1
|
Liang L, Yue C, Li W, Tang J, He Q, Zeng F, Cao J, Liu S, Chen Y, Li X, Zhou Y. CD38 symmetric dimethyl site R58 promotes malignant tumor cell immune escape by regulating the cAMP-GSK3β-PD-L1 axis. Heliyon 2024; 10:e37958. [PMID: 39386836 PMCID: PMC11462232 DOI: 10.1016/j.heliyon.2024.e37958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, immunotherapy has emerged as an effective approach for treating tumors, with programmed cell death ligand 1 (PD-L1)/programmed cell death protein-1 (PD-1) immune checkpoint blockade (ICB) being a promising strategy. However, suboptimal therapeutic efficacy limits its clinical benefit. Understanding the regulation mechanism of PD-L1 expression is crucial for improving anti-PD-L1/PD-1 therapy and developing more effective tumor immunotherapy. Previous studies have revealed that resistance to PD-L1/PD-1 blockade therapy arises from the upregulation of CD38 on tumor cells induced by ATRA and IFN-β, which mediates the inhibition of CD8+ T cell function through adenosine receptor signaling, thereby promoting immune evasion.Yet, the precise role of CD38 in regulating PD-L1 on malignant tumor cells and its impact on CD8+ T cells through PD-L1 remain unclear. Here, we demonstrate that CD38 is highly expressed in malignant tumors (lung cancer, nasopharyngeal carcinoma, cervical cancer) and upregulates PD-L1 protein expression, impairing CD8+ T cell function. Mechanistically, CD38 phosphorylates GSK3β via the adenosine-activated cAMP-PKA signaling pathway, leading to GSK3β inactivation and enhanced PD-L1 stability and expression, facilitating tumor immune escape. Furthermore, we identify PRMT5 as a novel CD38-interacting molecule that symmetrically dimethylates CD38 arginine position 58, augmenting PD-L1 stability and expression through the ADO-cAMP-GSK3β signaling axis. This inhibits CD8+ T cell-mediated tumor cell killing, enabling tumor cells to evade immune surveillance. Our findings suggest that targeting the CD38 R58 site offers a new avenue for enhancing anti-PD-L1/PD-1 therapy efficacy in tumor treatment.
Collapse
Affiliation(s)
- Lin Liang
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Chunxue Yue
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qian He
- Department of Radiation Oncology, Hunan Cancer Hospital & the Afliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Zeng
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
2
|
Amo L, Kole HK, Scott B, Borrego F, Qi CF, Wang H, Bolland S. Purification and analysis of kidney-infiltrating leukocytes in a mouse model of lupus nephritis. Methods Cell Biol 2024; 188:131-152. [PMID: 38880521 DOI: 10.1016/bs.mcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Renal injury often occurs as a complication in autoimmune diseases such as systemic lupus erythematosus (SLE). It is estimated that a minimum of 20% SLE patients develop lupus nephritis, a condition that can be fatal when the pathology progresses to end-stage renal disease. Studies in animal models showed that incidence of immune cell infiltrates in the kidney was linked to pathological injury and correlated with severe lupus nephritis. Thus, preventing immune cell infiltration into the kidney is a potential approach to impede the progression to an end-stage disease. A requirement to investigate the role of kidney-infiltrating leukocytes is the development of reproducible and efficient protocols for purification and characterization of immune cells in kidney samples. This chapter describes a detailed methodology that discriminates tissue-resident leukocytes from blood-circulating cells that are found in kidney. Our protocol was designed to maximize cell viability and to reduce variability among samples, with a combination of intravascular staining and magnetic bead separation for leukocyte enrichment. Experiments included as example were performed with FcγRIIb[KO] mice, a well-characterized murine model of SLE. We identified T cells and macrophages as the primary leukocyte subsets infiltrating into the kidney during severe nephritis, and we extensively characterized them phenotypically by flow cytometry.
Collapse
Affiliation(s)
- Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Hemanta K Kole
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Bethany Scott
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Hongsheng Wang
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Silvia Bolland
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| |
Collapse
|
3
|
Evans JV, Suman S, Goruganthu MUL, Tchekneva EE, Guan S, Arasada RR, Antonucci A, Piao L, Ilgisonis I, Bobko AA, Driesschaert B, Uzhachenko RV, Hoyd R, Samouilov A, Amann J, Wu R, Wei L, Pallerla A, Ryzhov SV, Feoktistov I, Park KP, Kikuchi T, Castro J, Ivanova AV, Kanagasabai T, Owen DH, Spakowicz DJ, Zweier JL, Carbone DP, Novitskiy SV, Khramtsov VV, Shanker A, Dikov MM. Improving combination therapies: targeting A2B-adenosine receptor to modulate metabolic tumor microenvironment and immunosuppression. J Natl Cancer Inst 2023; 115:1404-1419. [PMID: 37195421 PMCID: PMC10637048 DOI: 10.1093/jnci/djad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.
Collapse
Affiliation(s)
- Jason V Evans
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Anatomy, and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Shankar Suman
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mounika Uttam L Goruganthu
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Elena E Tchekneva
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuxiao Guan
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajeswara Rao Arasada
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Pfizer Inc, New York, NY, USA
| | - Anneliese Antonucci
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Longzhu Piao
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Irina Ilgisonis
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Roman V Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rebecca Hoyd
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joseph Amann
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ruohan Wu
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lai Wei
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaditya Pallerla
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sergey V Ryzhov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Igor Feoktistov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kyungho P Park
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Takefumi Kikuchi
- Division of Gastroenterology, Department of Internal Medicine, Sapporo Shirakabadai Hospital, Sapporo, Japan
| | | | - Alla V Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Dwight H Owen
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel J Spakowicz
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jay L Zweier
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David P Carbone
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sergey V Novitskiy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Mikhail M Dikov
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Forstner D, Guettler J, Brugger BA, Lyssy F, Neuper L, Daxboeck C, Cvirn G, Fuchs J, Kraeker K, Frolova A, Valdes DS, Stern C, Hirschmugl B, Fluhr H, Wadsack C, Huppertz B, Nonn O, Herse F, Gauster M. CD39 abrogates platelet-derived factors induced IL-1β expression in the human placenta. Front Cell Dev Biol 2023; 11:1183793. [PMID: 37325567 PMCID: PMC10264854 DOI: 10.3389/fcell.2023.1183793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Tissue insults in response to inflammation, hypoxia and ischemia are accompanied by the release of ATP into the extracellular space. There, ATP modulates several pathological processes, including chemotaxis, inflammasome induction and platelet activation. ATP hydrolysis is significantly enhanced in human pregnancy, suggesting that increased conversion of extracellular ATP is an important anti-inflammatory process in preventing exaggerated inflammation, platelet activation and hemostasis in gestation. Extracellular ATP is converted into AMP, and subsequently into adenosine by the two major nucleotide-metabolizing enzymes CD39 and CD73. Here, we aimed to elucidate developmental changes of placental CD39 and CD73 over gestation, compared their expression in placental tissue from patients with preeclampsia and healthy controls, and analyzed their regulation in response to platelet-derived factors and different oxygen conditions in placental explants as well as the trophoblast cell line BeWo. Linear regression analysis showed a significant increase in placental CD39 expression, while at the same time CD73 levels declined at term of pregnancy. Neither maternal smoking during first trimester, fetal sex, maternal age, nor maternal BMI revealed any effects on placental CD39 and CD73 expression. Immunohistochemistry detected both, CD39 and CD73, predominantly in the syncytiotrophoblast layer. Placental CD39 and CD73 expression were significantly increased in pregnancies complicated with preeclampsia, when compared to controls. Cultivation of placental explants under different oxygen conditions had no effect on the ectonucleotidases, whereas presence of platelet releasate from pregnant women led to deregulated CD39 expression. Overexpression of recombinant human CD39 in BeWo cells decreased extracellular ATP levels after culture in presence of platelet-derived factors. Moreover, platelet-derived factors-induced upregulation of the pro-inflammatory cytokine, interleukin-1β, was abolished by CD39 overexpression. Our study shows that placental CD39 is upregulated in preeclampsia, suggesting an increasing demand for extracellular ATP hydrolysis at the utero-placental interface. Increased placental CD39 in response to platelet-derived factors may lead to enhanced conversion of extracellular ATP levels, which in turn could represent an important anti-coagulant defense mechanism of the placenta.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Beatrice A. Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christine Daxboeck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Kristin Kraeker
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Alina Frolova
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Molecular Biology and Genetic of NASU, Kyiv, Ukraine
| | - Daniela S. Valdes
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christina Stern
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Wang J, Du L, Chen X. Adenosine signaling: Optimal target for gastric cancer immunotherapy. Front Immunol 2022; 13:1027838. [PMID: 36189223 PMCID: PMC9523428 DOI: 10.3389/fimmu.2022.1027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
6
|
Wang J, Liu X, Jin T, Cao Y, Tian Y, Xu F. NK cell immunometabolism as target for liver cancer therapy. Int Immunopharmacol 2022; 112:109193. [PMID: 36087507 DOI: 10.1016/j.intimp.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells are being used effectively as a potential candidate in tumor immunotherapy. However, the migration and transport of NK cells to solid tumors is inadequate. NK cell dysfunction, tumor invasiveness, and metastasis are associated with altered metabolism of NK cells in the liver cancer microenvironment. However, in liver cancers, metabolic impairment of NK cells is still not understood fully. Evidence from various sources has shown that the interaction of NK cell's immune checkpoints with its metabolic checkpoints is responsible for the regulation of the development and function of these cells. How immune checkpoints contribute to metabolic programming is still not fully understood, and how this can be beneficial needs a better understanding, but they are emerging to be incredibly compelling to rebuilding the function of NK cells in the tumor. It is expected to represent a potential aim that focuses on improving the efficacy of therapies based on NK cells for treating liver cancer. Here, the recent advancements made to understand the NK cell's metabolic reprogramming in liver cancer have been summarized, along with the possible interplay between the immune and the metabolic checkpoints in NK cell function. Finally, an overview of some potential metabolic-related targets that can be used for liver cancer therapy treatment has been presented.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaolin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Paracrine ADP Ribosyl Cyclase-Mediated Regulation of Biological Processes. Cells 2022; 11:cells11172637. [PMID: 36078044 PMCID: PMC9454491 DOI: 10.3390/cells11172637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyze the synthesis of the Ca2+-active second messengers Cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from NAD+ as well as nicotinic acid adenine dinucleotide phosphate (NAADP+) from NADP+. The best characterized ADPRC in mammals is CD38, a single-pass transmembrane protein with two opposite membrane orientations. The first identified form, type II CD38, is a glycosylated ectoenzyme, while type III CD38 has its active site in the cytosol. The ectoenzymatic nature of type II CD38 raised long ago the question of a topological paradox concerning the access of the intracellular NAD+ substrate to the extracellular active site and of extracellular cADPR product to its intracellular receptors, ryanodine (RyR) channels. Two different transporters, equilibrative connexin 43 (Cx43) hemichannels for NAD+ and concentrative nucleoside transporters (CNTs) for cADPR, proved to mediate cell-autonomous trafficking of both nucleotides. Here, we discussed how type II CD38, Cx43 and CNTs also play a role in mediating several paracrine processes where an ADPRC+ cell supplies a neighboring CNT-and RyR-expressing cell with cADPR. Recently, type II CD38 was shown to start an ectoenzymatic sequence of reactions from NAD+/ADPR to the strong immunosuppressant adenosine; this paracrine effect represents a major mechanism of acquired resistance of several tumors to immune checkpoint therapy.
Collapse
|
8
|
78495111110.1152/physrev.00046.2020" />
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L. Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C. Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
9
|
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
10
|
Yang R, Elsaadi S, Misund K, Abdollahi P, Vandsemb EN, Moen SH, Kusnierczyk A, Slupphaug G, Standal T, Waage A, Slørdahl TS, Rø TB, Rustad E, Sundan A, Hay C, Cooper Z, Schuller AG, Woessner R, Borodovsky A, Menu E, Børset M, Sponaas AM. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J Immunother Cancer 2021; 8:jitc-2020-000610. [PMID: 32409420 PMCID: PMC7239696 DOI: 10.1136/jitc-2020-000610] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an
incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune
checkpoints such as extracellular adenosine and its immunosuppressive receptor should be
considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell
effector functions via the adenosine receptor A2A (A2AR). We set out to investigate
whether blocking the adenosine pathway could be a therapy for MM. Methods Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were
determined by flow cytometry and adenosine production by Liquid chromatograpy-mass
spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells
from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM
myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in
mice in vivo. Results Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from
patients expressed CD39, and high gene expression indicated reduced survival. CD73 was
found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an
anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in
vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo
with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR
antagonist AZD4635 activated immune cells, increased interferon gamma production, and
reduced the tumor load in a murine model of MM. Conclusions Our data suggest that the adenosine pathway can be successfully targeted in MM and
blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other
hematological cancers. Inhibitors of the adenosine pathway are available. Some are in
clinical trials and they could thus reach MM patients fairly rapidly.
Collapse
Affiliation(s)
- Rui Yang
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Samah Elsaadi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Misund
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pegah Abdollahi
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Esten Nymoen Vandsemb
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv Helen Moen
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anna Kusnierczyk
- PROMEC, Department for Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Geir Slupphaug
- PROMEC, Department for Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Therese Standal
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,CEMIR (Centre of Molecular Inflammation Research), Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Anders Waage
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein Baade Rø
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Even Rustad
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders Sundan
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,CEMIR (Centre of Molecular Inflammation Research), Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Carl Hay
- Oncology R&D, AstraZeneca Medimmune, Gaithersburg, Maryland, USA
| | - Zachary Cooper
- Oncology R&D, AstraZeneca Medimmune, Gaithersburg, Maryland, USA
| | | | | | | | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussel, Massachusetts, Belgium
| | - Magne Børset
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Marit Sponaas
- Center for Myeloma Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
The Circular Life of Human CD38: From Basic Science to Clinics and Back. Molecules 2020; 25:molecules25204844. [PMID: 33096610 PMCID: PMC7587951 DOI: 10.3390/molecules25204844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) were initially considered as a possible “magic bullet” for in vivo elimination of tumor cells. mAbs represented the first step: however, as they were murine in nature (the earliest experience on the field), they were considered unfit for human applications. This prompted the development of techniques for cloning the variable regions of conventional murine antibodies, genetically mounted on human IgG. The last step in this years-long process was the design for the preparation of fully human reagents. The choice of the target molecule was also problematic, since cancer-specific targets are quite limited in number. To overcome this obstacle in the planning phases of antibody-mediated therapy, attention was focused on a set of normal molecules, whose quantitative distribution may balance a tissue-dependent generalized expression. The results and clinical success obtained with anti-CD20 mAbs revived interest in this type of strategy. Using multiple myeloma (MM) as a tumor model was challenging first of all because the plasma cells and their neoplastic counterpart eluded the efforts of the Workshop on Differentiation Antigens to find a target molecule exclusively expressed by these cells. For this reason, attention was turned to surface molecules which fulfill the requisites of being reasonably good targets, even if not specifically restricted to tumor cells. In 2009, we proposed CD38 as a MM target in virtue of its expression: it is absent on early hematological progenitors, has variable but generalized limited expression by normal cells, but is extremely high in plasma cells and in myeloma. Further, regulation of its expression appeared to be dependent on a variety of factors, including exposure to all-trans retinoic acid (ATRA), a potent and highly specific inducer of CD38 expression in human promyelocytic leukemia cells that are now approved for in vivo use. This review discusses the history of human CD38, from its initial characterization to its targeting in antibody-mediated therapy of human myeloma.
Collapse
|
12
|
Passarelli A, Aieta M, Sgambato A, Gridelli C. Targeting Immunometabolism Mediated by CD73 Pathway in EGFR-Mutated Non-small Cell Lung Cancer: A New Hope for Overcoming Immune Resistance. Front Immunol 2020; 11:1479. [PMID: 32760402 PMCID: PMC7371983 DOI: 10.3389/fimmu.2020.01479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the relevant antitumor efficacy of immunotherapy in advanced non-small cell lung cancer (NSCLC), the results in patients whose cancer harbors activating epidermal growth factor receptor (EGFR) mutations are disappointing. The biological mechanisms underlying immune escape and both unresponsiveness and resistance to immunotherapy in EGFR-mutant NSCLC patients have been partially investigated. To this regard, lung cancer immune escape largely involves high amounts of adenosine within the tumor milieu with broad immunosuppressive effects. Indeed, besides immune checkpoint receptors and their ligands, other mechanisms inducing immunosuppression and including adenosine produced by ecto-nucleotidases CD39 and CD73 contribute to lung tumorigenesis and progression. Here, we review the clinical results of immune checkpoint inhibitors in EGFR-mutant NSCLC, focusing on the dynamic immune composition of EGFR-mutant tumor microenvironment. The adenosine pathway-mediated dysregulation of energy metabolism in tumor microenvironment is suggested as a potential mechanism involved in the immune escape process. Finally, we report the strong rationale for planning strategies of combination therapy with immune checkpoints blockade and adenosine signaling inhibition to overcome immune escape and immunotherapy resistance in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Anna Passarelli
- Unit of Medical Oncology, Department of Onco-Hematology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Michele Aieta
- Unit of Medical Oncology, Department of Onco-Hematology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Alessandro Sgambato
- Laboratory of Pre-clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital, Avellino, Italy
| |
Collapse
|
13
|
Frank MJ, Olsson N, Huang A, Tang SW, Negrin RS, Elias JE, Meyer EH. A novel antibody-cell conjugation method to enhance and characterize cytokine-induced killer cells. Cytotherapy 2020; 22:135-143. [DOI: 10.1016/j.jcyt.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
|
14
|
Horenstein AL, Bracci C, Morandi F, Malavasi F. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy. Front Immunol 2019; 10:760. [PMID: 31068926 PMCID: PMC6491463 DOI: 10.3389/fimmu.2019.00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor microenvironments are rich in extracellular nucleotides that can be metabolized by ectoenzymes to produce adenosine, a nucleoside involved in controlling immune responses. Multiple myeloma, a plasma cell malignancy developed within a bone marrow niche, exploits adenosinergic pathways to customize the immune homeostasis of the tumor. CD38, a multifunctional protein that acts as both receptor and ectoenzyme, is overexpressed at all stages of myeloma. At neutral and acidic pH, CD38 catalyzes the extracellular conversion of NAD+ to regulators of calcium signaling. The initial disassembly of NAD+ is also followed by adenosinergic activity, if CD38 is operating in the presence of CD203a and CD73 nucleotidases. cAMP extruded from tumor cells provides another substrate for metabolizing nucleotidases to signaling adenosine. These pathways flank or bypass the canonical adenosinergic pathway subjected to the conversion of ATP by CD39. All of the adenosinergic networks can be hijacked by the tumor, thus controlling the homeostatic reprogramming of the myeloma in the bone marrow. In this context, adenosine assumes the role of a local hormone: cell metabolism is adjusted via low- or high-affinity purinergic receptors expressed by immune and bone cells as well as by tumor cells. The result is immunosuppression, which contributes to the failure of immune surveillance in cancer. A similar metabolic strategy silences immune effectors during the progression of indolent gammopathies to symptomatic overt multiple myeloma disease. Plasma from myeloma aspirates contains elevated levels of adenosine resulting from interactions between myeloma and other cells lining the niche and adenosine concentrations are known to increase as the disease progresses. This is statistically reflected in the International Staging System for multiple myeloma. Along with the ability to deplete CD38+ malignant plasma cell populations which has led to their widespread therapeutic use, anti-CD38 antibodies are involved in the polarization and release of microvesicles characterized by the expression of multiple adenosine-producing molecules. These adenosinergic pathways provide new immune checkpoints for improving immunotherapy protocols by helping to restore the depressed immune response.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, Turin, Italy.,CeRMS, University of Torino, Turin, Italy
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, Turin, Italy.,CeRMS, University of Torino, Turin, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, Turin, Italy.,CeRMS, University of Torino, Turin, Italy
| |
Collapse
|
15
|
Passarelli A, Tucci M, Mannavola F, Felici C, Silvestris F. The metabolic milieu in melanoma: Role of immune suppression by CD73/adenosine. Tumour Biol 2019; 42:1010428319837138. [PMID: 30957676 DOI: 10.1177/1010428319837138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanisms leading to immune escape of melanoma have been largely investigated in relation to its tumour immunogenicity and features of inflamed microenvironment that promote the immune suppression during the disease progression. These findings have recently led to advantages in terms of immunotherapy-based approaches as rationale for overcoming the immune escape. However, besides immune checkpoints, other mechanisms including the adenosine produced by ectonucleotidases CD39 and CD73 contribute to the melanoma progression due to the immunosuppression induced by the tumour milieu. On the other hand, CD73 has recently emerged as both promising therapeutic target and unfavourable prognostic biomarker. Here, we review the major mechanisms of immune escape activated by the CD39/CD73/adenosine pathway in melanoma and focus potential therapeutic strategies based on the control of CD39/CD73 downstream adenosine receptor signalling. These evidences provide the basis for translational strategies of immune combination, while CD73 would serve as potential prognostic biomarker in metastatic melanoma.
Collapse
Affiliation(s)
- Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
16
|
Horenstein AL, Morandi F, Bracci C, Pistoia V, Malavasi F. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma. Immunol Lett 2018; 205:40-50. [PMID: 30447309 DOI: 10.1016/j.imlet.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Human myeloma cells grow in a hypoxic acidic niche in the bone marrow. Cross talk among cellular components of this closed niche generates extracellular adenosine, which promotes tumor cell survival. This is achieved through the binding of adenosine to purinergic receptors into complexes that function as an autocrine/paracrine signal factor with immune regulatory activities that i) down-regulate the functions of most immune effector cells and ii) enhance the activity of cells that suppress anti-tumor immune responses, thus facilitating the escape of malignant myeloma cells from immune surveillance. Here we review recent findings confirming that the dominant phenotype for survival of tumor cells is that where the malignant cells have been metabolically reprogrammed for the generation of lactic acidosis in the bone marrow niche. Adenosine triphosphate and nicotinamide-adenine dinucleotide extruded from tumor cells, along with cyclic adenosine monophosphate, are the main intracellular energetic/messenger molecules that serve as leading substrates in the extracellular space for membrane-bound ectonucleotidases metabolizing purine nucleotides to signaling adenosine. Within this mechanistic framework, the adenosinergic substrate conversion can vary significantly according to the metabolic environment. Indeed, the neoplastic expansion of plasma cells exploits both enzymatic networks and hypoxic acidic conditions for migrating and homing to a protected niche and for evading the immune response. The expression of multiple specific adenosine receptors in the niche completes the profile of a complex regulatory framework whose signals modify multiple myeloma and host immune responses.
Collapse
Affiliation(s)
- A L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy.
| | - F Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - C Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| | - V Pistoia
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| |
Collapse
|
17
|
Nurkhametova D, Kudryavtsev I, Khayrutdinova O, Serebryakova M, Altunbaev R, Malm T, Giniatullin R. Purinergic Profiling of Regulatory T-cells in Patients With Episodic Migraine. Front Cell Neurosci 2018; 12:326. [PMID: 30319363 PMCID: PMC6167492 DOI: 10.3389/fncel.2018.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023] Open
Abstract
Objectives: Immune responses in migraine are poorly characterized, yet implicated in the disease pathogenesis. This study was carried out to characterize purinergic profiles of T-cells in patients with episodic migraine without aura (MWoA) to provide mechanistic evidence for ATP and adenosine involvement in modulation of immune regulation in migraine. Methods: Peripheral blood samples were obtained from patients with migraine (n = 16) and age-matched control subjects (n = 21). Subsets of T-cells were identified by flow cytometry based on specific membrane markers. Results: Migraine patients showed reduced total T-cell counts in the peripheral blood. Whereas the total number of CD3+CD4+, CD3+CD8+, or regulatory T lymphocytes (Treg) was not changed, the proportion of Treg CD45R0+CD62L- and CD45R0-CD62L- cells was increased. Interestingly, in migraine, less Treg cells expressed CD39 and CD73 suggesting disrupted ATP breakdown to adenosine. The negative correlations were observed between the duration of migraine and the relative number of CD73+CD39- Tregs and total number of CD73-positive CD45R0+CD62L+ Tregs. Conclusion: Obtained data indicate that T-cell populations are altered in episodic migraine and suggest the involvement of Tregs in the pathophysiology of this disorder. Reduced expression of CD39 and CD73 suggests promotion of ATP-dependent pro-inflammatory and reduction of adenosine-mediated anti-inflammatory mechanisms in migraine.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
- Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Khayrutdinova
- Department of Neurology and Rehabilitation, Kazan State Medical University, Kazan, Russia
| | - Maria Serebryakova
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Rashid Altunbaev
- Department of Neurology and Rehabilitation, Kazan State Medical University, Kazan, Russia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|