1
|
Zhang Y, Zhu Y, Li F, Zhou Q, Zhou J. A Decrease in Autophagy Increases the Level of Collagen Type I Expression in Scleral Fibroblasts. Curr Eye Res 2025; 50:58-65. [PMID: 39229688 DOI: 10.1080/02713683.2024.2393370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Autophagy dysregulation triggers extracellular matrix remodeling via changes in cellular collagen levels and protease secretion. However, the effect of autophagy on scleral extracellular matrix remodeling in the context of myopia is not fully understood. In this study, we measured the level of autophagy in sclera of form deprivation myopic guinea pigs; we also sought a correlation between the level of autophagy in human scleral fibroblasts and the extent of COL1A1 synthesis. METHODS We measured the level of COL1A1 expression and the levels of autophagic protein markers in scleral tissues in vivo using a form deprivation myopic guinea pig model. Rapamycin and chloroquine were respectively used to activate and inhibit autophagy in cultured human scleral fibroblasts. COL1A1 gene and protein expression levels were analyzed via quantitative real-time polymerase chain reaction, Western blotting, and immunofluorescence. Levels of autophagy-related proteins were assessed via Western blotting. RESULTS The sclera of form deprivation myopic guinea pig eyes exhibited decreased expression of COL1A1 and increased expression level of autophagy. After chloroquine exposure, human scleral fibroblasts exhibited decreased autophagy and increased COL1A1 expression. CONCLUSION Inhibition of scleral fibroblast autophagy increased COL1A1 expression at the gene and protein levels, thus explaining the effect of autophagy on collagen synthesis by scleral fibroblasts.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Aier Eye Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
| | - Fang Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Zhou
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jibo Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Fang X, Zhang W, Liu C, Liu Y, Tan W, Wang Z, Wang X. Inhibition of peritendinous adhesion through targeting JAK2-STAT3 signaling pathway: The therapeutic potential of AG490. Int Immunopharmacol 2024; 143:113582. [PMID: 39527887 DOI: 10.1016/j.intimp.2024.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Peritendinous adhesion is a common complication following tendon injury repair, posing a significant clinical challenge that requires urgent attention. The primary cause of peritendinous adhesion is the excessive deposition of collagen matrix due to the abnormal proliferation of fibroblasts in an inflammatory state. Janus kinase2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) are key signaling molecules involved in cell proliferation and fibrosis development in various organs. However, the role of the JAK-2 and STAT3 signaling pathways in peritendinous adhesion fibrosis remains unclear. In our study, we first observed upregulation of p-JAK2 and p-STAT3 proteins in human peritendinous adhesion specimens and rat peritendinous adhesion models. In vitro, the JAK2/STAT3 pathway inhibitor AG490 effectively inhibited TGF-β1-induced fibroblast proliferation. Wound healing and transwell assays demonstrated that AG490 suppressed TGF-β1-induced fibroblast migration. Furthermore, we found that AG490 decreased the expression of pro-inflammatory factors, including IL-1β and TNF-α, as well as extracellular matrix (ECM) proteins in fibroblasts under TGF-β1 stimulation. In vivo, histological staining showed that AG490 prevented fibrous tissue formation in a rat model of tendon injury. Moreover, AG490 inhibited the overexpression of pro-inflammatory factors IL-1β and TNF-α, as well as ECM in the peritendinous adhesions. In conclusion, AG490 inhibited fibrosis and inflammation in injured tendons by targeting the JAK2-STAT3 signaling pathway, presenting a promising strategy for the prophylaxis of peritendinous adhesions.
Collapse
Affiliation(s)
- Xue Fang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Wang Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Changhuan Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Yuping Liu
- Sichuan University West China Second University Hospital, Department of Anesthesiology, Chengdu, Sichuan, China
| | - Wei Tan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China.
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China; Elderly Hip Fracture Diagnosis and Treatment Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Wang S, Sha P, Zhao X, Tao Z, Liu S. Peritendinous adhesion: Therapeutic targets and progress of drug therapy. Comput Struct Biotechnol J 2024; 23:251-263. [PMID: 38173878 PMCID: PMC10762322 DOI: 10.1016/j.csbj.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Peritendinous adhesion (PA) is one of the most common complications following hand surgery and characterized with abnormal hyperplasia of connective tissue and excessive deposition of extracellular matrix. Subsequently, various clinical symptoms such as chronic pain, limb dyskinesia and even joint stiffness occur and patients are always involved in the vicious cycle of "adhesion - release - re-adhesion", which seriously compromise the quality of life. Until present, the underlying mechanism remains controversial and lack of specific treatment, with symptomatic treatment being the only option to relieve symptoms, but not contributing no more to the fundamentally rehabilitation of basic structure and function. Recently, novel strategies have been proposed to inhibit the formation of adhesion tissues including implantation of anti-adhesion barriers, anti-inflammation, restraint of myofibroblast transformation and regulation of collagen overproduction. Furthermore, gene therapy has also been considered as a promising anti-adhesion treatment. In this review, we provide an overview of anti-adhesion targets and relevant drugs to summarize the potential pharmacological roles and present subsequent challenges and prospects of anti-adhesion drugs.
Collapse
Affiliation(s)
| | | | | | - Zaijin Tao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Hanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Hanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
4
|
Jiang H, Xie Y, Lu J, Li H, Zeng K, Hu Z, Wu D, Yang J, Yao Z, Chen H, Gong X, Yu X. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 2024; 20:76-93. [PMID: 37647255 PMCID: PMC10761048 DOI: 10.1080/15548627.2023.2249392] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Macroautophagy/autophagy plays an important role in regulating cellular homeostasis and influences the pathogenesis of degenerative diseases. Tendinopathy is characterized by tendon degeneration and inflammation. However, little is known about the role of selective autophagy in tendinopathy. Here, we find that pristimerin (PM), a quinone methide triterpenoid, is more effective in treating tendinopathy than the first-line drug indomethacin. PM inhibits the AIM2 inflammasome and alleviates inflammation during tendinopathy by promoting the autophagic degradation of AIM2 through a PYCARD/ASC-dependent manner. A mechanistic study shows that PM enhances the K63-linked ubiquitin chains of PYCARD/ASC at K158/161, which serves as a recognition signal for SQSTM1/p62-mediated autophagic degradation of the AIM2-PYCARD/ASC complex. We further identify that PM binds the Cys53 site of deubiquitinase USP50 through the Michael-acceptor and blocks the binding of USP50 to PYCARD/ASC, thereby reducing USP50-mediated cleavage of K63-linked ubiquitin chains of PYCARD/ASC. Finally, PM treatment in vivo generates an effect comparable to inflammasome deficiency in alleviating tendinopathy. Taken together, these findings demonstrate that PM alleviates the progression of tendinopathy by modulating AIM2-PYCARD/ASC stability via SQSTM1/p62-mediated selective autophagic degradation, thus providing a promising autophagy-based therapeutic for tendinopathy.Abbreviations: 3-MA: 3-methyladenine; AIM2: absent in melanoma 2; AT: Achilles tenotomy; ATP: adenosine triphosphate; BMDMs: bone marrow-derived macrophages; CHX: cycloheximide; Col3a1: collagen, type III, alpha 1; CQ: chloroquine; Cys: cysteine; DARTS: drug affinity responsive target stability; DTT: dithiothreitol; DUB: deubiquitinase; gDNA: genomic DNA; GSH: glutathione; His: histidine; IL1B/IL-1β: interleukin 1 beta; IND: indomethacin; IP: immunoprecipitation; LPS: lipopolysaccharide; MMP: mitochondrial membrane potential; NLRP3: NLR family, pyrin domain containing 3; PM: pristimerin; PYCARD/ASC: PYD and CARD domain containing; SN: supernatants; SOX9: SRY (sex determining region Y)-box 9; SQSTM1: sequestosome 1; Tgfb: transforming growth factor, beta; TIMP3: tissue inhibitor of metalloproteinase 3; TNMD: tenomodulin; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; USP50: ubiquitin specific peptidase 50; WCL: whole cell lysates.
Collapse
Affiliation(s)
- Huaji Jiang
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenxia Yao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huadan Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Gong
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wang S, Yao Z, Chen L, Li J, Chen S, Fan C. Preclinical assessment of IL-1β primed human umbilical cord mesenchymal stem cells for tendon functional repair through TGF-β/IL-10 signaling. Heliyon 2023; 9:e21411. [PMID: 37954299 PMCID: PMC10638607 DOI: 10.1016/j.heliyon.2023.e21411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Background Inadequate repair capacity and disturbed immune compartments are the main pathological causes of tendinopathy. Transplantation of mesenchymal stem cells (MSCs) become an effective clinic option to alleviate tendinopathy. Interleukin-1β (IL-1β) could confer on MSCs enhanced immunoregulatory capability to remodel the repair microenvironment favoring tissue repair. Therefore, IL-1β activated UC-MSCs (1βUC-MSCs) may exert favorable efficacy in promoting tendon repair in a preclinical tendinopathy rat model. Methods Tendon-derived stem cells (TDSCs) were isolated and characterized. In vitro, the levels of immunoregulatory-related cytokines such as IL-1β, IL-6, IL-10, and TGF-β secreted by 1βUC-MSCs and unprimed UC-MSCs was measured. And tendon-specific markers expressed by TDSCs cultured with primed cultured medium (CM) or unprimed CM were detected. In vivo, Achilles tendinopathy was induced by 30 μL collagenase I injection in Sprague Dawley rats. One week later, the rats were randomly injected with UC-MSCs primed with IL-1β (106 cells per tendon), UC-MSCs, or PBS. After rats were sacrificed, histological evaluation, electron microscopy, biomechanical tests, gait performance were conducted to evaluate the structural and functional recovery of Achilles tendons. The inflammation and metabolic state of the extracellular matrix, and the potential mechanism were assessed by immunohistochemical staining and Western blot. Results UC-MSCs were activated by IL-1β to secrete higher levels of IL-10 and TGF-β while the secretion levels of IL-6 and IL-1β were not changed significantly, promoting a higher expression level of COL I and TNMD in TDSCs under proinflammatory environment. In vivo, the transplanted 1βUC-MSCs could survive up to 5 weeks after injection with tenogenic differentiation and improved tendon healing histologically semi-quantified by modified Bonar scores. This structural regeneration was further confirmed by observation of ultrastructural morphology, and led to good functional recovery including improved biomechanical properties and gait performance. During this process, the inflammatory response and metabolism of the extracellular matrix was improved through TGF-β/IL-10 pathway. Conclusion This study demonstrated that the transplantation of UC-MSCs activated by IL-1β exhibited satisfactory ability for promoting tendon functional repair in a tendinopathy rat model. During this process, the balance of inflammatory response and extracellular matrix metabolism was remodeled, and the TGF-β/Smad2/3 and IL-10 signaling pathways were activated simultaneously. We cautiously conclude that the IL-1β primed UC-MSCs could be a promising strategy for enhancing the ability of MSCs to treat tendinopathy.
Collapse
Affiliation(s)
- Shikun Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine Tongji University, Shanghai, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
6
|
Alenchery RG, Ajalik RE, Jerreld K, Midekksa F, Zhong S, Alkatib B, Awad HA. PAI-1 mediates TGF-β1-induced myofibroblast activation in tenocytes via mTOR signaling. J Orthop Res 2023; 41:2163-2174. [PMID: 37143206 PMCID: PMC10524825 DOI: 10.1002/jor.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Transforming growth factor-beta (TGF-β1) induces plasminogen activator inhibitor 1 (PAI-1) to effect fibrotic pathologies in several organs including tendon. Recent data implicated PAI-1 with inhibition of phosphatase and tensin homolog (PTEN) suggesting that PAI-1-induced adhesions involves phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling. Ergo, we investigated effects of TGF-β1, PAI-1, and mTOR signaling crosstalk on myofibroblast activation, senescence, and proliferation in primary flexor tenocytes from wild-type (WT) and PAI-1 knockout (KO) mice. PAI-1 deletion blunted TGF-β1-induced myofibroblast activation in murine flexor tenocytes and increased the gene expression of Mmp-2 to confer protective effects against fibrosis. While TGF-β1 significantly reduced phosphorylation of PTEN in WT cells, PAI-1 deletion rescued the activation of PTEN. Despite that, there were no differences in TGF-β1-induced activation of mTOR signaling (AKT, 4EBP1, and P70S6K) in WT or KO tenocytes. Phenotypic changes in distinct populations of WT or KO tenocytes exhibiting high or low mTOR activity were then examined. TGF-β1 increased alpha-smooth muscle actin abundance in WT cells exhibiting high mTOR activity, but this increase was blunted in KO cells exhibiting high 4EBP1 activity but not in cells exhibiting high S6 activity. DNA damage (γH2AX) was increased with TGF-β1 treatment in WT tenocytes but was blunted in KO cells exhibiting high mTOR activity. Increased mTOR activity enhanced proliferation (Ki67) in both WT and KO tenocytes. These findings point to a complex nexus of TGF-β1, PAI-1, and mTOR signaling in regulating proliferation, myofibroblast differentiation, and senescence in tenocytes, which could define therapeutic targets for chronic tendon adhesions and other fibrotic pathologies.
Collapse
Affiliation(s)
- Rahul G Alenchery
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Raquel E Ajalik
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Kyle Jerreld
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
| | - Firaol Midekksa
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Sylvia Zhong
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Bashar Alkatib
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| |
Collapse
|
7
|
Peng X, Zhu Y, Wang T, Wang S, Sun J. Integrative analysis links autophagy to intrauterine adhesion and establishes autophagy-related circRNA-miRNA-mRNA regulatory network. Aging (Albany NY) 2023; 15:8275-8297. [PMID: 37616056 PMCID: PMC10497020 DOI: 10.18632/aging.204969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a troublesome complication characterized with endometrial fibrosis after endometrial trauma. Increasing number of investigations focused on autophagy and non-coding RNA in the pathogenesis of uterine adhesion, but the underlying mechanism needs to be further studied. METHODS mRNA expression profile and miRNA expression profile were obtained from Gene Expression Omnibus database. The autophagy related genes were low. Venn diagram was used to set the intersection of autophagy genes and DEGs to obtain ARDEGs. Circbank was used to select hub autophagy-related circRNAs based on ARDEMs. Then, the differentially expressed autophagy-related genes, miRNAs and circRNAs were analyzed by functional enrichment analysis, and protein-protein interaction network analysis. Finally, the expression levels of hub circRNAs and hub miRNAs were validated through RT-PCR of clinical intrauterine adhesion samples. In vitro experiments were investigated to explore the effect of hub ARCs on cell autophagy, myofibroblast transformation and collagen deposition. RESULTS 11 autophagy-related differentially expressed genes (ARDEGs) and 41 differentially expressed miRNA (ARDEMs) compared between normal tissues and IUA were identified. Subsequently, the autophagy-related miRNA-mRNA network was constructed and hub ARDEMs were selected. Furthermore, the autophagy-related circRNA-miRNA-mRNA network was established. According to the ranking of number of regulated ARDEMs, hsa-circ-0047959, hsa-circ-0032438, hsa-circ-0047301 were regarded as the hub ARCs. In comparison of normal endometrial tissue, all three hub ARCs were upregulated in IUA tissue. All hub ARDEMs were downregulated except has-miR-320c. CONCLUSIONS In the current study, we firstly constructed autophagy-related circRNA-miRNA-mRNA regulatory network and identified hub ARCs and ARDEMs had not been reported in IUA.
Collapse
Affiliation(s)
- Xiaotong Peng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiping Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Sun J, Ju F, Jin J, Wang HL, Li ZJ, Sun YC, Chen QZ, Yang QQ, Tan J, Zhou YL. M2 Macrophage Membrane-Mediated Biomimetic-Nanoparticle Carrying COX-siRNA Targeted Delivery for Prevention of Tendon Adhesions by Inhibiting Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300326. [PMID: 37017497 DOI: 10.1002/smll.202300326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Tendon adhesion is the most common outcome of tendon or tendon-to-bone healing after injury. Our group developed a hydrogel-nanoparticle sustained-release system previously to inhibit cyclooxygenases (COXs) expression and consequently prevent tendon adhesion and achieved satisfactory results. However, effective treatment of multiple tendon adhesions is always a challenge in research on the prevention of tendon adhesion. In the present study, an M2M@PLGA/COX-siRNA delivery system is successfully constructed using the cell membranes of M2 macrophages and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Targeting properties and therapeutic effects are observed in mice or rat models of flexor digitorum longus (FDL) tendon injury combined with rotator cuff injury. The results showed that the M2M@PLGA/COX-siRNA delivery system has low toxicity and remarkable targeting properties to the injured areas. Treatment with the M2M@PLGA/COX-siRNA delivery system reduced the inflammatory reaction and significantly improved tendon adhesion in both the FDL tendon and rotator cuff tissues. These findings indicate that the M2M@PLGA delivery system can provide an effective biological strategy for preventing multiple tendon adhesions.
Collapse
Affiliation(s)
- Jie Sun
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Fei Ju
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jing Jin
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Hao Liang Wang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Zhi Jie Li
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yu Cheng Sun
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qing Zhong Chen
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qian Qian Yang
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jun Tan
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - You Lang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
9
|
Motz KM, Lina IA, Samad I, Murphy MK, Duvvuri M, Davis RJ, Gelbard A, Chung L, Chan-Li Y, Collins S, Powell JD, Elisseeff JH, Horton MR, Hillel AT. Sirolimus-eluting airway stent reduces profibrotic Th17 cells and inhibits laryngotracheal stenosis. JCI Insight 2023; 8:e158456. [PMID: 37159282 PMCID: PMC10393235 DOI: 10.1172/jci.insight.158456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
Laryngotracheal stenosis (LTS) is pathologic fibrotic narrowing of the larynx and trachea characterized by hypermetabolic fibroblasts and CD4+ T cell-mediated inflammation. However, the role of CD4+ T cells in promoting LTS fibrosis is unknown. The mTOR signaling pathways have been shown to regulate the T cell phenotype. Here we investigated the influence of mTOR signaling in CD4+ T cells on LTS pathogenesis. In this study, human LTS specimens revealed a higher population of CD4+ T cells expressing the activated isoform of mTOR. In a murine LTS model, targeting mTOR with systemic sirolimus and a sirolimus-eluting airway stent reduced fibrosis and Th17 cells. Selective deletion of mTOR in CD4+ cells reduced Th17 cells and attenuated fibrosis, demonstrating CD4+ T cells' pathologic role in LTS. Multispectral immunofluorescence of human LTS revealed increased Th17 cells. In vitro, Th17 cells increased collagen-1 production by LTS fibroblasts, which was prevented with sirolimus pretreatment of Th17 cells. Collectively, mTOR signaling drove pathologic CD4+ T cell phenotypes in LTS, and targeting mTOR with sirolimus was effective at treating LTS through inhibition of profibrotic Th17 cells. Finally, sirolimus may be delivered locally with a drug-eluting stent, transforming clinical therapy for LTS.
Collapse
Affiliation(s)
- Kevin M. Motz
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ioan A. Lina
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Idris Samad
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael K. Murphy
- Department of Otolaryngology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Madhavi Duvvuri
- Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | - Ruth J. Davis
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alexander Gelbard
- Department of Otolaryngology Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering
| | - Yee Chan-Li
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Samuel Collins
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering
| | - Maureen R. Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander T. Hillel
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Chen X, Qin W, Wang L, Jin Y, Tu J, Yuan X. Autophagy gene Atg7 regulates the development of radiation-induced skin injury and fibrosis of skin. Skin Res Technol 2023; 29:e13337. [PMID: 37357660 PMCID: PMC10230157 DOI: 10.1111/srt.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Radiation-induced skin injury, which may progress to fibrosis, is a severe side effect of radiotherapy in patients with cancer. However, currently, there is a lack of preventive or curative treatments for this injury. Meanwhile, the mechanisms underlying this injury remain poorly understood. Here, we elucidated whether autophagy is essential for the development of radiation-induced skin injury and the potential molecular pathways and mechanisms involved. METHODS AND RESULTS We used the myofibroblast-specific Atg7 knockout (namely, conditional Atg7 knockout) mice irradiated with a single electron beam irradiation dose of 30 Gy. Vaseline-based 0.2% rapamycin ointment was topically applied once daily from the day of irradiation for 30 days. On day 30 post irradiation, skin tissues were harvested for further analysis. In vitro, human foreskin fibroblast cells were treated with rapamycin (100 nM) for 24 h and pretreated with 3-MA (5 mM) for 12 h. Macroscopic skin manifestations, histological changes, and fibrosis markers at the mRNA and protein expression levels were measured. Post irradiation, the myofibroblast-specific autophagy-deficient (Atg7Flox/Flox Cre+ ) mice had increased fibrosis marker (COL1A1, CTGF, TGF-β1, and α-SMA) levels in the irradiated area and had more severe macroscopic skin manifestations than the control group (Atg7Flox/Flox Cre- ) mice. Treatment with an autophagy agonist rapamycin attenuated macroscopic skin injury scores and skin fibrosis marker levels with decreased epidermal thickness and dermal collagen deposition in Atg7Flox/Flox Cre+ mice compared with the vehicle control. Moreover, in vitro experiment results were consistent with the in vivo results. Together with studies at the molecular level, we found that these changes involved the Akt/mTOR pathway. In addition, this phenomenon might also relate to Nrf2-autophagy signaling pathway under oxidative stress conditions. CONCLUSION In conclusion, Atg7 and autophagy-related mechanisms confer radioprotection, and reactivation of the autophagy process can be a novel therapeutic strategy to reduce and prevent the occurrence of radiodermatitis, particularly skin fibrosis, in patients with cancer.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Wan Qin
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yu Jin
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jingyao Tu
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xianglin Yuan
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
11
|
Yue Z, Hu B, Chen Z, Zheng G, Wang Y, Yang C, Cao P, Wu X, Liang L, Zang F, Wang J, Li J, Zhang T, Wu J, Chen H. Continuous release of mefloquine featured in electrospun fiber membranes alleviates epidural fibrosis and aids in sensory neurological function after lumbar laminectomy. Mater Today Bio 2022; 17:100469. [PMID: 36340590 PMCID: PMC9633751 DOI: 10.1016/j.mtbio.2022.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Recurrent low back pain after spinal surgeries, such as lumbar laminectomy, is a major complication of excessive epidural fibrosis. Although multiple preclinical and clinical methods have been aimed at ameliorating epidural fibrosis, their safety and efficacy remain largely unclear. Single implanted electrospun fibrous membranes provide physical barriers that can decrease tissue fibrosis after surgery; however, they also trigger local inflammation due to the implantation of a foreign body, thus subsequently attenuating their anti-fibrosis properties. Here, we designed a strategy that permits easy incorporation of mefloquine into polylactic acid membranes, and stable long-term mefloquine release, to potentially improve anti-fibrosis effects and relieve or prevent low back pain. The electrospun fibrous membranes grafted with mefloquine showed a well-controlled early temporary peak release, and secondary drug release occurred smoothly over several weeks. Histopathological and histomorphometric results indicated that the drug-loaded membranes had excellent anti-fibrosis effects after laminectomy in rats. Inflammation and neovascularization at the surgical site indicated that the mefloquine-grafted electrospun fibrous membranes provided sustained anti-inflammatory outcomes while effectively alleviating associated neuropathic pain hypersensitivity. In summary, our study indicated that polylactic acid-mefloquine grafted electrospun fibrous membranes may be a potential local agent to mitigate epidural fibrosis and support sensory neurological function after laminectomy, thereby potentially improving patients' postoperative outcomes.
Collapse
Affiliation(s)
- Zhihao Yue
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhe Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Genjiang Zheng
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen Yang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Cao
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaodong Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Liang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fazhi Zang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianxi Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Li
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tao Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, 200030, Shanghai, China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Li P, Fei CS, Chen YL, Chen ZS, Lai ZM, Tan RQ, Yu YP, Xiang X, Dong JL, Zhang JX, Wang L, Zhang ZM. Revealing the novel autophagy-related genes for ligamentum flavum hypertrophy in patients and mice model. Front Immunol 2022; 13:973799. [PMID: 36275675 PMCID: PMC9581255 DOI: 10.3389/fimmu.2022.973799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fibrosis is a core pathological factor of ligamentum flavum hypertrophy (LFH) resulting in degenerative lumbar spinal stenosis. Autophagy plays a vital role in multi-organ fibrosis. However, autophagy has not been reported to be involved in the pathogenesis of LFH. Methods The LFH microarray data set GSE113212, derived from Gene Expression Omnibus, was analyzed to obtain differentially expressed genes (DEGs). Potential autophagy-related genes (ARGs) were obtained with the human autophagy regulator database. Functional analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were conducted to elucidate the underlying biological pathways of autophagy regulating LFH. Protein-protein interaction (PPI) network analyses was used to obtain hub ARGs. Using transmission electron microscopy, quantitative RT-PCR, Western blotting, and immunohistochemistry, we identified six hub ARGs in clinical specimens and bipedal standing (BS) mouse model. Results A total of 70 potential differentially expressed ARGs were screened, including 50 up-regulated and 20 down-regulated genes. According to GO enrichment and KEGG analyses, differentially expressed ARGs were mainly enriched in autophagy-related enrichment terms and signaling pathways related to autophagy. GSEA and GSVA results revealed the potential mechanisms by demonstrating the signaling pathways and biological processes closely related to LFH. Based on PPI network analysis, 14 hub ARGs were identified. Using transmission electron microscopy, we observed the autophagy process in LF tissues for the first time. Quantitative RT-PCR, Western blotting, and immunohistochemistry results indicated that the mRNA and protein expression levels of FN1, TGFβ1, NGF, and HMOX1 significantly higher both in human and mouse with LFH, while the mRNA and protein expression levels of CAT and SIRT1 were significantly decreased. Conclusion Based on bioinformatics analysis and further experimental validation in clinical specimens and the BS mouse model, six potential ARGs including FN1, TGFβ1, NGF, HMOX1, CAT, and SIRT1 were found to participate in the fibrosis process of LFH through autophagy and play an essential role in its molecular mechanism. These potential genes may serve as specific therapeutic molecular targets in the treatment of LFH.
Collapse
Affiliation(s)
- Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-shuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-lin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-sen Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-ming Lai
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-qian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-peng Yu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-le Dong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-xiong Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| | - Zhong-min Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| |
Collapse
|
13
|
Cai C, Zhang X, Li Y, Liu X, Wang S, Lu M, Yan X, Deng L, Liu S, Wang F, Fan C. Self-Healing Hydrogel Embodied with Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106564. [PMID: 34816470 DOI: 10.1002/adma.202106564] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Indexed: 05/24/2023]
Abstract
Antiadhesion barriers such as films and hydrogels used to wrap repaired tendons are important for preventing the formation of adhesion tissue after tendon surgery. However, sliding of the tendon can compress the adjacent hydrogel barrier and cause it to rupture, which may then lead to unexpected inflammation. Here, a self-healing and deformable hyaluronic acid (HA) hydrogel is constructed as a peritendinous antiadhesion barrier. Matrix metalloproteinase-2 (MMP-2)-degradable gelatin-methacryloyl (GelMA) microspheres (MSs) encapsulated with Smad3-siRNA nanoparticles are entrapped within the HA hydrogel to inhibit fibroblast proliferation and prevent peritendinous adhesion. GelMA MSs are responsively degraded by upregulation of MMP-2, achieving on-demand release of siRNA nanoparticles. Silencing effect of Smad3-siRNA nanoparticles is around 75% toward targeted gene. Furthermore, the self-healing hydrogel shows relatively attenuated inflammation compared to non-healing hydrogel. The mean adhesion scores of composite barrier group are 1.67 ± 0.51 and 2.17 ± 0.75 by macroscopic and histological evaluation, respectively. The proposed self-healing hydrogel antiadhesion barrier with MMP-2-responsive drug release behavior is highly effective for decreasing inflammation and inhibiting tendon adhesion. Therefore, this research provides a new strategy for the development of safe and effective antiadhesion barriers.
Collapse
Affiliation(s)
- Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xiong Yan
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| |
Collapse
|
14
|
Yao Z, Qian Y, Jin Y, Wang S, Li J, Yuan WE, Fan C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr Polym 2022; 277:118865. [PMID: 34893270 DOI: 10.1016/j.carbpol.2021.118865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 02/09/2023]
Abstract
Tendon injury is one of the most common musculoskeletal diseases in the world, severely challenging the public health care system. Electrospinning technique using polymer materials (i.e. polycaprolactone (PCL)) and hydrogels (i.e. sodium alginate (ALG)) contribute to the development and application of smart composite scaffolds in the tendon tissue engineering by advantageously integrating mechanical properties and biocompatibility. As a potential natural antioxidant, melatonin (MLT) represents the potential to promote tendon repair. Here, we develop an MLT-loaded PCL/ALG composite scaffold that effectively promotes tendon injury repair in vivo and in vitro via a controlled release of MLT, possibly mechanically relying on an antioxidant stress pathway. This biomimetic composite scaffold will be of great significance in the tendon tissue engineering.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shikun Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Juehong Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.
| |
Collapse
|
15
|
Wan Q, Liu F, Zhang J, Chen H, Yan L, Li X, Sun Y, Wang J. Overexpression of laminin α4 facilitates proliferation and migration of fibroblasts in knee arthrofibrosis by targeting canonical Shh/Gli1 signaling. Connect Tissue Res 2021; 62:464-474. [PMID: 32449381 DOI: 10.1080/03008207.2020.1773451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: Pathologic hyperplasia of fibroblast is responsible for the progression of intraarticular fibrosis. Laminin α4 (LAMA4), a subunit of laminin macromolecule family, was found to be overexpressed in various fibrotic tissues. However, the role of LAMA4 in knee arthrofibrosis remains elusive. Therefore, the aim of this study was to investigate the effect and mechanism of LAMA4 on fibroblast proliferation and migration. Materials and methods: Following knee surgery, LAMA4 expression was detected in intraarticular fibrous tissues in rabbits at week 2 and week 4, respectively. In lentivirus-mediated LAMA4-overexpressed fibroblasts, cellular proliferation was assessed by EdU labeling and cell cycle analysis, cellular migration was evaluated using Transwell assay, and the expressions of key components in Shh/Gli1 signaling were detected by qRT-PCR, western blot and immunofluorescence analysis. Additionally, canonical Shh cascade was further blocked in LAMA4-overexpressed fibroblasts by cyclopamine, and the changes in cellular proliferation and migration were investigated. Results: LAMA4 expression was positively correlated with the severity of knee arthrofibrosis. Functional studies demonstrated that LAMA4 overexpression facilitated proliferation, cell cycle progression and migration in fibroblasts. Mechanically, LAMA4 activated the canonical Shh/Gli1 signaling and promoted the nuclear translocation of Gli1 to upregulate expression of genes associated with cellular proliferation and migration. Intriguingly, blockage of Shh/Gli1 signaling with cyclopamine reversed the promoting effects of LAMA4 on proliferation and migration of fibroblasts. Conclusions: LAMA4 positively regulated cellular proliferation and migration in fibroblasts via activating the Shh/Gli1 signaling. LAMA4/Shh/Gli1 signaling axis might be a potential therapeutic target for the prevention of surgery-induced intraarticular fibrosis.
Collapse
Affiliation(s)
- Qi Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Orthopedics, Yueyang Second People's Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan, China
| | - Fang Liu
- Department of Orthopedics, Yueyang Second People's Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan, China
| | - Jie Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Orthopedics, Orthopedic Institute, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Lianqi Yan
- Department of Orthopedics, Orthopedic Institute, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaolei Li
- Department of Orthopedics, Orthopedic Institute, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Orthopedic Institute, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingcheng Wang
- Department of Orthopedics, Orthopedic Institute, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Sun BL, Cai EB, Zhao Y, Wang Y, Yang LM, Wang JY. Arctigenin Triggers Apoptosis and Autophagy via PI3K/Akt/mTOR Inhibition in PC-3M Cells. Chem Pharm Bull (Tokyo) 2021; 69:472-480. [PMID: 33627540 DOI: 10.1248/cpb.c21-00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Arctigenin (ARG), a natural lignans compound isolated from Arctium lappa L. In this study, the anti-tumor effect of ARG on prostate cancer cell PC-3M and the mechanism of apoptosis and autophagy induced by phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were discussed, and further confirmed by the joint treatment of ARG and PI3K inhibitor LY294002. Here, the effect of ARG on cell viability was evaluated in PC-3M cells by Cell Counting Kit-8 reagent (CCK-8) assay. After the treatment of ARG, colony formation assay was used to detect the anti-proliferation effect. Annexin V-fluoresceine isothiocyanate/propidium iodide (FITC/PI) kit and 4',6-diamidino-2-phenylindole (DAPI) staining were used to detect the apoptosis level, and cell cycle changes were analyzed by flow cytometry. The expression of autophagy was detected by acridine orange staining. In addition, the expression levels of apoptosis and autophagy-related proteins were analyzed by Western blot. The result showed that different concentrations of ARG inhibited the proliferation of PC-3M cells. DAPI staining and flow cytometry showed that ARG induced PC-3M cell apoptosis and arrested cell in G0/G1 phase. Acridine orange staining showed that ARG induced autophagy in PC-3M cells. Western blot experiments showed that ARG inhibited the expression of Bcl-2, promoted the expression of Bax and cleaved caspase-3. At the same time, the expression of autophagy-related proteins LC3B-II and Beclin-1 increased after ARG treatment, but P62 decreased. In addition, further studies have shown that treatment with LY294002 enhanced the effects of ARG on the expression of proteins associated with apoptosis and autophagy, indicating that ARG may induce apoptosis and autophagy through PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Bai-Ling Sun
- College of Chinese Medicinal Material, Jilin Agricultural University
| | - En-Bo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University
| | - Yan Zhao
- College of Chinese Medicinal Material, Jilin Agricultural University
| | - Yu Wang
- College of Chinese Medicinal Material, Jilin Agricultural University
| | - Li-Min Yang
- College of Chinese Medicinal Material, Jilin Agricultural University
| | - Jing-Yao Wang
- College of Chinese Medicinal Material, Jilin Agricultural University
| |
Collapse
|
17
|
Migneault F, Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. Matrix Biol 2021; 100-101:182-196. [PMID: 33454422 DOI: 10.1016/j.matbio.2021.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Tissue repair and fibrosis, an abnormal form of repair, occur in most human organs in response to injury or inflammation. Fibroblasts play a major role in the normal repair process by differentiating into myofibroblasts that synthesize extracellular matrix (ECM) components and favor tissue remodeling to reestablish normal function and integrity. However, their persistent accumulation at the site of injury is a hallmark of fibrosis. Autophagy is a catabolic process that occurs in eukaryotic cells as a stress response to allow cell survival and maintenance of cellular homeostasis by degrading and recycling intracellular components. Recent advances identify autophagy as an important regulator of myofibroblast differentiation, tissue remodeling, and fibrogenesis. In this mini-review, we provide an overview of the interactions between autophagy, ECM, and fibrosis, and emphasize the molecular mechanisms involved in myofibroblast differentiation. We also describe the emerging concept of secretory autophagy as a new avenue for intercellular communication at the site of tissue injury and repair.
Collapse
Affiliation(s)
- Francis Migneault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada
| | - Marie-Josée Hébert
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada; Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
18
|
Li J, Yao Z, Xiong H, Cui H, Wang X, Zheng W, Qian Y, Fan C. Extracellular vesicles from hydroxycamptothecin primed umbilical cord stem cells enhance anti-adhesion potential for treatment of tendon injury. Stem Cell Res Ther 2020; 11:500. [PMID: 33239069 PMCID: PMC7687768 DOI: 10.1186/s13287-020-02016-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peritendinous fibrosis represents a fibrotic healing process that usually occurs after tendon injury or surgery. This worldwide challenge hampers the functional rehabilitation and the mobility of extremities. However, effective treatment is still lacking at present. The aim of our study was to explore the effect of extracellular vesicles derived from hydroxycamptothecin primed human umbilical cord stem cells (HCPT-EVs) on post-traumatic tendon adhesion. METHODS Extracellular vesicles derived from unprimed human umbilical cord mesenchymal stem cells (Unprimed EVs) or HCPT-EVs were isolated and characterized. A rat model of Achilles tendon injury was used to confirm the anti-adhesion effect of HCPT-EVs and compared with that of Unprimed EVs in vivo. In vitro, the inhibitory effects of HCPT-EVs on fibroblast proliferation, viability, and myofibroblast differentiation upon TGF-β1 stimulation were compared with the effects of Unprimed EVs. For mechanistic analysis, the expression of endoplasmic reticulum stress (ERS)-associated proteins was examined among the effector cargos of HCPT-EVs and Unprimed EVs. The ERS antagonist salubrinal was used to determine the ERS dependence of the anti-adhesion effects of HCPT-EVs. RESULTS There were no obvious differences between Unprimed EVs and HCPT-EVs in terms of morphology, particle size, characteristic protein expression, and cellular uptake. HCPT-EVs exhibited a fortified anti-adhesion effect after Achilles tendon injury compared with Unprimed EVs. Fibroblast proliferation and viability and myofibroblast differentiation were all inhibited by HCPT-EVs. These properties were superior for HCPT-EVs relative to Unprimed EVs. Mechanistically, HCPT-EVs contained more ERS-associated protein than Unprimed EVs and activated the ERS pathway in fibroblast to counteract myofibroblast differentiation. CONCLUSION This study demonstrates that HCPT-EVs show high anti-adhesion potential for the treatment of tendon injury by provoking ERS in fibroblasts. HCPT-EVs represent a promising strategy for clinical use in treating adhesion-related diseases.
Collapse
Affiliation(s)
- Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhixiao Yao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Xiong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haomin Cui
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xu Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Qian
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China. .,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, China. .,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Wei C, Pan Y, Zhang Y, Dai Y, Jiang L, Shi L, Yang W, Xu S, Zhang Y, Xu W, Zhang Y, Lin X, Zhang S. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell Death Dis 2020; 11:755. [PMID: 32934215 PMCID: PMC7492405 DOI: 10.1038/s41419-020-02956-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Autophagy can be dynamically induced in response to stresses and is an essential, ubiquitous intracellular recycling system that impacts the fate of damaged resident cells, thereby influencing wound healing. Endometrial fibrosis is a form of abnormal wound healing that causes intrauterine adhesion (IUA) and infertility. We previously demonstrated that overactivated sonic hedgehog (SHH) signaling exacerbated endometrial fibrosis, but the role of autophagy in this process is still unknown. Here, we report that impaired autophagy participates in SHH pathway-induced endometrial fibrosis. Endometrial stroma-myofibroblast transition accompanied by autophagy dysfunction was present in both endometrial biopsies of IUA patients and Amhr2cre/+R26-SmoM2+/− (AM2) transgenic mouse. Mechanistically, SHH pathway negatively regulated autophagy through pAKT-mTORC1 in a human endometrial stromal cell line (T-HESCs). Furthermore, SHH pathway-mediated fibrosis was partly counteracted by autophagy modulation in both T-HESCs and the murine IUA model. Specifically, the impact of SHH pathway inhibition (GANT61) was reversed by the pharmacological autophagy inhibitor chloroquine (CQ) or RNA interference of autophagy-related gene ATG5 or ATG7. Similar results were obtained from the murine IUA model treated with GANT61 and CQ. Moreover, promoting autophagy with rapamycin reduced fibrosis in the AM2 IUA model to baseline levels. In summary, defective autophagy is involved in SHH pathway-driven endometrial fibrosis, suggesting a potential novel molecular target for IUA treatment.
Collapse
Affiliation(s)
- Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
20
|
Liang Y, Xu K, Zhang P, Zhang J, Chen P, He J, Fang Y, Zhou Y, Wang J, Bai J. Quercetin reduces tendon adhesion in rat through suppression of oxidative stress. BMC Musculoskelet Disord 2020; 21:608. [PMID: 32917186 PMCID: PMC7488677 DOI: 10.1186/s12891-020-03618-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022] Open
Abstract
Background Tendon adhesion is one of the most common clinical problems, which poses a considerable challenge to orthopedics doctors. Quercetin (QUE) as a popular drug at present, it has various biological functions, including anti-inflammatory, anti-ischemic, anti-peroxidation, and antioxidant. The purpose of this study was to investigate the effect of quercetin on tendon adhesion and whether quercetin can inhibit oxidative stress. Method Thirty-six rats were randomly divided into three groups, including control group, low QUE (50 mg/kg/day) group, and high QUE (100 mg/kg/day) group. After 1 week, the levels of SOD, MDA and GPx were measured. The degree of tendon adhesion was assessed by macroscopic evaluation and histological evaluation. After 4 weeks. Besides, the pharmacological toxicity of quercetin to main organs were evaluated by histological analysis. Results The extent of superoxide dismutase (SOD) and glutathione peroxidase (GPx) of tendon tissue in high QUE group was significantly higher than those of low QUE group and control group. And the extent of malondialdehyde (MDA) of tendon tissue in high QUE group was significantly lower than that of low QUE group and control group. By macroscopic evaluation and histological analysis, the extent of tendon adhesion in high QUE group was lower than low QUE group and control group. However, there were no significant changes of the major organs through histological analysis. Conclusions Quercetin may be a good and safe strategy in preventing tendon adhesion. But further clinical research is needed before its recommendation in the prevention and treatment of tendon adhesion.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Keteng Xu
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Pei Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiale Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Pengtao Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Jinshan He
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Yongchao Fang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Yuelai Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Nantong West Road 98, Yangzhou, 225001, China.
| | - Jianzhong Bai
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
21
|
Xu LJ, Rong SS, Xu YS, Zheng LB, Qiu WY, Zhang X, Jiang LJ, Duan RP, Tian T, Yao YF. Anti-fibrosis potential of pirarubicin via inducing apoptotic and autophagic cell death in rabbit conjunctiva. Exp Eye Res 2020; 200:108215. [PMID: 32896532 DOI: 10.1016/j.exer.2020.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
This study investigated the potential efficacy of pirarubicin (THP) in modulating rabbit conjunctival fibrosis both in vitro and in vivo and characterized the underlying mechanisms. Primary rabbit conjunctival fibroblasts (RCF) were cultured and treated with THP or mitomycin C (MMC) for 5 min, followed by assaying for cell viability, cell cycle distribution, apoptotic and autophagic pathways. The production of reactive oxygen species (ROS) and chemotaxis of macrophages by RCF were evaluated using 2',7'-dichlorofluorescein diacetate (DCFH-DA) labeling and transwell migration assay, respectively. Limbal stem cell excision in combination with alkali burn was performed on the rabbits to establish a model of limbal deficiency and conjunctival fibro-vascular invasion. After three months, the modeled fibro-vascular tissue was excised combined with topical subconjunctival 5-min exposure to THP compared with MMC intraoperatively. The recurrence of postoperative fibrosis and the expression of apoptosis, autophagy, and inflammation markers were evaluated by immunohistochemistry. All modeled rabbits developed conjunctival fibro-vascular lesions, which were similar to human recurrent pterygium (HRP). Both THP and MMC inhibited RCF proliferation and arrested cell cycle at the G0/G1 phase. In particular, 7.5 μmol/L THP remarkably promoted RCF autophagy by upregulating the levels of Beclin 1, Atg 5/12 conjugate, and LC3B, whereas, 15 μmol/L THP significantly triggered a cascade of mitochondrial-associated RCF apoptosis. THP induced the production of ROS and enhanced the chemoattraction of macrophages by RCF. Similar to 600 μmol/L MMC, both 7.5 μmol/L and 15 μmol/L THP attenuated postoperative conjunctival fibrosis in the models; 7.5 μmol/L THP preferentially enhanced autophagy while causing fewer side effects. THP exerted its antifibrotic action by modulating autophagy in RCF, inducing cell cycle arrest, and mitochondrial-mediated apoptosis. THP at the dose of 7.5 μmol/L prevented postoperative conjunctival fibrosis in an animal model.
Collapse
Affiliation(s)
- Li-Juan Xu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Shi-Song Rong
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Ye-Sheng Xu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Li-Bin Zheng
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Wen-Ya Qiu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Xia Zhang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Lou-Jing Jiang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Run-Ping Duan
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Tian Tian
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 321006, China.
| |
Collapse
|
22
|
Yao Z, Li J, Wang X, Peng S, Ning J, Qian Y, Fan C. MicroRNA-21-3p Engineered Umbilical Cord Stem Cell-Derived Exosomes Inhibit Tendon Adhesion. J Inflamm Res 2020; 13:303-316. [PMID: 32753931 PMCID: PMC7354957 DOI: 10.2147/jir.s254879] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose As a common complication of tendon injury, tendon adhesion is an unresolved problem in clinical work. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos), one of the most promising new-generation cell-free therapeutic agents, can improve tendon adhesion and explore potential-related mechanisms. Methods The rat Achilles tendon injury adhesion model was constructed in vivo, and the localization of HUMSC-Exos was used to evaluate the tendon adhesion. Rat fibroblast cell lines were treated with transforming growth factor β1 (TGF-β1) and/or HUMSC-Exos in vitro, and cell proliferation, apoptosis and gene expression were measured. MicroRNA (miRNA) sequencing and quantitative PCR (qPCR) analysis confirmed differential miRNAs. A specific miRNA antagonist (antagomir-21a-5p) was used to transform HUMSC-Exos and obtain modified exosomes to verify its efficacy and related mechanism of action. Results In this study, we found HUMSC-Exos reduced rat fibroblast proliferation and inhibited the expression of fibrosis genes: collagen III (COL III) and α-smooth muscle actin (α-SMA) in vitro. In the rat tendon adhesion model, topical application of HUMSC-Exos contributed to relief of tendon adhesion. Specifically, the fibrosis and inflammation-related genes were simultaneously inhibited by HUMSC-Exos. Further, miRNA sequencing of HUMSCs and HUMSC-Exos showed that miR-21a-3p was expressed at low abundance in HUMSC-Exos. The antagonist targeting miR-21a-3p was recruited for treatment of HUMSCs, and harvested HUMSC-Exos, which expressed low levels of miR-21a-3p, and expanded the inhibition of tendon adhesion in subsequent in vitro experiments. Conclusion Our results indicate that HUMSC-Exos may manipulate p65 activity by delivering low-abundance miR-21a-3p, ultimately inhibiting tendon adhesion. The findings may be promising for dealing with tendon adhesion.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xu Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Shiqiao Peng
- Department of Endocrinology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jiexin Ning
- Department of Plastics, Binzhou People's Hospital, Binzhou 256610, People's Republic of China
| | - Yun Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
23
|
Trehalose attenuates TGF-β1-induced fibrosis of hSCFs by activating autophagy. Mol Cell Biochem 2020; 470:175-188. [DOI: 10.1007/s11010-020-03760-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
24
|
Jung JY, Choi H, Son ED, Kim HJ. 3-Methyladenine Inhibits Procollagen-1 and Fibronectin Expression in Dermal Fibroblasts Independent of Autophagy. Curr Mol Med 2020; 20:741-750. [PMID: 32031067 DOI: 10.2174/1566524020666200207122710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autophagy is deeply associated with aging, but little is known about its association with the extracellular matrix (ECM). 3-methyladenine (3-MA) is a commonly used autophagy inhibitor. OBJECTIVE We used this compound to investigate the role of autophagy in dermal ECM protein synthesis. METHODS Normal human dermal fibroblasts (NHDFs) were treated with 3-MA for 24 h, and mRNA encoding several ECM proteins was analyzed in addition to the protein expression of procollagen-1 and fibronectin. Several phosphoinositide 3-kinase (PI3K) inhibitors, an additional autophagy inhibitor, and small interfering RNA (siRNA) targeting autophagy-related genes were additionally used to confirm the role of autophagy in ECM synthesis. RESULTS Only 3-MA, but not other chemical compounds or autophagy-related genetargeting siRNA, inhibited the transcription of procollagen-1 and fibronectin-encoding genes. Further, 3-MA did not affect the activation of regulatory Smads, but inhibited the interaction between Smad3 with p300. Moreover, 3-MA treatment increased the phosphorylation of cAMP response element-binding protein (CREB); however, CREB knock-down did not recover 3-MA-induced procollagen-1 and fibronectin downregulation. CONCLUSION We revealed that 3-MA might inhibit procollagen-1 and fibronectin synthesis in an autophagy-independent manner by interfering with the binding between Smad3 and p300. Therefore, 3-MA could be a candidate for the treatment of diseases associated with the accumulation of ECM proteins.
Collapse
Affiliation(s)
- Ji-Yong Jung
- Basic Research & Innovation Division, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 17074, Korea
| | - Hyunjung Choi
- Basic Research & Innovation Division, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 17074, Korea
| | - Eui-Dong Son
- Basic Research & Innovation Division, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 17074, Korea
| | - Hyoung-June Kim
- Basic Research & Innovation Division, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 17074, Korea
| |
Collapse
|
25
|
Yao Z, Wang W, Ning J, Zhang X, Zheng W, Qian Y, Fan C. Hydroxycamptothecin Inhibits Peritendinous Adhesion via the Endoplasmic Reticulum Stress-Dependent Apoptosis. Front Pharmacol 2019; 10:967. [PMID: 31551777 PMCID: PMC6737834 DOI: 10.3389/fphar.2019.00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic peritendinous fibrosis is a worldwide clinical problem resulting in severe limb disability. Hydroxycamptothecin (HCPT) is an anti-neoplastic drug widely exploited in clinical practice. It has shown potential of anti-fibrosis in recent years. We previously demonstrated that HCPT inhibited the characterization of fibrosis in vitro. However, it is still unclear whether it ameliorates peritendinous adhesion in an in vivo animal tendon injury model. The underlying mechanism is also worth investigating. The present study aims to determine whether HCPT inhibits tendon adhesion and to explore the underlying mechanisms. In a rat tendon injury model, we observed that topical application of HCPT significantly attenuated peritendinous adhesion as revealed by the results of macroscopic observation, biomechanical, histological, immunohistochemical evaluation, western blot, and quantitative PCR (q-PCR) analyses. Furthermore, western blot and q-PCR analyses revealed that this phenomenon is correlated with HCPT activation of endoplasmic reticulum (ER) stress. In addition, in vitro studies show that HCPT significantly inhibits fibroblast proliferation and induces apoptosis by reducing the expression of extracellular matrix (ECM) proteins COL3A1 and α-smooth muscle actin (α-SMA). Finally, we employed small interfering RNA (siRNA) to target inositol requiring kinase 1 (IRE1) and activated transcription factor 6 (ATF-6) to verify that the effect of inhibitory fibrosis of HCPT disappears after knockdown of ATF-6 and IRE1, thereby suggesting that an anti-fibrotic effect of HCPT is mediated by the ER-dependent apoptotic pathway. In conclusion, our results indicate that HCPT inhibits peritendinous fibrosis through the ER-dependent apoptotic pathway and might serve as a potential solution to prevent traumatic peritendinous adhesion.
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiexin Ning
- Department of Plastics, Binzhou People's Hospital, Binzhou, China
| | - Xiangqi Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Zheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
26
|
Gallorini M, Berardi AC, Gissi C, Cataldi A, Osti L. Nrf2-mediated cytoprotective effect of four different hyaluronic acids by molecular weight in human tenocytes. J Drug Target 2019; 28:212-224. [PMID: 31339382 DOI: 10.1080/1061186x.2019.1648476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-traumatic rotator cuff tears (RCTs) are a frequent and potentially disabling injury. There is growing evidence that hyaluronic acid (HA) is effective for pain relief and to counteract inflammation in RCTs, however, its effective role in tendinopathies remains poorly studied. This study aims to disclose a possible molecular mechanism underlying the cytoprotective effects of four different HA preparations (Artrosulfur HA®, Synolis VA®, Hyalgan® and Hyalubrix®) under H2O2-induced oxidative stress. Expression-levels of Lactate dehydrogenase (LDH) released were quantified in cell supernatants, CD44 expression levels were analysed by fluorescence microscopy, the mitochondrial membrane depolarisation (TMRE assay) was measured by flow cytometry and the role of the transcription factor Nrf2 was investigated as a potential therapeutic target for RCT treatment. The modulation of extracellular matrix- (ECM) related protein expression (Integrin β1, pro-collagen 1A2 and collagen 1A1) and autophagy occurrence (Erk 1/2 and phosphoErk 1/2 and LC3B), were all investigated by Western Blot. Results demonstrate that Artrosulfur HA, Hyalubrix and Hyalgan improve cell escape from H2O2-induced oxidative stress, decreasing cytotoxicity, reducing Nrf2 expression and enhancing catalase recovery. This study lays the grounds for further investigations insight novel pharmaceutical strategies targeting key effectors involved in the molecular cascade triggered by HA.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Anna C Berardi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Clarissa Gissi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Leonardo Osti
- Unit of Arthroscopy and Sports Medicine, Hesperia Hospital, Modena, Italy
| |
Collapse
|
27
|
Lu YT, Xiao YF, Li YF, Li J, Nan FJ, Li JY. Sulfuretin protects hepatic cells through regulation of ROS levels and autophagic flux. Acta Pharmacol Sin 2019; 40:908-918. [PMID: 30560904 PMCID: PMC6786379 DOI: 10.1038/s41401-018-0193-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/09/2022] Open
Abstract
Palmitate (PA) exposure induces stress conditions featuring ROS accumulation and upregulation of p62 expression, resulting in autophagic flux blockage and cell apoptosis. Sulfuretin (Sul) is a natural product isolated from Rhus verniciflua Stokes; the cytoprotective effect of Sul on human hepatic L02 cells and mouse primary hepatocytes under PA-induced stress conditions was investigated in this study. Sul induced mitophagy by activation of p-TBK1 and LC3 and produced a concomitant decline in p62 expression. Autophagosome formation and mitophagy were assessed by the sensitive dual fluorescence reporter mCherry-EGFP-LC3B, and mitochondrial fragmentation was analyzed using MitoTracker Deep Red FM. A preliminary structure-activity relationship (SAR) for Sul was also investigated, and the phenolic hydroxyl group was found to be pivotal for maintaining the cytoprotective bioactivity of Sul. Furthermore, experiments using flow cytometry and western blots revealed that Sul reversed the cytotoxic effect stimulated by the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ), and its cytoprotective effect was almost eliminated when the autophagy-related 5 (Atg5) gene was knocked down. These studies suggest that, in addition to its antioxidative effects, Sul stimulates mitophagy and restores impaired autophagic flux, thus protecting hepatic cells from apoptosis, and that Sul has potential future medical applications for hepatoprotection.
Collapse
Affiliation(s)
- Yu-Ting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yu-Feng Xiao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Feng Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
28
|
Wan Q, Chen H, Xiong G, Jiao R, Liu Y, Li X, Sun Y, Wang J, Yan L. Artesunate protects against surgery-induced knee arthrofibrosis by activating Beclin-1-mediated autophagy via inhibition of mTOR signaling. Eur J Pharmacol 2019; 854:149-158. [DOI: 10.1016/j.ejphar.2019.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 01/16/2023]
|
29
|
Li X, Chen S, Yan L, Wang J, Pei M. Prospective application of stem cells to prevent post-operative skeletal fibrosis. J Orthop Res 2019; 37:1236-1245. [PMID: 30835890 PMCID: PMC9202416 DOI: 10.1002/jor.24266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Post-operative skeletal fibrosis is considered one of the major complications causing dysfunction of the skeletal system and compromising the outcomes of clinical treatment. Limited success has been achieved using current therapies; more effective therapies to reduce post-operative skeletal fibrosis are needed. Stem cells possess the ability to repair and regenerate damaged tissue. Numerous studies show that stem cells serve as a promising therapeutic approach for fibrotic diseases in tissues other than the skeletal system by inhibiting the inflammatory response and secreting favorable cytokines through activating specific signaling pathways, acting as so-called medicinal signaling cells. In this review, current therapies are summarized for post-operative skeletal fibrosis. Given that stem cells are used as a promising therapeutic approach for fibrotic diseases, little effort has been undertaken to use stem cells to prevent post-operative skeletal fibrosis. This review aims at providing useful information for the potential application of stem cells in preventing post-operative skeletal fibrosis in the near future. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1236-1245, 2019.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China,Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, 610083, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - Jingcheng Wang
- Department of Orthopaedics, Orthopaedics Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China,Co-Corresponding author: Jingcheng Wang, MD, Department of Orthopaedics, Subei People’s Hospital, 98 West Nantong Road, Yangzhou 225001, China;
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,Exercise Physiology, West Virginia University, Morgantown, WV, 26506, USA,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
30
|
Autophagy in corneal health and disease: A concise review. Ocul Surf 2019; 17:186-197. [DOI: 10.1016/j.jtos.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
|
31
|
Li S, Peng F, Gong W, Wu J, Wang Y, Xu Z, Liu W, Li H, Yin B, Zhang Y, Chen S, Luo C, Li P, Chen Y, Huang Q, Zhou W, Long H. Dimethylaminomicheliolide ameliorates peritoneal fibrosis through the activation of autophagy. J Mol Med (Berl) 2019; 97:659-674. [PMID: 30854581 DOI: 10.1007/s00109-019-01757-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
Peritoneal fibrosis (PF) is a major cause of ultrafiltration failure in patients receiving long-term peritoneal dialysis (PD), and effective prevention and treatment strategies are urgently needed. The dimethylamino Michael adduct of a natural product-derived micheliolide (MCL), dimethylaminomicheliolide (DMAMCL), is a new lead compound with the advantages of high stability, low toxicity, and sustainable release of MCL. This study aimed to investigate the protective effect of DMAMCL against PD-related PF and the mechanisms involved. In this study, we found that DMAMCL significantly decreased PD-induced extracellular matrix (ECM) deposition in a mouse model of PD, and that delayed DMAMCL administration halted the progression of PF in an established PD model. In addition, rapamycin administration induced autophagy and significantly ameliorated PF. The protective effect of DMAMCL against PF was weakened when co-administered with DMAMCL and 3-methyladenine. Inducing autophagy by rapamycin decreased transforming growth factor-β1-induced ECM accumulation in vitro. MCL promoted autophagy and inhibited ECM deposition. The anti-fibrotic effect of MCL was eliminated when knocking down ATG7 by siRNA. Taken together, DMAMCL might prevent against PF through activating autophagy. The anti-fibrotic effect of DMAMCL may be a new candidate for the treatment in patients with PD-related PF. KEY MESSAGES: Dimethylaminomicheliolide, the pro-drug of micheliolide, protects against peritoneal fibrosis in a mouse peritoneal dialysis model. Micheliolide inhibits TGF-β1-induced extracellular matrix accumulation in vitro. Autophagy plays a protective role against peritoneal fibrosis. The antifibrogenic effect of dimethylaminomicheliolide may be due to the activation of autophagy.
Collapse
Affiliation(s)
- Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiayu Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaozhong Xu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenting Liu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hongyu Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ying Zhang
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Sijia Chen
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410000, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Peilin Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weidong Zhou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
32
|
康 欣, 申 颖, 赵 海, 王 召, 关 文, 葛 瑞, 王 瑞, 邰 雪. [Anti-scarring effect of rapamycin in rabbits following glaucoma filtering surgery]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1389-1394. [PMID: 30514691 PMCID: PMC6744124 DOI: 10.12122/j.issn.1673-4254.2018.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the anti- scarring effect of rapamycin in rabbits receiving glaucoma filtering surgery. METHODS Ninety-six Chinchilla rabbits were randomized equally into 3 rapamycin treatment groups and one control group. All the rabbits underwent trabeculectomy, after which the rabbits in the 3 rapamycin groups were treated with eye drops containing 1%, 3%, or 5% rapamycin in the operated eyes, and those in the control groups were given castor oil 4 times a day. The intraocular pressure (IOP) and inflammatory reaction in the treated eyes were observed, and the PCNA-positive cells in the filtering bleb were detected using immunohistochemistry. RTFs isolated from the Tenon's capsule of the rabbits were cultured in vitro, and the expressions of caspase-3, caspase-8, and caspase-9 in the fibroblasts were detected after treatment with different concentrations of rapamycin. RESULTS The IOP was significantly lower in rapamycin-treated group than in the control group after the surgery (P < 0.05). The counts of the PCNA-positive cells were significantly lower in rapamycin-treated rabbits than in the control group (P < 0.05). Rapamycin treatment dose-dependently increased the expressions of caspase-3 and caspase- 9 at both the mRNA (P < 0.001) and protein (P < 0.001) levels without causing significant changes in the expressions of caspase-8. CONCLUSIONS Rapamycin can inhibit excessive proliferation of the fibroblasts in the filtering bleb to reduce scar formation after glaucoma filtration surgery in rabbits. Rapamycin also increases the expressions of caspase-3 and caspase-9 to induce apoptosis of the RTFs.
Collapse
Affiliation(s)
- 欣 康
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 颖 申
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 海霞 赵
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 召格 王
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 文英 关
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 瑞春 葛
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 瑞芳 王
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 雪 邰
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|