowledge of these wild plants is still alive in memory, and women are the main holders of cultural knowledge as they use it to manage the cooking and processing of WFPs. Therefore, in this context, we strongly recommend the preservation of local biocultural heritage, promoted through future development and educational programs, which could represent a timely response to the loss of cultural and traditional knowledge.
Collapse
Affiliation(s)
- Muhammad Abdul Aziz
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy;
| | - Zahid Ullah
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju 19201, Pakistan;
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy;
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy;
- Department of Medical Analysis, Tishk International University, Erbil 4401, Iraq
| |
Collapse
|
20
|
Li X, Wang X, Guo X, Li D, Huo J, Yu Z. Structural and Biochemical Characterization of a Polysaccharide Isolated From
Vaccinium uliginosum
L. STARCH-STARKE 2021. [DOI: 10.1002/star.202100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xingguo Li
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
- National‐Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions Harbin 150030 China
| | - Xiaotian Wang
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
- Heilongjiang Bayi Agricultural University Daqing 163316 China
| | - Xue Guo
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
| | - Dalong Li
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
| | - Junwei Huo
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
- National‐Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions Harbin 150030 China
| | - Zeyuan Yu
- College of Horticulture and Garden Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
21
|
Lin P, Wang X, Zhou N, Wu Y, Wang Z, Wu L, Li J, Shang X. Chemical characterization of the anti-inflammatory activity fraction of Epilobium angustifolium. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03831-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Moldovan C, Frumuzachi O, Babotă M, Menghini L, Cesa S, Gavan A, Sisea CR, Tanase C, Dias MI, Pereira C, Ferreira IC, Crișan G, Mocan A, Barros L. Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq. Antioxidants (Basel) 2021; 10:antiox10101579. [PMID: 34679714 PMCID: PMC8533465 DOI: 10.3390/antiox10101579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Hot air drying has proven to be an efficient method to preserve specific edible plant materials with medicinal properties. This is a process involving chemical, physical, and biological changes in plant matrices. Understanding these processes will lead to an improvement in the yields of bioactive compounds. This study aims to optimize the drying process of two species’ fruits used in folk medicine, Berberis vulgaris and Crataegus monogyna. The optimized extracts’ antioxidant capacity was assessed using various assays, with the barberry extract showing very good activity (50.85, 30.98, and 302.45 mg TE/g dw for DPPH, TEAC, and FRAP assays, respectively). Both species exerted good fungal α-glucosidase inhibitory activity (IC50 = 0.34 and 0.56 mg/mL, respectively) but no activity on mammalian α-glucosidase. Additionally, this study identified and quantified the main bioactive compounds. The results presented herein are a breakthrough in industrializing this drying process. Additional studies are necessary to mechanistically understand the drying process involved in these plant materials.
Collapse
Affiliation(s)
- Cadmiel Moldovan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (C.M.); (O.F.); (M.B.); (A.G.); (G.C.)
| | - Oleg Frumuzachi
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (C.M.); (O.F.); (M.B.); (A.G.); (G.C.)
| | - Mihai Babotă
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (C.M.); (O.F.); (M.B.); (A.G.); (G.C.)
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università Degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Stefania Cesa
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Alexandru Gavan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (C.M.); (O.F.); (M.B.); (A.G.); (G.C.)
| | - Cristian R. Sisea
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38 Gheorghe Marinescu Street, 540142 Târgu-Mureș, Romania;
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (C.P.); (I.C.F.R.F.); (L.B.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (C.P.); (I.C.F.R.F.); (L.B.)
| | - Isabel C.F.R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (C.P.); (I.C.F.R.F.); (L.B.)
| | - Gianina Crișan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (C.M.); (O.F.); (M.B.); (A.G.); (G.C.)
| | - Andrei Mocan
- Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (C.M.); (O.F.); (M.B.); (A.G.); (G.C.)
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Correspondence:
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (C.P.); (I.C.F.R.F.); (L.B.)
| |
Collapse
|
23
|
Kumar A, Sreedharan S, Singh P, Achigan-Dako EG, Ramchiary N. Improvement of a Traditional Orphan Food Crop, Portulaca oleracea L. (Purslane) Using Genomics for Sustainable Food Security and Climate-Resilient Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.711820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purslane (Portulaca oleracea L.) is a popular orphan crop used for its nutritional properties in various parts of the world. It is considered one of the richest terrestrial sources of omega-3 and omega-6-fatty acids (ω-3 and 6-FAs) suggesting its importance for human health. This ethnomedicinal plant is also an important part of traditional healing systems among the indigenous people. Many studies have indicated its tolerance against multiple stresses and found that it easily grows in a range of environmental gradients. It has also been considered one of the important biosaline crops for the future. Despite its huge nutritional, economic, and medicinal importance, it remains neglected to date. Most of the studies on purslane were focused on its ethnomedicinal, phytochemical, pharmacological, and stress-tolerance properties. Only a few studies have attempted genetic dissection of the traits governing these traits. Purslane being an important traditional food crop across the globe can be valorized for a sustainable food security in the future. Therefore, this review is an attempt to highlight the distribution, domestication, and cultivation of purslane and its importance as an important stress-tolerant food and a biosaline crop. Furthermore, identification of genes and their functions governing important traits and its potential for improvement using genomics tools for smart and biosaline agriculture has been discussed.
Collapse
|
24
|
Shikov AN, Narkevich IA, Akamova AV, Nemyatykh OD, Flisyuk EV, Luzhanin VG, Povydysh MN, Mikhailova IV, Pozharitskaya ON. Medical Species Used in Russia for the Management of Diabetes and Related Disorders. Front Pharmacol 2021; 12:697411. [PMID: 34354589 PMCID: PMC8330883 DOI: 10.3389/fphar.2021.697411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Polyherbal mixtures called "medical species" are part of traditional and officinal medicine in Russia. This review aimed to analyze medical species used in Russia for the treatment of diabetes and related disorders. The information relevant to medical species, diabetes, and obesity was collected from local libraries, the online service E-library.ru, and Google Scholar. The prediction of the antidiabetic activity for the principal compounds identified in plants was performed using the free web resource PASS Online. Results: We collected and analyzed information about the compositions, specificities of use, and posology of 227 medical species. The medical species represent mixtures of 2-15 plants, while the most frequently mentioned in the literature are species comprising 3-6 plants. The top 10 plants among the 158 mentioned in the literature include Vaccinium myrtillus L., Phaseolus vulgaris L., Taraxacum campylodes G.E. Haglund., Urtica dioica L., Rosa spp., Hypericum spp., Galega officinalis L., Mentha × piperita L., Arctium spp, and Fragaria vesca L. The leading binary combination found in medical species comprises the leaves of V. myrtillus and pericarp of P. vulgaris; leaves of V. myrtillus and leaves of U. dioica; and leaves of V. myrtillus and aerial parts of G. officinalis. In triple combinations, in addition to the above-mentioned components, the roots of T. campylodes are often used. These combinations can be regarded as basic mixtures. Other plants are added to improve the efficacy, treat associated disorders, improve gastrointestinal function, prevent allergic reactions, etc. Meanwhile, an increase in plants in the mixture necessitates advanced techniques for quality control. A feature of medical species in Russia is the addition of fresh juices, birch sap, seaweeds, and adaptogenic plants. Modern studies of the mechanisms of action and predicted activities of the principal compounds from medicinal plants support the rationality of polyherbal mixtures. Nevertheless, the mechanisms are not well studied and reported due to the limited number of compounds. Further investigations with calculations of synergistic or additive indices are important for strengthening the scientific fundamentals for the wider use of medical species in the therapy of diabetes. Two medical species, "Arfazetin" (7 medicinal plants) and "Myrphasinum" (12 medicinal plants), are approved for use in officinal medicine. The efficacy of these species was confirmed in several in vivo experiments and clinical trials. According to modern regulatory rules, additional experiments and clinical trials are required for more detailed investigations of the mechanisms of action and confirmation of efficacy. Conclusion: We believe that the scientifically based utilization of rich plant resources and knowledge of Russian herbal medicine can significantly contribute to the local economy as well as to the sectors seeking natural healing products.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Igor A Narkevich
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Alexandra V Akamova
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Oksana D Nemyatykh
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | | | - Mariia N Povydysh
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Iuliia V Mikhailova
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Murmansk, Russia
| |
Collapse
|
25
|
Sharifi-Rad J, Quispe C, Vergara CV, Kitic D, Kostic M, Armstrong L, Shinwari ZK, Khalil AT, Brdar-Jokanović M, Ljevnaić-Mašić B, Varoni EM, Iriti M, Leyva-Gómez G, Herrera-Bravo J, Salazar LA, Cho WC. Genus Viburnum: Therapeutic Potentialities and Agro-Food-Pharma Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3095514. [PMID: 34326915 PMCID: PMC8310452 DOI: 10.1155/2021/3095514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/17/2023]
Abstract
The genus Viburnum (Adoxaceae, Dipsacales) is of scientific interest due to the chemical components and diverse biological activities found across species of the genus, which includes more than 230 species of evergreen, semievergreen, or deciduous shrubs and small trees. Although frequently used as an ornament, the Viburnum species show biological properties with health-promoting effects. Fruits, flowers, and barks of certain species are used for pharmaceutical purposes or as cooking ingredients, hence containing biochemical compounds with health-promoting activity such are carotenoids, polyphenols, and flavonoids. However, its taxonomical determination is difficult, due to its wide distribution and frequent hybridizations; therefore, an objective classification would allow us to understand its biological activity based on its phytochemical components. More than sixty phytochemical compounds have been reported, where vibsanin-type diterpenes and their derivatives are the most prevalent. Leaves and twigs of V. dilatatum contain the largest number of phytochemicals among the genus. Through preclinical evidence, this study provides insight regarding antioxidant, antibacterial, anti-inflammatory, cytotoxic, and anticancer activities of genus Viburnum.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Cristian Valdés Vergara
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - Dusanka Kitic
- Faculty of Medicine, Department of Pharmacy, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Milica Kostic
- Faculty of Medicine, Department of Pharmacy, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Lorene Armstrong
- Departament of Pharmaceutical Sciences, State University of Ponta Grossa, 84030900, Ponta Grossa, Paraná, Brazil
| | - Zabta Khan Shinwari
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar (25000), KP, Pakistan
| | - Milka Brdar-Jokanović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Alternative Crops and Organic Production Department, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Branka Ljevnaić-Mašić
- Faculty of Agriculture, Department of Field and Vegetable Crops, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Elena M. Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università Degli Studi di Milano, Via Beldiletto 1, 20142 Milan, Italy
| | - Marcello Iriti
- Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, 20133 Milan, Italy
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
26
|
Arias-Durán L, Estrada-Soto S, Hernández-Morales M, Millán-Pacheco C, Navarrete-Vázquez G, Villalobos-Molina R, Ibarra-Barajas M, Almanza-Pérez JC. Antihypertensive and vasorelaxant effect of leucodin and achillin isolated from Achillea millefolium through calcium channel blockade and NO production: In vivo, functional ex vivo and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113948. [PMID: 33610712 DOI: 10.1016/j.jep.2021.113948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea millefolium L. (Asteraceae), known as yarrow (milenrama), is a plant used in Mexican traditional medicine for the treatment of hypertension, diabetes, and related diseases. AIM To determine the vasorelaxant and antihypertensive effect of A. millefollium and to isolate the main bioactive antihypertensive agents. MATERIALS AND METHODS Organic (hexane, dichloromethane and methanol) and hydro-alcohol (Ethanol-H2O: 70:30) extracts obtained from flowers, leaves and stems were evaluated on isolated aorta rat rings with and without endothelium to determine their vasorelaxant effect. Hexane extract from flowers (HEAmF) was studied to evaluate its antihypertensive effect on spontaneously hypertensive rats (SHR). From HEAmF, bioactive compounds were obtained by bio-guided phytochemical separation through chromatography. RESULTS Organic extracts showed the best vasorelaxant activity. Hexane extract from flowers was the most potent and efficient ex vivo vasorelaxant agent, showing significant decrease of systolic and diastolic blood pressure in SHR (p < 0.05). Phytochemical separation of HEAmF yielded two epimeric sesquiterpene lactones: leucodin (1) and achillin (2), the major components of the extract. Both 1 and 2 showed similar vasorelaxant action ex vivo (p < 0.05), and their effects where modified by L-NAME (10 μM, nitric oxide synthase inhibitor), by ODQ (1 μM, soluble guanylyl cyclase inhibitor), and also relaxed the contraction induced by KCl (80 mM). Finally, 1 and 2 intragastric administration (50 mg/kg) decreased systolic and diastolic blood pressure in SHR. CONCLUSIONS Achillea millefolium showed antihypertensive and vasorelaxant effects, due mainly to leucodin and achillin (epimers). Both compounds showed antihypertensive activity by vasorelaxation putatively by endothelium-dependent NO release and cGMP increase, as well as by calcium channels blockade.
Collapse
Affiliation(s)
- Luis Arias-Durán
- Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico.
| | | | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090, Mexico
| | - Maximiliano Ibarra-Barajas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090, Mexico
| | - Julio C Almanza-Pérez
- Laboratorio de Farmacología, Depto. Ciencias de La Salud, D.C.B.S, Universidad Autónoma Metropolitana- Iztapalapa, Ciudad de México, 09340, Mexico
| |
Collapse
|
27
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
28
|
Sargin SA. Plants used against obesity in Turkish folk medicine: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113841. [PMID: 33460757 DOI: 10.1016/j.jep.2021.113841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is one of the growing public health problems in Turkey, as well as all over the world, threatening people of almost all ages. Turkey has a large potential for research on this topic due to owning broad ethnomedicinal experience and the richest flora (34% endemic) of Europe and the Middle East. Herbs that they have utilized for centuries to treat and prevent obesity can provide useful options to overcome this issue. AIM OF THE STUDY This survey was carried out to disclose the inventory of plant taxa that the people of Turkey have been using for a few centuries in treating obesity without any side effects or complications, and to compare them with experimental studies in the literature. MATERIALS AND METHODS The research was achieved in two phases on the matter above by using electronic databases, such as Web of Science, ScienceDirect, Scopus, ProQuest, Medline, Cochrane Library, EBSCO, HighWire Press, PubMed and Google Scholar. Both results were shown in separate tables as well as the regional comparative analysis. RESULTS 117 herbal taxa belonging to 45 families were identified among the selected 74 studies conducted in the seven regions of Turkey. However, only 49 (41.9%) of them were found to be subjected to worldwide in vitro and in vivo research conducted on anti-obesity activity. Quercetin (9.1%), gallic acid (6.1%) and ferulic acid and epigallocatechin gallate (4.5%) have been recorded as the most common active ingredients among the 66 active substances identified. Prunus avium (32.4%) and Rosmarinus officinalis (25.7%) were identified as the most common plants used in Turkey. Also, Portulaca oleracea and Brassica oleracea emerged as the most investigated taxa in the literature. CONCLUSION This is the first country-wide ethnomedical review conducted on obesity treatment with plants in Turkey. Evaluating the results of the experimental anti-obesity research conducted in the recent years in the literature, it was determined that forty-nine plants were verified. This clearly shows that these herbs have a high potential to be a pharmacological resource. Moreover, 68 (41.9%) taxa, which haven't been investigated yet, are likely to be a promising resource for national and international pharmacological researchers in terms of new natural medicine searches.
Collapse
Affiliation(s)
- Seyid Ahmet Sargin
- Alanya Alaaddin Keykubat University, Faculty of Education, Alanya, Antalya, 07400, Turkey.
| |
Collapse
|
29
|
Wang J, Zhou B, Hu X, Dong S, Hong M, Wang J, Chen J, Zhang J, Zhang Q, Li X, Shikov AN, Hu S, Hu X. Deciphering the Formulation Secret Underlying Chinese Huo-Clearing Herbal Drink. Front Pharmacol 2021; 12:654699. [PMID: 33967798 PMCID: PMC8100228 DOI: 10.3389/fphar.2021.654699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Herbal teas or herbal drinks are traditional beverages that are prevalent in many cultures around the world. In Traditional Chinese Medicine, an herbal drink infused with different types of medicinal plants is believed to reduce the ‘Shang Huo’, or excessive body heat, a status of sub-optimal health. Although it is widely accepted and has a very large market, the underlying science for herbal drinks remains elusive. By studying a group of herbs for drinks, including ‘Gan’ (Glycyrrhiza uralensis Fisch. Ex DC.), ‘Ju’ (Dendranthema morifolium (Ramat.) Tzvelev), ‘Bu’ (Microcos paniculata L.), ‘Jin’ (Lonicera japonica Thunb.), ‘Xia’ (Prunella vulgaris L.), and ‘Ji’ (Plumeria rubra L.), the long-term jargon is connected with the inflammation of modern immunology through a few pro-inflammatory markers. In vitro studies have indicated that cellular inflammation is lowered by Ju and Jin either individually or synergistically with Gan. Among all herbs, only Gan detoxicated cellular toxicity of Bu in a dose dependent manner. The synergistic formulation of Ju and Gan, or Jin and Gan, in a reduction of Shang Huo, was tested in vivo. Both combinations exhibited a lower percentage of neutrophils, monocytes, and CD4+/CD8+ ratio in the blood, as well as inflammatory cytokines. Furthermore, body weight in the combinatory groups was more stable than treatments using single herbs. The combination of old traditional oriental methods with Western science logistics, has resulted in the formulation of different herbs into one concoction for the use of detoxification and synergism.
Collapse
Affiliation(s)
- Jianan Wang
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Bo Zhou
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Xiangdong Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Shuang Dong
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Hong
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Jun Wang
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Chen
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiyun Zhang
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Xiaohua Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| | - Alexander N Shikov
- Department of Technology of pharmaceutical formulations, Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Sheng Hu
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and Cultivation, Wuhan, China.,Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan, China
| |
Collapse
|
30
|
Sile I, Videja M, Makrecka-Kuka M, Tirzite D, Pajuste K, Shubin K, Krizhanovska V, Grinberga S, Pugovics O, Dambrova M. Chemical composition of Prunus padus L. flower extract and its anti-inflammatory activities in primary bone marrow-derived macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113678. [PMID: 33307057 DOI: 10.1016/j.jep.2020.113678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunus padus L. has been traditionally used in European ethnomedicine as a treatment for internal and external purposes and is mainly used to reduce inflammation, pain and fever. The activities of P. padus flower extracts are not well characterized, and additional experimental studies at the molecular level are needed to confirm the ethnobotanical findings. AIM OF THE STUDY To assess the potential of P. padus flower extract (PPFE) as a source of bioactive compounds through the characterization of its chemical composition and antioxidant, anti-collagenase, and anti-inflammatory activities. MATERIALS AND METHODS The ethanolic extract (1:10 w/v in ethanol solution) from P. padus flowers was subjected to phytochemical analysis and evaluation of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Anti-collagenase activity was determined using a spectrophotometric method in vitro. The effect of PPFE on inflammation was evaluated by measuring specific markers using flow cytometry and assessing pro-inflammatory cytokine (IL-6) release by bone marrow-derived macrophages (BMDMs) ex vivo. RESULTS The major components of the ethanolic extract of P. padus flowers were quercetin diglycosides, chlorogenic acid and N',N″-dicaffeoyl,N‴-coumaroyl spermidine. The total phenolic content of PPFE was 85.19 mg GAE/g extract, and the EC50 value in the DPPH assay was 0.55 mg/ml. PPFE exhibited the ability to inhibit collagenase activity in a dose-dependent manner. Preincubation of BMDMs with PPFE reduced the population of M1 (pro-inflammatory) and increased the population of M2 (anti-inflammatory) macrophages. Furthermore, PPFE decreased pro-inflammatory cytokine IL-6 release from BMDMs. CONCLUSIONS PPFE is a rich source of bioactive compounds and possesses considerable anti-inflammatory properties, supporting its use in ethnomedicine for the reduction of inflammatory processes.
Collapse
Affiliation(s)
- Inga Sile
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia; Department of Dosage Form Technology, Riga Stradins University, 16 Dzirciema Str, Riga, LV-1007, Latvia.
| | - Melita Videja
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia; Department of Pharmaceutical Chemistry, Riga Stradins University, 16 Dzirciema Str, Riga, LV-1007, Latvia.
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Dace Tirzite
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Kirill Shubin
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia; Department of Pharmaceutical Chemistry, Riga Stradins University, 16 Dzirciema Str, Riga, LV-1007, Latvia.
| |
Collapse
|
31
|
Shikov AN, Narkevich IA, Flisyuk EV, Luzhanin VG, Pozharitskaya ON. Medicinal plants from the 14 th edition of the Russian Pharmacopoeia, recent updates. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113685. [PMID: 33309919 DOI: 10.1016/j.jep.2020.113685] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicine in Russia has a long history starting with handwritten herbalist manuscripts from the Middle Ages to the officinal Pharmacopoeia of the 21st century. The "herbophilious" Russian population has accumulated a lot of knowledge about the beneficial effects of local medicinal plants. Yet, for a long time, Russian traditional and officinal herbal medicine was not well known to the international audience. In our previous comprehensive review, we discussed the pharmacological effects of specific plants included in the 11th edition of the Pharmacopoeia of the USSR, which was also for a while used in Russia. The 14th edition of the Russian Federation's State Pharmacopoeia was implemented in 2018. AIM OF THE REVIEW The aims of the present review are: (i) to trace the evolution of medicinal plant handling from handwritten herbalist manuscripts to Pharmacopoeias; (ii) to describe the modern situation with regulatory documents for herbal medicinal products and their updated classification; (iii) to summarize and discuss the pharmacology, safety, and clinical data for new plants, which are included in the new edition of the Pharmacopoeia. METHODS New medicinal plants included in the 14th edition of the Russian Federation's State Pharmacopoeia were selected. We carefully searched the scientific literature for data related to traditional use, pharmacological, clinical application, and safety. The information was collected from local libraries in Saint-Petersburg, the online databases E-library.ru, Scopus, Web of Science, and the search engine Google scholar. RESULTS Investigating the evolution of all medicinal plants referred to in the Russian Pharmacopoeias led us to the identification of ten medicinal plants that were present in all editions of civilian Russian Pharmacopoeias starting from 1778. In the 14th edition of the modern Russian Pharmacopoeia, medicinal plants are described in 107 monographs. Altogether, 25 new monographs were included in the 14th edition, and one monograph was excluded in comparison to the 11th edition. Some of the included plants are not endemic to Russia and do not have a history of traditional use, or on the other hand, are widely used in Western medicine. For 15 plants, we described the specificity of their application in Russian traditional medicine along with the claimed dosages and indications in officinal medicine. The pharmacology, safety, and clinical data are summarized and assessed for nine plants, underlining their therapeutic potential and significance for global phytopharmacotherapy. CONCLUSIONS In this review, we highlight the therapeutical potential of new plants included in the modern edition of the Russian Pharmacopoeia. We hope that these plants will play an imperative role in drug development and will have a priority for future detailed research.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia.
| | - Igor A Narkevich
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Vladimir G Luzhanin
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010, Murmansk, Russia
| |
Collapse
|
32
|
Wójcik-Bojek U, Rywaniak J, Bernat P, Podsędek A, Kajszczak D, Sadowska B. An In Vitro Study of the Effect of Viburnum opulus Extracts on Key Processes in the Development of Staphylococcal Infections. Molecules 2021; 26:1758. [PMID: 33801012 PMCID: PMC8003844 DOI: 10.3390/molecules26061758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is still one of the leading causes of both hospital- and community-acquired infections. Due to the very high percentage of drug-resistant strains, the participation of drug-tolerant biofilms in pathological changes, and thus the limited number of effective antibiotics, there is an urgent need to search for alternative methods of prevention or treatment for S. aureus infections. In the present study, biochemically characterized (HPLC/UPLC-QTOF-MS) acetonic, ethanolic, and water extracts from fruits and bark of Viburnum opulus L. were tested in vitro as diet additives that potentially prevent staphylococcal infections. The impacts of V. opulus extracts on sortase A (SrtA) activity (Fluorimetric Assay), staphylococcal protein A (SpA) expression (FITC-labelled specific antibodies), the lipid composition of bacterial cell membranes (LC-MS/MS, GC/MS), and biofilm formation (LIVE/DEAD BacLight) were assessed. The cytotoxicity of V. opulus extracts to the human fibroblast line HFF-1 was also tested (MTT reduction). V. opulus extracts strongly inhibited SrtA activity and SpA expression, caused modifications of S. aureus cell membrane, limited biofilm formation by staphylococci, and were non-cytotoxic. Therefore, they have pro-health potential. Nevertheless, their usefulness as diet supplements that are beneficial for the prevention of staphylococcal infections should be confirmed in animal models in the future.
Collapse
Affiliation(s)
- Urszula Wójcik-Bojek
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (U.W.-B.); (J.R.)
| | - Joanna Rywaniak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (U.W.-B.); (J.R.)
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Anna Podsędek
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.P.); (D.K.)
| | - Dominika Kajszczak
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.P.); (D.K.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (U.W.-B.); (J.R.)
| |
Collapse
|
33
|
Papakosta K, Grafakou ME, Barda C, Kostopoulos IV, Tsitsilonis O, Skaltsa H. Cytotoxicity and Anti-cancer Activity of the Genus Achillea L. Curr Med Chem 2021; 27:6910-6925. [PMID: 32368970 DOI: 10.2174/0929867327666200505092514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The genus Achillea L. is rich in bioactive sesquiterpenes and flavonoids; most of the studied species exhibit several biological activities and are used as emmenagogue, wound healing and analgesic agents. Some species are also used in local folklore medicine. OBJECTIVE Following a literature survey, we discuss the anti-cancer properties of Achillea species, taking into consideration ethnopharmacological data on their use in traditional medicine for the treatment of cancer. In addition, we screened extracts and isolated secondary metabolites from A. coarctata for cytotoxicity, upon information based on local traditional medicine. The plant was collected in Kozani (Northern Greece), where it is locally used for treating gastrointestinal disorders, including stomach cancer. METHODS A selection of the relevant data was performed through a search in PubMed, Scopus, Google Scholar and Science Direct databases. In addition, extracts and isolated compounds from A. coarctata were tested for their in vitro activity against the human cancer cell lines MCF-7 and HeLa. CONCLUSION The genus Achillea L. is a valuable source of bioactive secondary metabolites. The most significant outcome of the investigation of medicinal plants is the documentation and the assessment of the traditional information and its use and perspectives in the light of modern pharmacology.
Collapse
Affiliation(s)
- Konstantina Papakosta
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Maria-Eleni Grafakou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Christina Barda
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Ioannis V Kostopoulos
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| |
Collapse
|
34
|
Karakaya S, Süntar I, Yakinci OF, Sytar O, Ceribasi S, Dursunoglu B, Ozbek H, Guvenalp Z. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113207. [PMID: 32730870 DOI: 10.1016/j.jep.2020.113207] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilobium species are generally known as "Yakı Otu" in Turkey, which mens "plaster herb" in English. Young shoots of Epilobium angustifolium L., Epilobium stevenii Boiss., and Epilobium hirsutum L. are consumed as salad or meal. These species have been used as a poultice for the treatment of mouth wounds in traditional medicine. An ointment prepared from leaves is used for skin disorders in children. AIM OF THE STUDY We aimed to evaluate the ethnopharmacological use of Epilobium angustifolium, E. stevenii, and E. hirsutum by using in vivo and in vitro experimental models, and to identify the active wound-healer compound(s) and to explain the probable mechanism of the wound-healing activity. MATERIALS AND METHODS Evaluation of wound healing effects of plant extracts was performed in rats and mice by linear incision and circular excision wound models. Determination of total phenolic constituents and antioxidant capacities, which are known to promote the wound healing process, were carried out through Folin-Ciocalteau method and 2,2 Diphenyl 1 picrylhydrazyl (DPPH) scavenging assay as well as determination of total antioxidant status (TAS) and total oxidant status (TOS) on the treated tissues. The active ethyl acetate (EtOAc) sub-extract of E. angustifolium was fractionated by different chromatographic separation techniques. The structures of isolated compounds were elucidated via detailed analyzes (NMR and LC/MS). In addition, in vitro collagenase, hyaluronidase, and elastase enzymes inhibitory activity tests were performed on the isolated compounds to discover the activation pathways of the samples. RESULTS Among the methanol (MeOH) extracts, E. angustifolium had the highest wound healing activity. Among the sub-extracts, EtOAc showed the highest wound healing activity. Thus, EtOAc sub-extract was subjected to chromatography to isolate the active compounds. Five known flavonoids namely hyperoside (quercetin-3-O-β-D-galactoside) (1), kaempferol (2), kaempferol-3-O-α-L-rhamno pyranoside (3), quercetin-3-O-α-L-rhamno pyranoside (4), and quercetin-3-O-α-L-arabino pyranoside (5) were isolated from the EtOAc sub-extract of E. angustifolium. In vitro tests showed that hyperoside could be the compound responsible for the wound-healing activity by its significant anti-hyaluronidase, anti-collagenase, and antioxidant activities. CONCLUSION The EtOAc sub-extract of the aerial part of Epilobium angustifolium displayed remarkable wound-healing activity with anti-hyaluronidase, anti-collagenase, and antioxidant activities. Hyperoside was detected as the primary active compound of the aerial parts. According to the results, we suggest that EtOAc sub-extract of E. angustifolium and hyperoside may be a potent nominee to be used for the improvement of a wound-healing agent.
Collapse
Affiliation(s)
- Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Omer Faruk Yakinci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey; National Poison Information Service, Ministry of Health, Ankara, Turkey
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Kiev National University of Taras Shevchenko, Kyiv, Ukraine; Department of Plant Physiology, Slovak University of Agriculture in Nitra, Slovakia
| | - Songul Ceribasi
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Benan Dursunoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hilal Ozbek
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Zuhal Guvenalp
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| |
Collapse
|
35
|
Foraging in Boreal Forest: Wild Food Plants of the Republic of Karelia, NW Russia. Foods 2020; 9:foods9081015. [PMID: 32751145 PMCID: PMC7466288 DOI: 10.3390/foods9081015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
While the current consumption of wild food plants in the taiga of the American continent is a relatively well-researched phenomenon, the European taiga area is heavily underrepresented in the scientific literature. The region is important due to its distinctive ecological conditions with restricted seasonal availability of wild plants. During an ethnobotanical field study conducted in 2018-2019, 73 people from ten settlements in the Republic of Karelia were interviewed. In addition, we conducted historical data analysis and ethnographical source analysis. The most widely consumed wild food plants are forest berries (three Vaccinium species, and Rubus chamaemorus), sap-yielding Betula and acidic Rumex. While throughout the lifetime of the interviewees the list of used plants did not change considerably, the ways in which they are processed and stored underwent several stages in function of centrally available goods, people's welfare, technical progress, and ideas about the harm and benefit of various products and technological processes. Differences in the food use of wild plants among different ethnic groups living in the region were on the individual level, while all groups exhibited high variability in the methods of preparation of most used berries. The sustainability of berry use over time has both ecological and economical factors.
Collapse
|
36
|
Chamorro MF, Ladio A. Native and exotic plants with edible fleshy fruits utilized in Patagonia and their role as sources of local functional foods. BMC Complement Med Ther 2020; 20:155. [PMID: 32448223 PMCID: PMC7246002 DOI: 10.1186/s12906-020-02952-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background Traditionally part of the human diet, plants with edible fleshy fruits (PEFF) contain bioactive components that may exert physiological effects beyond nutrition, promoting human health and well-being. Focusing on their food-medicine functionality, different ways of using PEFF were studied in a cross-sectional way using two approaches: a bibliographical survey and an ethnobotanical case study in a rural community of Patagonia, Argentina. Methods A total of 42 studies were selected for the bibliographical review. The case study was carried out with 80% of the families inhabiting the rural community of Cuyín Manzano, using free listing, interviews, and participant observation. In both cases we analyzed species richness and use patterns through the edible consensus and functional consensus indices. Local foods, ailments, medicines and drug plants were also registered. Results The review identified 73 PEFF, the majority of which (78%) were native species, some with the highest use consensus. PEFF were used in 162 different local foods, but mainly as fresh fruit. Of the total, 42% were used in a functional way, in 54 different medicines. The principal functional native species identified in the review were Aristotelia chilensis and Berberis microphylla. In the case study 20 PEFF were in current use (50% were native), and consensus values were similar for native and exotic species. These were used in 44 different local foods, mainly as fresh fruit. Only 30% were recognized for their functional value by inhabitants (mainly as gastrointestinal and respiratory treatments). The species with the highest functional consensus were the exotic Sambucus nigra and Rosa rubiginosa, followed by the native A. chilensis, Ribes magellanicum and B. microphylla. Infusions also constituted important local functional foods. Conclusions This survey highlights the importance of studying the different local functional foods to depict the biocultural diversity of a human society. The preparation of different beverages and herbal medicines was relevant, and would be a promising subject to investigate in the future. The living heritage of PEFF appears to have undergone hybridization processes, such that exotic species play an increasingly significant role.
Collapse
Affiliation(s)
- Melina Fernanda Chamorro
- INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral, 1250-8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Ana Ladio
- INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral, 1250-8400, San Carlos de Bariloche, Río Negro, Argentina.
| |
Collapse
|
37
|
Kalle R, Sõukand R, Pieroni A. Devil Is in the Details: Use of Wild Food Plants in Historical Võromaa and Setomaa, Present-Day Estonia. Foods 2020; 9:E570. [PMID: 32375306 PMCID: PMC7278800 DOI: 10.3390/foods9050570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/01/2023] Open
Abstract
Biodiversity needs to be preserved to ensure food security. Border zones create high but vulnerable biocultural diversity. Through reviewing scattered historical data and documenting the current use of wild food plants among people currently living in historical Setomaa and Võromaa parishes, we aimed to identify cross-cultural differences and diachronic changes as well as the role borders have played on the local use of wild plants. The Seto have still preserved their distinctive features either by consciously opposing others or by maintaining more historical plant uses. People historically living in Setomaa and Võromaa parishes have already associated the eating of wild plants with famine food in the early 20th century, yet it was stressed more now by the Seto than by Estonians. Loss of Pechory as the center of attraction in the region when the border was closed in the early 1990s brought about a decline in the exchange of knowledge as well as commercial activities around wild food plants. National support for businesses in the area today and the popularity of a healthy lifestyle have introduced new wild food plant applications and are helping to preserve local plant-specific uses in the area.
Collapse
Affiliation(s)
- Raivo Kalle
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Pollenzo, Italy;
| | - Renata Sõukand
- DAIS-Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Pollenzo, Italy;
| |
Collapse
|
38
|
Bujor A, Miron A, Luca SV, Skalicka-Wozniak K, Silion M, Trifan A, Girard C, Demougeot C, Totoson P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112559. [PMID: 31935497 DOI: 10.1016/j.jep.2020.112559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus leaves, flowers and fruits have been traditionally used to improve blood circulation, numerous preclinical and clinical studies supporting the cardiovascular benefits of Crataegus preparations. In this respect, there is very limited data on Crataegus pentagyna; in addition, the chemical profile of this species is still incompletely elucidated. AIM OF THE STUDY The objective of this study was to examine the cardiovascular benefits of Crataegus pentagyna Waldst. et Kit. ex Willd. (small-flowered black hawthorn, Rosaceae) extracts (leaf, flower and fruit ethyl acetate extracts) and the underlying mechanisms. We hypothesized that C. pentagyna extracts might exert vasodilatory effects and inhibit arginase activity due, in large part, to their polyphenolic constituents. MATERIALS AND METHODS C. pentagyna extracts induced-relaxation and the mechanisms involved were studied ex vivo in isolated aortic rings from Sprague-Dawley rats. The inhibitory effects on bovine liver arginase I were assessed by an in vitro assay. Metabolite profiling of C. pentagyna extracts was performed and the most endothelium- and nitric oxide synthase-dependent; flower extract additionally reduced Ca2+ entry and, to a lesser extent, Ca2+ release from the sarcoplasmic reticulum. C. pentagyna proved to be an important source of arginase inhibitors with potential benefits in endothelial dysfunction that remains to be explored.
Collapse
Affiliation(s)
- Alexandra Bujor
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Anca Miron
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Simon Vlad Luca
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Mihaela Silion
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Corine Girard
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Céline Demougeot
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Perle Totoson
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| |
Collapse
|
39
|
Shikov AN, Kosman VM, Flissyuk EV, Smekhova IE, Elameen A, Pozharitskaya ON. Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L. Molecules 2020; 25:E1826. [PMID: 32316279 PMCID: PMC7221623 DOI: 10.3390/molecules25081826] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The extraction of Rhodiola rosea rhizomes using natural deep eutectic solvent (NADES) consisting of lactic acid, glucose, fructose, and water was investigated. A two-level Plackett-Burman design with five variables, followed by the steepest ascent method, was undertaken to determine the optimal extraction conditions. Among the five parameters tested, particle size, extraction modulus, and water content were found to have the highest impact on the extrability of phenyletanes and phenylpropanoids. The concentration of active compounds was analyzed by HPLC. The predicted results showed that the extraction yield of the total phenyletanes and phenylpropanoids (25.62 mg/g) could be obtained under the following conditions: extraction time of 154 min, extraction temperature of 22 °C, extraction modulus of 40, molar water content of 5:1:11 (L-lactic acid:fructose:water, mol/mol), and a particle size of rhizomes of 0.5-1 mm. These predicted values were further verified by validation experiments in predicted conditions. The experimental yields of salidroside, tyrosol, rosavin, rosin, cinnamyl alcohol and total markers (sum of phenyletanes and phenylpropanoids in mg/g) were 11.90 ± 0.02, 0.36 ± 0.02, 12.23 ± 0.21, 1.41 ± 0.01, 0.20 ± 0.01, and 26.10 ± 0.27 mg/g, respectively, which corresponded well with the predicted values from the models.
Collapse
Affiliation(s)
- Alexander N. Shikov
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | - Vera M. Kosman
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia;
| | - Elena V. Flissyuk
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | - Irina E. Smekhova
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | | | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS), Vladimirskaya, 17, 183010 Murmansk, Russia;
| |
Collapse
|
40
|
Petran M, Dragos D, Gilca M. Historical ethnobotanical review of medicinal plants used to treat children diseases in Romania (1860s-1970s). JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:15. [PMID: 32204715 PMCID: PMC7092505 DOI: 10.1186/s13002-020-00364-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Romanian ethnopediatrics has a long history of medicinal plant use. The main objective of the present review was to identify, collect, systematize, and prioritize the available bibliographical data related to medicinal plants traditionally used to treat various pediatric diseases in Romania during the 1860s-1970s. METHODS Information was mainly obtained by manual systematic search in various relevant historical works focused on the traditional use of medicinal plants in Romania (1860s-1970s), found in the Archives of Romanian Academy Library and National Romanian Library. RESULTS A total of 153 medicinal plants belonging to 52 families were identified as having ethnopediatric significance. The plant traditional indications, targeted body systems, parts used, and way of administration were provided. We have also proposed one index (expressed as percentage) in order to assess the ethnopediatric applicability area of species: ethnopediatric relative therapeutic versatility (ERTV), which was calculated on the basis of the number of distinct uses mentioned for a species. The species identified to have the highest ERTV scores were Dryopteris filix-mas (100%), Gratiola officinalis (85.71%), Allium sativum (71.42%), Eryngium planum (71.42%), Juglans regia (71.42%), Matricaria chamomilla (71.42%), Plantago major (71.42%). CONCLUSIONS The present study exposed for the first time to the international scientific community important ethnopediatric information contained in several local Romanian bibliographical resources that could guide the local and international researchers towards new directions of plant valorization.
Collapse
Affiliation(s)
- Madalina Petran
- Department of Functional Sciences I- Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dorin Dragos
- Nephrology Clinic, University Emergency Hospital Bucharest, 050098, Bucharest, Romania
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I- Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
41
|
Kalle R, Belichenko O, Kuznetsova N, Kolosova V, Prakofjewa J, Stryamets N, Mattalia G, Šarka P, Simanova A, Prūse B, Mezaka I, Sõukand R. Gaining momentum: Popularization of Epilobium angustifolium as food and recreational tea on the Eastern edge of Europe. Appetite 2020; 150:104638. [PMID: 32113918 DOI: 10.1016/j.appet.2020.104638] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/14/2023]
Abstract
The local use of wild food plants represents a reservoir for the biocultural diversity of human diet and is therefore being extensively studied; yet the effects of the introduction of novel uses into specific biocultural conditions have been little researched. Rosebay willowherb Epilobium angustifolium L. has been intensively promoted in Europe since the mid-18th century. The expert recommendations did not provide any links to local uses thus raising the question of the legitimacy and diffusion of its food use in modern times. To understand if and to what extent those recommendations have influenced local uses, we compared them with the results of our ethnobotanical field study and the ethnographic literature in Russia, Finland, Estonia, Latvia, Lithuania, Belarus and Ukraine. Of the 599 people interviewed, nine used E. angustifolium as a food and 59 as a recreational tea. Thirty-four of those who claimed to use E. angustifolium lived in two regions of Russia. The majority of the recorded tea uses were of recent origin, following a popular trend. Few food uses of E. angustifolium were recorded in Finland, where a trend towards culinary experimentation coincides with a general trend toward the consumption of healthy wild food; yet these uses are difficult to maintain due to the problems in recognizing the plant during its early stages of growth. The popularization of E. angustifolium as a food had more effect in times of hardship, when it was seen as a means of survival and its promotion was advocated. The translation error repeatedly appeared in botanical and later popular literature, whose authors did not clearly differentiate at that time between local uses and suggestions.
Collapse
Affiliation(s)
- Raivo Kalle
- Kuldvillane OÜ, Umbusi Village, Põltsamaa Parish, Jõgeva County, 48026, Estonia; University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, Pollenzo, Italy
| | - Olga Belichenko
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy.
| | - Natalia Kuznetsova
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy; Institute for Linguistic Studies, Russian Academy of Sciences, Tuchkov Pereulok 9, Saint Petersburg, Russia
| | - Valeria Kolosova
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy; Institute for Linguistic Studies, Russian Academy of Sciences, Tuchkov Pereulok 9, Saint Petersburg, Russia
| | - Julia Prakofjewa
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy
| | | | - Giulia Mattalia
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy
| | - Povilas Šarka
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy
| | - Andra Simanova
- Institute for Environmental Solutions, Lidlauks, Priekuļu Parish, Priekuļu County, Latvia
| | - Baiba Prūse
- Institute for Environmental Solutions, Lidlauks, Priekuļu Parish, Priekuļu County, Latvia
| | - Ieva Mezaka
- Institute for Environmental Solutions, Lidlauks, Priekuļu Parish, Priekuļu County, Latvia
| | - Renata Sõukand
- Ca' Foscari University of Venice, Via Torino 155, Mestre, Venice, Italy
| |
Collapse
|
42
|
Guijarro-Real C, Prohens J, Rodríguez-Burruezo A, Fita A. Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Res Int 2020; 132:109008. [PMID: 32331664 DOI: 10.1016/j.foodres.2020.109008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
Wall rocket (Diplotaxis erucoides) is a wild edible herb traditionally consumed in the Mediterranean regions with a characteristic, pungent flavour. However, little is known about its acceptance as a potential new crop. In the present study, an hedonic test with 98 volunteers was performed in order to evaluate the potential of wall rocket as a new crop. Three products were tested corresponding to microgreens, seedlings and baby-leaves. The volatile constituents were also studied due to their probable influence on acceptance, and compared to Dijon's mustard and wasabi. The degree of acceptance was mainly related to taste and pungency. Microgreens were well accepted, whereas seedlings and baby-leaves were mainly appreciated by individuals that enjoy pungent tastes. The purchase intent was also highly related to the acceptance of taste and pungency. The volatiles profile revealed that wall rocket was rich in allyl isothiocyanate, like mustard and wasabi. This compound may be greatly responsible of the relationship between the acceptance of mustard, wasabi and wall rocket. Microgreens displayed the highest levels of isothiocyanates, although the quantity of product tested by panellists did not probably allow the appreciation of such compounds. In baby-leaves, a significant decrease in isothiocyanates GC area and relative abundances was observed. These results suggest that wall rocket microgreens would be accepted by a significant proportion of the general public since pungency is lowly perceived in the product, despite its high levels of isothiocyanates. By contrast, baby-leaves may become a crop for a cohort of consumers that enjoy pungent flavours.
Collapse
Affiliation(s)
- Carla Guijarro-Real
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
43
|
Bourgou S, Bettaieb Rebey I, Dakhlaoui S, Msaada K, Saidani Tounsi M, Ksouri R, Fauconnier ML, Hamrouni-Sellami I. Green extraction of oil from Carum carvi seeds using bio-based solvent and supercritical fluid: Evaluation of its antioxidant and anti-inflammatory activities. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:37-45. [PMID: 31313408 DOI: 10.1002/pca.2864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The consumption of health-promoting products such as oil seeds may improve human health and prevent certain diseases. Carvi seeds have the potential to produce oil with nutritional and functional properties rich in active compounds. OBJECTIVE To extract bioactive lipids from Carum carvi seeds using green methodologies. MATERIAL AND METHODS Supercritical-carbon dioxide (Sc-CO2 ) and ethanol as co-solvent and bio-based solvent 2-methyltetrahydrofuran (MeTHF) were used to extract the oil from Carum carvi. The yield, the chemical composition, as well as antioxidant and anti-inflammatory activities of green extracted oils were investigated and compared to those obtained with conventional methods (hexane and Folch system). RESULTS MeTHF extraction gave higher oil yield than that obtained by hexane. Fatty acids composition of the two obtained green extracted oils was similar to conventional extracted ones where petroselinic (39-43%), linoleic (29-31%) and oleic (19-21%) acids were the major compounds. Furthermore, MeTHF and Sc-CO2 green extracted oils were enriched of bioactive compounds including sterols (5.4 and 7.3 mg/g oil) and total polyphenols (9.3 and 7.6 mg GAE/g oil) which were correlated to enhanced antiradical capacity. Moreover, the green extracted oils exhibited high anti-inflammatory capacity inhibiting nitric oxide (NO) release in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages with IC50 values of 28 and 24 μg/mL. CONCLUSION Green solvents are a good alternative to petroleum solvents to recover oil from carvi seeds with high amount of nutritionally important fatty acids, along with significant antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Soumaya Bourgou
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Iness Bettaieb Rebey
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
- General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sarra Dakhlaoui
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Riadh Ksouri
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Marie-Laure Fauconnier
- General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ibtissem Hamrouni-Sellami
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
44
|
Malca-Garcia GR, Zagal D, Graham J, Nikolić D, Friesen JB, Lankin DC, Chen SN, Pauli GF. Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111865. [PMID: 30981705 PMCID: PMC6549234 DOI: 10.1016/j.jep.2019.111865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowering tops of Trifolium pratense L., popularly known as red clover, are used in ethnic Western and Traditional Chinese medicine, in a variety of preparations, including infusions, decoctions and tinctures. Red clover has been reported to be helpful for treatment of menopausal symptoms, premenstrual syndrome, mastalgia, high cholesterol, and other conditions. AIMS OF THE STUDY The aims were to compare the chemical dynamics between traditional preparations of infusions, decoctions, and tinctures, as well as to identify the chemical variability over time in a traditional red clover tincture. For this purpose, eight isoflavone aglycones as well as two glucosides, ononin and sissotrin, were used as marker compounds. MATERIALS AND METHODS Quantitative NMR (qHNMR), LC-MS-MS, and UHPLC-UV methods were used to identify and quantitate the major phenolic compounds found within each extract. RESULTS Infusions, decoctions and tinctures were shown to produce different chemical profiles. Biochanin A and formononetin were identified and quantified in infusion, decoction, and tinctures of red clover. Both infusion and decoction showed higher concentrations of isoflavonoid glucosides, such as ononin and sissotrin, than 45% ethanolic tinctures. Dynamic chemical variability ("dynamic residual complexity") of the red clover tincture was observed over time (one-month), with biochanin A and formononetin reaching peak concentrations at around six days. CONCLUSIONS Insight was gained into why different formulation methods (infusions, decoctions, and tinctures) are traditionally used to treat different health conditions. Moreover, the outcomes show that tinctures, taken over a period of time, are dynamic medicinal formulations that allow for time-controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Daniel Zagal
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - James Graham
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL, 60305, USA
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA.
| |
Collapse
|
45
|
Leonurus cardiaca L. as a Source of Bioactive Compounds: An Update of the European Medicines Agency Assessment Report (2010). BIOMED RESEARCH INTERNATIONAL 2019; 2019:4303215. [PMID: 31119169 PMCID: PMC6500680 DOI: 10.1155/2019/4303215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 11/18/2022]
Abstract
Leonurus cardiaca L. (motherwort) is a perennial herb, native to Asia and southeastern Europe, with widespread global occurrence in present days. The plant was historically used as cardiotonic and for treating gynaecological afflictions (such as amenorrhea, dysmenorrhea, menopausal anxiety, or postpartum depression). Although its use in oriental and occidental medicine is relatively well documented, the recent progress registered raises the need for an update of the Medicines Agency assessment report on Leonurus cardiaca L., herba (2010). The current study presents the progress made within the 2010-2018 timeframe regarding the potential applications and scientific evidences supporting the traditional use of motherwort, in the same time suggesting future research opportunities.
Collapse
|
46
|
Guijarro-Real C, Prohens J, Rodriguez-Burruezo A, Adalid-Martínez AM, López-Gresa MP, Fita A. Wild edible fool's watercress, a potential crop with high nutraceutical properties. PeerJ 2019; 7:e6296. [PMID: 30723618 PMCID: PMC6361001 DOI: 10.7717/peerj.6296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Fool's watercress (Apium nodiflorum) is an edible vegetable with potential as a new crop. However, little information is available regarding the antioxidant properties of the plant and the individual phenolics accounting for this capacity are unknown. Methods The antioxidant properties of twenty-five wild populations were analysed and individual phenolics present in the species reported and compared with celery and parsley. The antioxidant activity was measured as the 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging capacity, and the total phenolics content (TPC) via the Folin-Ciocalteu procedure. The individual phenolics constituents were determined via high performance liquid chromatography (HPLC) as aglycones. Results The average DPPH and TPC of fool's watercress were 28.1 mg Trolox g-1 DW and 22.3 mg of chlorogenic acid equivalents g-1 DW, respectively, much higher than those of celery and parsley. Significant differences for both DPPH and TPC, which may be explained by either genotype or environmental factors, were detected among groups established according to geographical origin. Quercetin was identified as the major phenolic present in the leaves of the species, unlike parsley and celery, in which high amounts of apigenin and luteolin were determined. Quercetin represented 61.6% of the phenolics targeted in fool's watercress, followed by caffeic acid derivatives as main hydroxycinnamic acids. Discussion The study reports the high antioxidant properties of fool's watercress based on a large number of populations. Results suggest that quercetin accounts for an important share of the antioxidant capacity of this potential new crop. The study also provides a basis for future breeding programs, suggesting that selection by geographical locations may result in differences in the antioxidant properties.
Collapse
Affiliation(s)
- Carla Guijarro-Real
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Adrian Rodriguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - Ana María Adalid-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - M Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, Valencia, Spain
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
47
|
Concerto C, Infortuna C, Muscatello MRA, Bruno A, Zoccali R, Chusid E, Aguglia E, Battaglia F. Exploring the effect of adaptogenic Rhodiola Rosea extract on neuroplasticity in humans. Complement Ther Med 2018; 41:141-146. [DOI: 10.1016/j.ctim.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/02/2023] Open
|
48
|
Yao R, Heinrich M, Wang Z, Weckerle CS. Quality control of goji (fruits of Lycium barbarum L. and L. chinense Mill.): A value chain analysis perspective. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:349-358. [PMID: 29908314 DOI: 10.1016/j.jep.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goji (fruits of Lycium barbarum L. and L. chinense Mill., Solanaceae) have been used as a traditional food and medicine for hundreds of years in Asian countries and are now consumed globally. Quality of herbal medicines is critical for safe use and has been shown to be affected by value chains. AIM OF THE STUDY Using a value chain (VC) framework, we aim at understanding the influence of different VC types on goji quality and revenue of stakeholders. MATERIALS AND METHODS Participant observation and semi-structured interviews were conducted during five months of fieldwork in the main production areas in China with a total of 65 stakeholders. Quality of goji, behaviour and financial performance of stakeholders was documented and analysed for different VCs. RESULTS Ten different types of VCs were identified. VCs with vertical integration and horizontal collaboration were found to have a more coherent quality control and better goji quality as well as improved stakeholders' financial performance. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. Full vertically integrated VCs were found in large-scale production. CONCLUSIONS Goji quality and stakeholders' revenues are linked with different types of VCs which mirror stakeholders' behaviour driven by target markets. Considering their positive influence on quality and revenues, well-developed vertically integrated value chains are likely to become more important in the near future.
Collapse
Affiliation(s)
- Ruyu Yao
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland; Research Cluster Biodiversity and Medicines / Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N1AX, United Kingdom.
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines / Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N1AX, United Kingdom
| | - Zigui Wang
- Ningxia Qixiang Biologic Foodstuff Co., Ltd., Yingbin Road 1, South Street, Zhongning county, Ningxia 755100, China
| | - Caroline S Weckerle
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland
| |
Collapse
|