1
|
Chatatikun M, Pattaranggoon NC, Sama-Ae I, Ranteh O, Poolpirom M, Pantanakong O, Chumworadet P, Kawakami F, Imai M, Tedasen A. Mechanistic exploration of bioactive constituents in Gnetum gnemon for GPCR-related cancer treatment through network pharmacology and molecular docking. Sci Rep 2024; 14:25738. [PMID: 39468096 PMCID: PMC11519448 DOI: 10.1038/s41598-024-75240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
G Protein-Coupled Receptors (GPCRs) are integral membrane proteins that have gained considerable attention as drug targets, particularly in cancer treatment. In this study, we explored the capacity of bioactive compounds derived from Gnetum gnemon (GG) for the development of of pharmaceuticals targeting GPCRs within the context of cancer therapy. Integrated approach combined network pharmacology and molecular docking to identify and validate the underlying pharmacological mechanisms. We retrieved targets for GG-derived compounds and GPCRs-related cancer from databases. Subsequently, we established a protein-protein interaction (PPI) network by mapping the shared targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to predict the mechanism of action of these targets. Molecular docking was conducted to validate our findings. We identified a total of 265 targets associated with GG-derived bioactive compounds for the treatment of GPCRs-related cancer. Functional enrichment analysis revealed the promising therapeutic effects of these targets on GPCRs-related cancer pathways. The PPI network analysis identified hub targets, including MAPK3, SRC, EGFR, STAT3, ESR1, MTOR, CCND1, and PPARG, which demonstrate as treatment targets for GPCRs-related cancer using GG-derived compounds. Additionally, molecular docking experiments demonstrated the strong binding affinity of gnetin A, gnetin C, (-)-viniferin, and resveratrol dimer, thus inhibiting MAPK3, SRC, EGFR, and MTOR. Survival analysis established the clinical prognostic relevance of identified hub genes in cancer. This study presents a novel approach for comprehending the therapeutic mechanisms of GG-derived active compounds and thereby paving the way for their prospective clinical applications in the field of cancer treatment.
Collapse
Affiliation(s)
- Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Nawanwat C Pattaranggoon
- Faculty of Medical Technology, Rangsit University, Muang Pathumthani, Pathumthani, 12000, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Imran Sama-Ae
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Onggan Ranteh
- Department of Community Public Health, School of Public Health, Walailak University, Nakhon Si Thammarat, 80161, Thailand
- Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Manlika Poolpirom
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Oranan Pantanakong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Pitchaporn Chumworadet
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Fumitaka Kawakami
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
- Department of Regulatory Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0373, Japan
| | - Motoki Imai
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
- Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80161, Thailand.
| |
Collapse
|
2
|
Morshed AKMH, Al Azad S, Mia MAR, Uddin MF, Ema TI, Yeasin RB, Srishti SA, Sarker P, Aurthi RY, Jamil F, Samia NSN, Biswas P, Sharmeen IA, Ahmed R, Siddiquy M, Nurunnahar. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol Divers 2023; 27:2651-2672. [PMID: 36445532 DOI: 10.1007/s11030-022-10573-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The HER2-positive patients occupy ~ 30% of the total breast cancer patients globally where no prevalent drugs are available to mitigate the frequent metastasis clinically except lapatinib and neratinib. This scarcity reinforced researchers' quest for new medications where natural substances are significantly considered. Valuing the aforementioned issues, this research aimed to study the ERBB2-mediated string networks that work behind the HER2-positive breast cancer formation regarding co-expression, gene regulation, GAMA-receptor-signaling pathway, cellular polarization, and signal inhibition. Following the overexpression, promotor methylation, and survivability profiles of ERBB2, the super docking position of HER2 was identified using the quantum tunneling algorithm. Supramolecular docking was conducted to study the target specificity of EPA and DHA fatty acids followed by a comprehensive molecular dynamic simulation (100 ns) to reveal the RMSD, RMSF, Rg, SASA, H-bonds, and MM/GBSA values. Finally, potential drug targets for EPA and DHA in breast cancer were constructed to determine the drug-protein interactions (DPI) at metabolic stages. Considering the values resulting from the combinational models of the oncoinformatic, pharmacodynamic, and metabolic parameters, long-chain omega-3 fatty acids like EPA and DHA can be considered as potential-targeted therapeutics for HER2-positive breast cancer treatment.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology Major, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Salauddin Al Azad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Md Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, 25200, Pahang, Kuantan, Malaysia
| | - Mohammad Fahim Uddin
- College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Rukaiya Binte Yeasin
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | | | - Pallab Sarker
- Department of Medicine, Sher-E-Bangla Medical College Hospital, South Alekanda, Barisal, 8200, Bangladesh
| | - Rubaita Younus Aurthi
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Palashi, Dhaka, 1205, Bangladesh
| | - Farhan Jamil
- Department of Pharmacy, University of Asia Pacific, Farmgate, Dhaka, 1205, Bangladesh
| | | | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Iffat Ara Sharmeen
- School of Data Sciences, Department of Mathematics & Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Rasel Ahmed
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, UK
| | - Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Nurunnahar
- Department of Mathematics, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
3
|
Kalli M, Poskus MD, Stylianopoulos T, Zervantonakis IK. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer 2023; 9:937-954. [PMID: 37558577 PMCID: PMC10592424 DOI: 10.1016/j.trecan.2023.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
During tumor progression, mechanical abnormalities in the tumor microenvironment (TME) trigger signaling pathways in cells that activate cellular programs, resulting in tumor growth and drug resistance. In this review, we describe mechanisms of action for anti-cancer therapies and mechanotransduction programs that regulate cellular processes, including cell proliferation, apoptosis, survival and phenotype switching. We discuss how the therapeutic response is impacted by the three main mechanical TME abnormalities: high extracellular matrix (ECM) composition and stiffness; interstitial fluid pressure (IFP); and elevated mechanical forces. We also review drugs that normalize these abnormalities or block mechanosensors and mechanotransduction pathways. Finally, we discuss current challenges and perspectives for the development of new strategies targeting mechanically induced drug resistance in the clinic.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Matthew D Poskus
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | | |
Collapse
|
4
|
Zhao X, Stein KR, Chen V, Griffin ME, Lairson LL, Hang HC. Chemoproteomics reveals microbiota-derived aromatic monoamine agonists for GPRC5A. Nat Chem Biol 2023; 19:1205-1214. [PMID: 37248411 DOI: 10.1038/s41589-023-01328-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The microbiota generates diverse metabolites to modulate host physiology and disease, but their protein targets and mechanisms of action have not been fully elucidated. To address this challenge, we explored microbiota-derived indole metabolites and developed photoaffinity chemical reporters for proteomic studies. We identified many potential indole metabolite-interacting proteins, including metabolic enzymes, transporters, immune sensors and G protein-coupled receptors. Notably, we discovered that aromatic monoamines can bind the orphan receptor GPRC5A and stimulate β-arrestin recruitment. Metabolomic and functional profiling also revealed specific amino acid decarboxylase-expressing microbiota species that produce aromatic monoamine agonists for GPRC5A-β-arrestin recruitment. Our analysis of synthetic aromatic monoamine derivatives identified 7-fluorotryptamine as a more potent agonist of GPRC5A. These results highlight the utility of chemoproteomics to identify microbiota metabolite-interacting proteins and the development of small-molecule agonists for orphan receptors.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kathryn R Stein
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York City, NY, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
5
|
Cornwell AC, Tisdale AA, Venkat S, Maraszek KE, Alahmari AA, George A, Attwood K, George M, Rempinski D, Franco-Barraza J, Seshadri M, Parker MD, Cortes Gomez E, Fountzilas C, Cukierman E, Steele NG, Feigin ME. Lorazepam Stimulates IL6 Production and Is Associated with Poor Survival Outcomes in Pancreatic Cancer. Clin Cancer Res 2023; 29:3793-3812. [PMID: 37587561 PMCID: PMC10502465 DOI: 10.1158/1078-0432.ccr-23-0547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE This research investigates the association between benzodiazepines (BZD) and cancer patient survival outcomes, the pancreatic cancer tumor microenvironment, and cancer-associated fibroblast (CAF) signaling. EXPERIMENTAL DESIGN Multivariate Cox regression modeling was used to retrospectively measure associations between Roswell Park cancer patient survival outcomes and BZD prescription records. IHC, H&E, Masson's trichrome, RNAscope, and RNA sequencing were used to evaluate the impact of lorazepam (LOR) on the murine PDAC tumor microenvironment. ELISA and qPCR were used to determine the impact of BZDs on IL6 expression or secretion by human-immortalized pancreatic CAFs. PRESTO-Tango assays, reanalysis of PDAC single-cell sequencing/TCGA data sets, and GPR68 CRISPRi knockdown CAFs were used to determine the impact of BZDs on GPR68 signaling. RESULTS LOR is associated with worse progression-free survival (PFS), whereas alprazolam (ALP) is associated with improved PFS, in pancreatic cancer patients receiving chemotherapy. LOR promotes desmoplasia (fibrosis and extracellular matrix protein deposition), inflammatory signaling, and ischemic necrosis. GPR68 is preferentially expressed on human PDAC CAFs, and n-unsubstituted BZDs, such as LOR, significantly increase IL6 expression and secretion in CAFs in a pH and GPR68-dependent manner. Conversely, ALP and other GPR68 n-substituted BZDs decrease IL6 in human CAFs in a pH and GPR68-independent manner. Across many cancer types, LOR is associated with worse survival outcomes relative to ALP and patients not receiving BZDs. CONCLUSIONS We demonstrate that LOR stimulates fibrosis and inflammatory signaling, promotes desmoplasia and ischemic necrosis, and is associated with decreased pancreatic cancer patient survival.
Collapse
Affiliation(s)
- Abigail C. Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Arwen A. Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kathryn E. Maraszek
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Abdulrahman A. Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Madison George
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Donald Rempinski
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark D. Parker
- Department of Physiology and Biophysics, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
- Department of Ophthalmology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, New York
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
6
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Qualliotine JR, Nakagawa T, Rosenthal SB, Sadat S, Ballesteros-Merino C, Xu G, Mark A, Nasamran A, Gutkind JS, Fisch KM, Guo T, Fox BA, Khan Z, Molinolo AA, Califano JA. A Network Landscape of HPVOPC Reveals Methylation Alterations as Significant Drivers of Gene Expression via an Immune-Mediated GPCR Signal. Cancers (Basel) 2023; 15:4379. [PMID: 37686653 PMCID: PMC10486378 DOI: 10.3390/cancers15174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
HPV-associated oropharynx carcinoma (HPVOPC) tumors have a relatively low mutational burden. Elucidating the relative contributions of other tumor alterations, such as DNA methylation alterations, alternative splicing events (ASE), and copy number variation (CNV), could provide a deeper understanding of carcinogenesis drivers in this disease. We applied network propagation analysis to multiple classes of tumor alterations in a discovery cohort of 46 primary HPVOPC tumors and 25 cancer-unaffected controls and validated our findings with TCGA data. We identified significant overlap between differential gene expression networks and all alteration classes, and this association was highest for methylation and lowest for CNV. Significant overlap was seen for gene clusters of G protein-coupled receptor (GPCR) pathways. HPV16-human protein interaction analysis identified an enriched cluster defined by an immune-mediated GPCR signal, including CXCR3 cytokines CXCL9, CXCL10, and CXCL11. CXCR3 was found to be expressed in primary HPVOPC, and scRNA-seq analysis demonstrated CXCR3 ligands to be highly expressed in M2 macrophages. In vivo models demonstrated decreased tumor growth with antagonism of the CXCR3 receptor in immunodeficient but not immunocompetent mice, suggesting that the CXCR3 axis can drive tumor proliferation in an autocrine fashion, but the effect is tempered by an intact immune system. In conclusion, methylation, ASE, and SNV alterations are highly associated with network gene expression changes in HPVOPC, suggesting that ASE and methylation alterations have an important role in driving the oncogenic phenotype. Network analysis identifies GPCR networks, specifically the CXCR3 chemokine axis, as modulators of tumor-immune interactions that may have proliferative effects on primary tumors as well as a role for immunosurveillance; however, CXCR3 inhibition should be used with caution, as these agents may both inhibit and stimulate tumor growth considering the competing effects of this cytokine axis. Further investigation is needed to explore opportunities for targeted therapy in this setting.
Collapse
Affiliation(s)
- Jesse R. Qualliotine
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Takuya Nakagawa
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sayed Sadat
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Guorong Xu
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Art Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa Guo
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernard A. Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR 97213, USA
| | - Zubair Khan
- Department of Otolaryngology—Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alfredo A. Molinolo
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph A. Califano
- Department of Otolaryngology—Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Vani BP, Aranganathan A, Wang D, Tiwary P. AlphaFold2-RAVE: From Sequence to Boltzmann Ranking. J Chem Theory Comput 2023; 19:4351-4354. [PMID: 37171364 PMCID: PMC10524496 DOI: 10.1021/acs.jctc.3c00290] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
While AlphaFold2 is rapidly being adopted as a new standard in protein structure predictions, it is limited to single structures. This can be insufficient for the inherently dynamic world of biomolecules. In this Letter, we propose AlphaFold2-RAVE, an efficient protocol for obtaining Boltzmann-ranked ensembles from sequence. The method uses structural outputs from AlphaFold2 as initializations for artificial intelligence-augmented molecular dynamics. We release the method as an open-source code and demonstrate results on different proteins.
Collapse
Affiliation(s)
- Bodhi P. Vani
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Akashnathan Aranganathan
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| |
Collapse
|
10
|
Ansari S, Kolivand S, Salmanian S, Saghaeian Jazi M, Najafi SMA. Gαq Signaling Activates β-Catenin-Dependent Gene Transcription. IRANIAN BIOMEDICAL JOURNAL 2023; 27:183-90. [PMID: 37481708 PMCID: PMC10507289 DOI: 10.52547/ibj.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/28/2023] [Indexed: 07/24/2023]
Abstract
Background The canonical Wnt signal transduction or the Wnt/β-catenin pathway plays a crucial role in both carcinogenesis and development of animals. Activation of the Gαq class of Gα proteins positively regulates Wnt/β-catenin pathway, and expression of Gαq in human embryonic kidney 293 (HEK293T) cells or Xenopus oocytes leads to the inhibition of glycogen synthase kinase-3 beta and cellular accumulation of β-catenin. This study investigated whether Gαq-mediated cellular accumulation of β-catenin could affect the transcriptional activity of this protein. Methods HEK-293T and HT-29 cells were used for cell culture and transfection. Protein localization and quantification were assessed by using immunofluorescence microscopy, cell fractionation assay, and Western blotting analysis. Gene expression at the transcription level was examined by quantitative reverse transcriptase/real-time PCR method. Results Transcription of two cellular β-catenin target genes (c-MYC and CCND1) and the β-catenin/ T-cell factor reporter luciferase gene (TopFlash plasmid) significantly increased by Gαq activation. The Gαq-mediated increase in the expression level of the β-catenin-target genes was sensitive to the expression of a minigene encoding a specific Gαq blocking peptide. The results of cell fractionation and Western blotting experiments showed that activation of Gαq signaling increased the intracellular β-catenin protein level, but it blocked its membrane localization. Conclusion Our results reveal that the Gαq-dependent cellular accumulation of β-catenin can enhance β-catenin transcriptional activity.
Collapse
Affiliation(s)
| | | | | | | | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, P.O.Box 14155-6455, Tehran, Iran
| |
Collapse
|
11
|
Ansari S, Kolivand S, Salmanian S, Saghaeian Jazi M, Najafi SMA. Gαq Signaling Activates β-Catenin-Dependent Gene Transcription. IRANIAN BIOMEDICAL JOURNAL 2023; 27:183-90. [PMID: 37481708 PMCID: PMC10507289 DOI: 10.61186/ibj.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/28/2023] [Indexed: 12/17/2023]
Abstract
Background The canonical Wnt signal transduction or the Wnt/β-catenin pathway plays a crucial role in both carcinogenesis and development of animals. Activation of the Gαq class of Gα proteins positively regulates Wnt/β-catenin pathway, and expression of Gαq in human embryonic kidney 293 (HEK293T) cells or Xenopus oocytes leads to the inhibition of glycogen synthase kinase-3 beta and cellular accumulation of β-catenin. This study investigated whether Gαq-mediated cellular accumulation of β-catenin could affect the transcriptional activity of this protein. Methods HEK-293T and HT-29 cells were used for cell culture and transfection. Protein localization and quantification were assessed by using immunofluorescence microscopy, cell fractionation assay, and Western blotting analysis. Gene expression at the transcription level was examined by quantitative reverse transcriptase/real-time PCR method. Results Transcription of two cellular β-catenin target genes (c-MYC and CCND1) and the β-catenin/ T-cell factor reporter luciferase gene (TopFlash plasmid) significantly increased by Gαq activation. The Gαq-mediated increase in the expression level of the β-catenin-target genes was sensitive to the expression of a minigene encoding a specific Gαq blocking peptide. The results of cell fractionation and Western blotting experiments showed that activation of Gαq signaling increased the intracellular β-catenin protein level, but it blocked its membrane localization. Conclusion Our results reveal that the Gαq-dependent cellular accumulation of β-catenin can enhance β-catenin transcriptional activity.
Collapse
Affiliation(s)
| | | | | | | | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, P.O.Box 14155-6455, Tehran, Iran
| |
Collapse
|
12
|
High P, Carmon KS. G protein-coupled receptor-targeting antibody-drug conjugates: Current status and future directions. Cancer Lett 2023; 564:216191. [PMID: 37100113 PMCID: PMC11270908 DOI: 10.1016/j.canlet.2023.216191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
In recent years, antibody-drug conjugates (ADCs) have emerged as promising anti-cancer therapeutic agents with several having already received market approval for the treatment of solid tumor and hematological malignancies. As ADC technology continues to improve and the range of indications treatable by ADCs increases, the repertoire of target antigens has expanded and will undoubtedly continue to grow. G protein-coupled receptors (GPCRs) are well-characterized therapeutic targets implicated in many human pathologies, including cancer, and represent a promising emerging target of ADCs. In this review, we will discuss the past and present therapeutic targeting of GPCRs and describe ADCs as therapeutic modalities. Moreover, we will summarize the status of existing preclinical and clinical GPCR-targeted ADCs and address the potential of GPCRs as novel targets for future ADC development.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Naimo GD, Paolì A, Giordano F, Forestiero M, Panno ML, Andò S, Mauro L. Unraveling the Role of Adiponectin Receptors in Obesity-Related Breast Cancer. Int J Mol Sci 2023; 24:ijms24108907. [PMID: 37240258 DOI: 10.3390/ijms24108907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity has a noteworthy role in breast tumor initiation and progression. Among the mechanisms proposed, the most validated is the development of chronic low-grade inflammation, supported by immune cell infiltration along with dysfunction in adipose tissue biology, characterized by an imbalance in adipocytokines secretion and alteration of their receptors within the tumor microenvironment. Many of these receptors belong to the seven-transmembrane receptor family, which are involved in physiological features, such as immune responses and metabolism, as well as in the development and progression of several malignancies, including breast cancer. These receptors are classified as canonical (G protein-coupled receptors, GPCRs) and atypical receptors, which fail to interact and activate G proteins. Among the atypical receptors, adiponectin receptors (AdipoRs) mediate the effect of adiponectin, the most abundant adipocytes-derived hormone, on breast cancer cell proliferation, whose serum levels are reduced in obesity. The adiponectin/AdipoRs axis is becoming increasingly important regarding its role in breast tumorigenesis and as a therapeutic target for breast cancer treatment. The objectives of this review are as follows: to point out the structural and functional differences between GPCRs and AdipoRs, and to focus on the effect of AdipoRs activation in the development and progression of obesity-dependent breast cancer.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Alessandro Paolì
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Martina Forestiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
14
|
Li S, Chen X, Chen J, Wu B, Liu J, Guo Y, Li M, Pu X. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Comput Biol Med 2023; 161:106988. [PMID: 37201441 DOI: 10.1016/j.compbiomed.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest drug target family. Unfortunately, applications of GPCRs in cancer therapy are scarce due to very limited knowledge regarding their correlations with cancers. Multi-omics data enables systematic investigations of GPCRs, yet their effective integration remains a challenge due to the complexity of the data. Here, we adopt two types of integration strategies, multi-staged and meta-dimensional approaches, to fully characterize somatic mutations, somatic copy number alterations (SCNAs), DNA methylations, and mRNA expressions of GPCRs in 33 cancers. Results from the multi-staged integration reveal that GPCR mutations cannot well predict expression dysregulation. The correlations between expressions and SCNAs are primarily positive, while correlations of the methylations with expressions and SCNAs are bimodal with negative correlations predominating. Based on these correlations, 32 and 144 potential cancer-related GPCRs driven by aberrant SCNA and methylation are identified, respectively. In addition, the meta-dimensional integration analysis is carried out by using deep learning models, which predict more than one hundred GPCRs as potential oncogenes. When comparing results between the two integration strategies, 165 cancer-related GPCRs are common in both, suggesting that they should be prioritized in future studies. However, 172 GPCRs emerge in only one, indicating that the two integration strategies should be considered concurrently to complement the information missed by the other such that obtain a more comprehensive understanding. Finally, correlation analysis further reveals that GPCRs, in particular for the class A and adhesion receptors, are generally immune-related. In a whole, the work is for the first time to reveal the associations between different omics layers and highlight the necessity of combing the two strategies in identifying cancer-related GPCRs.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Binjian Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Proniewicz E. Metallic nanoparticles as effective sensors of bio-molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122207. [PMID: 36502763 DOI: 10.1016/j.saa.2022.122207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This work describes biologically important nanostructures of metals (AgNPs, AuNPs, and PtNPs) and metal oxides (Cu2ONPs, CuONSs, γ-Fe2O3NPs, ZnONPs, ZnONPs-GS, anatase-TiO2NPs, and rutile-TiO2NPs) synthesized by different methods (wet-chemical, electrochemical, and green-chemistry methods). The nanostructures were characterized by molecular spectroscopic methods, including scanning/transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Raman scattering spectroscopy (RS), and infrared light spectroscopy (IR). Then, a peptide (bombesin, BN) was adsorbed onto the surface of these nanostructures from an aqueous solution with pH of 7 that did not contain surfactants. Adsorption was monitored using surface-enhanced Raman scattering spectroscopy (SERS) to determine the influence of the nature of the metal surface and surface evolution on peptide geometry. Information from the SERS studies was compared with information on the biological activity of the peptide. The SERS enhancement factor was determined for each of the metallic surfaces.
Collapse
Affiliation(s)
- E Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
16
|
Roy A. Advances in the molecular level understanding of G-protein coupled receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:1-13. [PMID: 36813353 DOI: 10.1016/bs.pmbts.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein coupled receptors (GPCRs) represent largest family of plasma membrane-bound receptor proteins that are involved in numerous cellular and physiological functions. Many extracellular stimuli such as hormones, lipids and chemokines activate these receptors. Aberrant expression and genetic alteration in GPCR are associated with many human diseases including cancer and cardiovascular disease. GPCRs have emerged as potential therapeutic target and numerous drugs are either approved by FDA or under clinical trial. This chapter provides an update on GPCR research and its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
17
|
Lam T, Mastos C, Sloan EK, Halls ML. Pathological changes in GPCR signal organisation: Opportunities for targeted therapies for triple negative breast cancer. Pharmacol Ther 2023; 241:108331. [PMID: 36513135 DOI: 10.1016/j.pharmthera.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Triple negative breast cancer (TNBC) has the poorest prognosis compared to other breast cancer subtypes, due to a historical lack of targeted therapies and high rates of relapse. Greater insight into the components of signalling pathways in TNBC tumour cells has led to the clinical evaluation, and in some cases approval, of targeted therapies. In the last decade, G protein-coupled receptors, such as the β2-adrenoceptor, have emerged as potential new therapeutic targets. Here, we describe how the β2-adrenoceptor accelerates TNBC progression in response to stress, and the unique signalling pathway activated by the β2-adrenoceptor to drive the invasion of an aggressive TNBC tumour cell. We highlight evidence that supports an altered organisation of GPCRs in tumour cells, and suggests that activation of the same GPCR in a different cellular location can control unique cell responses. Finally, we speculate how the relocation of GPCRs to the "wrong" place in tumour cells presents opportunities to develop targeted anti-cancer GPCR drugs with greater efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Terrance Lam
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
18
|
Nishiwada S, Shimura T, Yamamura K, Nakagawa K, Nagai M, Nakamura K, Terai T, Yamada S, Fujii T, Kodera Y, Sho M, Goel A. Clinical significance and functional role of adhesion G-protein-coupled receptors in human pancreatic ductal adenocarcinoma. Br J Cancer 2023; 128:321-330. [PMID: 36396823 PMCID: PMC9902480 DOI: 10.1038/s41416-022-02057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The adhesion G-protein-coupled receptors (GPCRs) play crucial roles in tumour pathogenesis, however, their clinical significance in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS We analysed 796 PDAC patients, including 331 from public data sets (TCGA, ICGC and GSE57495) and 465 from independent cohorts (training: n = 321, validation: n = 144). Using in-vitro studies, we confirmed the biological function of the candidate GPCRs. RESULTS Analysis of all 33 adhesion GPCRs, led to identify GPR115, as the only significant prognostic factor in all public data sets. The patients with high GPR115 expression exhibited significantly poorer prognosis for OS and RFS, in training (P < 0.01, P < 0.01) and validation cohort (P < 0.01, P = 0.04). Multivariate analysis indicated that GPR115 high expression was an independent prognostic factor in both cohorts (HR = 1.43; P = 0.01, HR = 2.55; P < 0.01). A risk-prediction model using Cox regression by incorporating GPR115 and clinicopathological factors accurately predicted 5-year survival following surgery. In addition, GPR115 silencing inhibited cell proliferation and migration in PDAC cells. CONCLUSION We demonstrated that GPR115 has important prognostic significance and functional role in tumour progression; providing a rationale that this may be a potential therapeutic target in patients with PDAC.
Collapse
Affiliation(s)
- Satoshi Nishiwada
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Surgery, Nara Medical University, Nara, Japan
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA
| | - Tadanobu Shimura
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Kensuke Yamamura
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Kenji Nakagawa
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Minako Nagai
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Kota Nakamura
- Department of Surgery, Nara Medical University, Nara, Japan
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA
| | - Taichi Terai
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
19
|
Sandhu M, Cho A, Ma N, Mukhaleva E, Namkung Y, Lee S, Ghosh S, Lee JH, Gloriam DE, Laporte SA, Babu MM, Vaidehi N. Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity. Nat Commun 2022; 13:7428. [PMID: 36460632 PMCID: PMC9718833 DOI: 10.1038/s41467-022-34055-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Recent studies have shown that G protein coupled receptors (GPCRs) show selective and promiscuous coupling to different Gα protein subfamilies and yet the mechanisms of the range of coupling preferences remain unclear. Here, we use Molecular Dynamics (MD) simulations on ten GPCR:G protein complexes and show that the location (spatial) and duration (temporal) of intermolecular contacts at the GPCR:Gα protein interface play a critical role in how GPCRs selectively interact with G proteins. We identify that some GPCR:G protein interface contacts are common across Gα subfamilies and others specific to Gα subfamilies. Using large scale data analysis techniques on the MD simulation snapshots we derive a spatio-temporal code for contacts that confer G protein selective coupling and validated these contacts using G protein activation BRET assays. Our results demonstrate that promiscuous GPCRs show persistent sampling of the common contacts more than G protein specific contacts. These findings suggest that GPCRs maintain contact with G proteins through a common central interface, while the selectivity comes from G protein specific contacts at the periphery of the interface.
Collapse
Affiliation(s)
- Manbir Sandhu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
- Department of Structural Biology, Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Aaron Cho
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sangbae Lee
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - John H Lee
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - M Madan Babu
- Department of Structural Biology, Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
20
|
Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, Lee HN, Sunahara RK, Zhang J. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 2022; 611:173-179. [PMID: 36289326 PMCID: PMC10031817 DOI: 10.1038/s41586-022-05343-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized β2-adrenergic receptor (β2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that β2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated β2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal β2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.
Collapse
Affiliation(s)
- Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mary Clark
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Geneva Walters
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
22
|
Sharp AK, Newman D, Libonate G, Borns-Stern M, Bevan DR, Brown AM, Anandakrishnan R. Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma. Biophys J 2022; 121:3706-3718. [PMID: 35538663 PMCID: PMC9617130 DOI: 10.1016/j.bpj.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and prevalent form of brain cancer, with an expected survival of 12-15 months following diagnosis. GBM affects the glial cells of the central nervous system, which impairs regular brain function including memory, hearing, and vision. GBM has virtually no long-term survival even with treatment, requiring novel strategies to understand disease progression. Here, we identified a somatic mutation in OR2T7, a G-protein-coupled receptor (GPCR), that correlates with reduced progression-free survival for glioblastoma (log rank p-value = 0.05), suggesting a possible role in tumor progression. The mutation, D125V, occurred in 10% of 396 glioblastoma samples in The Cancer Genome Atlas, but not in any of the 2504 DNA sequences in the 1000 Genomes Project, suggesting that the mutation may have a deleterious functional effect. In addition, transcriptome analysis showed that the p38α mitogen-activated protein kinase (MAPK), c-Fos, c-Jun, and JunB proto-oncogenes, and putative tumor suppressors RhoB and caspase-14 were underexpressed in glioblastoma samples with the D125V mutation (false discovery rate < 0.05). Molecular modeling and molecular dynamics simulations have provided preliminary structural insight and indicate a dynamic helical movement network that is influenced by the membrane-embedded, cytofacial-facing residue 125, demonstrating a possible obstruction of G-protein binding on the cytofacial exposed region. We show that the mutation impacts the "open" GPCR conformation, potentially affecting Gα-subunit binding and associated downstream activity. Overall, our findings suggest that the Val125 mutation in OR2T7 could affect glioblastoma progression by downregulating GPCR-p38 MAPK tumor-suppression pathways and impacting the biophysical characteristics of the structure that facilitates Gα-subunit binding. This study provides the theoretical basis for further experimental investigation required to confirm that the D125V mutation in OR2T7 is not a passenger mutation. With validation, the aforementioned mutation could represent an important prognostic marker and a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Amanda K Sharp
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia
| | - David Newman
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Gianna Libonate
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - Mary Borns-Stern
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia
| | - David R Bevan
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Anne M Brown
- Interdisciplinary Program of Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia.
| | - Ramu Anandakrishnan
- Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia; Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia; Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina.
| |
Collapse
|
23
|
Hermawan A, Putri H. Computational analysis of G-protein-coupled receptor kinase family members as potential targets for colorectal cancer therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
G-protein-coupled receptor (GPCR) kinases (GRKs) interact with ligand-activated GPCR, causing intracellular phosphorylation and interfering with the intracellular signal transduction associated with the development of cancer. Colorectal cancer (CRC) is a fast-growing disease, and its molecular mechanism involves various regulatory proteins, including kinases. However, the GRK mechanism in CRC has not been explored.
Methods
We used an integrated computational approach to investigate the potential of GRK family members as targeted proteins in CRC. The GRK expression levels in tumor and normal tissues, colon adenocarcinoma samples, and metastatic colon adenocarcinoma were analyzed using ONCOMINE, GEPIA, and UALCAN, as well as TNM plots. Genetic changes in the GRK family genes were investigated using cBioportal. The prognostic value related to the gene expression of the GRK family was examined using GEPIA and UALCAN. Co-expression analysis of the GRK family was conducted using COXPRESdb. Association analysis of the Gene Ontology, KEGG pathway enrichment, and drug-gene analyses were performed using the over-representation analysis (ORA) in WebGestalt.
Results
GRK2, GRK3, and GRK5 mRNA levels increased significantly in patients with CRC and metastatic CRC. Genetic changes were detected in patients with CRC, including GRK7 (1.1%), GRK2 (1.7%), GRK4 (2.3%), GRK5 (2.5%), GRK6 (2.5%), GRK3 (2.9%), and GRK1 (4%). CRC patients with low mRNA of GRK7 levels had better disease-free and overall survival than those with high GRK7 levels. Hierarchical clustering analysis revealed significant positive correlations between GRK5 and GRK2 and between GRK2 and GRK6. KEGG pathway enrichment analysis showed that the gene network (GN) regulated several cellular pathways, such as the morphine addiction signaling and chemokine signaling pathways in cancer. The drug-gene association analysis indicated that the GN was associated with several drugs, including reboxetine, pindolol, beta-blocking agents, and protein kinase inhibitors.
Conclusion
No research has been conducted on the relation of GRK1 and GRK7 to cancer, particularly CRC. In this work, genes GRK2, GRK3, GRK5, and GRK6 were found to be oncogenes in CRC. Although inhibitors against GRK2, GRK5, and GRK6 have previously been developed, further research, particularly preclinical and clinical studies, is needed before these agents may be used to treat CRC.
Collapse
|
24
|
Li S, Chen J, Chen X, Yu J, Guo Y, Li M, Pu X. Therapeutic and prognostic potential of GPCRs in prostate cancer from multi-omics landscape. Front Pharmacol 2022; 13:997664. [PMID: 36110544 PMCID: PMC9468875 DOI: 10.3389/fphar.2022.997664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PRAD) is a common and fatal malignancy. It is difficult to manage clinically due to drug resistance and poor prognosis, thus creating an urgent need for novel therapeutic targets and prognostic biomarkers. Although G protein-coupled receptors (GPCRs) have been most attractive for drug development, there have been lack of an exhaustive assessment on GPCRs in PRAD like their molecular features, prognostic and therapeutic values. To close this gap, we herein systematically investigate multi-omics profiling for GPCRs in the primary PRAD by analyzing somatic mutations, somatic copy-number alterations (SCNAs), DNA methylation and mRNA expression. GPCRs exhibit low expression levels and mutation frequencies while SCNAs are more prevalent. 46 and 255 disease-related GPCRs are identified by the mRNA expression and DNA methylation analysis, respectively, complementing information lack in the genome analysis. In addition, the genomic alterations do not exhibit an observable correlation with the GPCR expression, reflecting the complex regulatory processes from DNA to RNA. Conversely, a tight association is observed between the DNA methylation and mRNA expression. The virtual screening and molecular dynamics simulation further identify four potential drugs in repositioning to PRAD. The combination of 3 clinical characteristics and 26 GPCR molecular features revealed by the transcriptome and genome exhibit good performance in predicting progression-free survival in patients with the primary PRAD, providing candidates as new biomarkers. These observations from the multi-omics analysis on GPCRs provide new insights into the underlying mechanism of primary PRAD and potential of GPCRs in developing therapeutic strategies on PRAD.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
- *Correspondence: Xuemei Pu, ; Menglong Li,
| |
Collapse
|
25
|
Ullah M, Hadi F, Song J, Yu DJ. PScL-DDCFPred: an ensemble deep learning-based approach for characterizing multiclass subcellular localization of human proteins from bioimage data. Bioinformatics 2022; 38:4019-4026. [PMID: 35771606 PMCID: PMC9890309 DOI: 10.1093/bioinformatics/btac432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Characterization of protein subcellular localization has become an important and long-standing task in bioinformatics and computational biology, which provides valuable information for elucidating various cellular functions of proteins and guiding drug design. RESULTS Here, we develop a novel bioimage-based computational approach, termed PScL-DDCFPred, to accurately predict protein subcellular localizations in human tissues. PScL-DDCFPred first extracts multiview image features, including global and local features, as base or pure features; next, it applies a new integrative feature selection method based on stepwise discriminant analysis and generalized discriminant analysis to identify the optimal feature sets from the extracted pure features; Finally, a classifier based on deep neural network (DNN) and deep-cascade forest (DCF) is established. Stringent 10-fold cross-validation tests on the new protein subcellular localization training dataset, constructed from the human protein atlas databank, illustrates that PScL-DDCFPred achieves a better performance than several existing state-of-the-art methods. Moreover, the independent test set further illustrates the generalization capability and superiority of PScL-DDCFPred over existing predictors. In-depth analysis shows that the excellent performance of PScL-DDCFPred can be attributed to three critical factors, namely the effective combination of the DNN and DCF models, complementarity of global and local features, and use of the optimal feature sets selected by the integrative feature selection algorithm. AVAILABILITY AND IMPLEMENTATION https://github.com/csbio-njust-edu/PScL-DDCFPred. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matee Ullah
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fazal Hadi
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
26
|
Identification of a Prognostic Microenvironment-Related Gene Signature in Glioblastoma Patients Treated with Carmustine Wafers. Cancers (Basel) 2022; 14:cancers14143413. [PMID: 35884475 PMCID: PMC9320240 DOI: 10.3390/cancers14143413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the state-of-the-art treatment, patients diagnosed with glioblastoma (GBM) have a median overall survival (OS) of 14 months. The insertion of carmustine wafers (CWs) into the resection cavity as adjuvant treatment represents a promising option, although its use has been limited due to contrasting clinical results. Our retrospective evaluation of CW efficacy showed a significant improvement in terms of OS in a subgroup of patients. Given the crucial role of the tumor microenvironment (TME) in GBM progression and response to therapy, we hypothesized that the TME of patients who benefited from CW could have different properties compared to that of patients who did not show any advantage. Using an in vitro model of the glioma microenvironment, represented by glioma-associated-stem cells (GASC), we performed a transcriptomic analysis of GASC isolated from tumors of patients responsive and not responsive to CW to identify differentially expressed genes. We found different transcriptomic profiles, and we identified four genes, specifically down-regulated in GASC isolated from long-term survivors, correlated with clinical data deposited in the TCGA–GBM dataset. Our results highlight that studying the in vitro properties of patient-specific glioma microenvironments can help to identify molecular determinants potentially prognostic for patients treated with CW.
Collapse
|
27
|
Zhang M, Zhao J, Dong H, Xue W, Xing J, Liu T, Yu X, Gu Y, Sun B, Lu H, Zhang Y. DNA Methylation-Specific Analysis of G Protein-Coupled Receptor-Related Genes in Pan-Cancer. Genes (Basel) 2022; 13:genes13071213. [PMID: 35885996 PMCID: PMC9320183 DOI: 10.3390/genes13071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity presents challenges for personalized diagnosis and treatment of cancer. The identification method of cancer-specific biomarkers has important applications for the diagnosis and treatment of cancer types. In this study, we analyzed the pan-cancer DNA methylation data from TCGA and GEO, and proposed a computational method to quantify the degree of specificity based on the level of DNA methylation of G protein-coupled receptor-related genes (GPCRs-related genes) and to identify specific GPCRs DNA methylation biomarkers (GRSDMs) in pan-cancer. Then, a ridge regression-based method was used to discover potential drugs through predicting the drug sensitivities of cancer samples. Finally, we predicted and verified 8 GRSDMs in adrenocortical carcinoma (ACC), rectum adenocarcinoma (READ), uveal Melanoma (UVM), thyroid carcinoma (THCA), and predicted 4 GRSDMs (F2RL3, DGKB, GRK5, PIK3R6) which were sensitive to 12 potential drugs. Our research provided a novel approach for the personalized diagnosis of cancer and informed individualized treatment decisions.
Collapse
Affiliation(s)
- Mengyan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jiyun Zhao
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Huili Dong
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Wenhui Xue
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jie Xing
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Ting Liu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Xiuwen Yu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Yue Gu
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
| | - Haibo Lu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| |
Collapse
|
28
|
G Protein-Coupled Receptor Kinase 4 Is a Novel Prognostic Factor in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2628879. [PMID: 35769816 PMCID: PMC9236775 DOI: 10.1155/2022/2628879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022]
Abstract
Purpose We previously reported that G protein-coupled receptor kinase (GRK) 4 halts cell cycle progression and induces cellular senescence in HEK293 cells. The present study was aimed at assessing the prognostic value of GRK4 in hepatocellular carcinoma (HCC). Methods GRK4 expression was detected by immunohistochemistry in paired tumoral and peritumoral tissues of 325 HCC patients. One hundred and twenty-six patients from Western China were utilized as a training cohort to develop a nomogram, while 86 patients from Eastern China were used as a validation cohort. The proliferation and migration of lentiviral-GRK4 expressing HepG2 cells were determined by MTT and wound healing assays. Results GRK4 was differentially expressed in HCC tissues. Tumoral GRK4 intensity, tumor type, and T stage were independent prognostic factors and used to form a nomogram for predicting overall survival (OS), which obtained a good concordance index of 0.82 and 0.77 in training and validation cohort, respectively. The positive and negative prediction values with nomogram were, respectively, 83% and 75% in training cohort and 100% and 52% in validation cohort. Patients with nomogram scores > 32 and 78 showed high risk for OS. Proliferation and motility capabilities were significantly restrained in GRK4-overexpressing HCC cells. Discussion. Low GRK4 expression in HCC tumor tissues indicates poor clinical outcomes. A prognostic nomogram including tumoral GRK4 expression would improve the predictive accuracy of OS in HCC patients. We also demonstrated that GRK4 overexpression inhibits proliferation and migration of HCC cells. The molecular mechanism underlying is worth further study.
Collapse
|
29
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Suppression of tumor progression by thioredoxin-interacting protein-dependent adenosine 2B receptor degradation in a PLAG-treated Lewis lung carcinoma-1 model of non-small cell lung cancer. Neoplasia 2022; 31:100815. [PMID: 35728512 PMCID: PMC9209866 DOI: 10.1016/j.neo.2022.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
PLAG effectively inhibited excessive growth of LLC1 cells in an NSCLC model. PLAG inhibited tumor growth by inducing adenosine 2B receptor (A2BR) degradation. Unlike antagonists, PLAG terminates rather than suppresses signaling pathways. A2BR degradation by PLAG occurs through expression and re-localization of TXNIP.
Extracellular adenosine in the tumor microenvironment plays a vital role in cancer development. Specifically, activation of adenosine receptors affects tumor cell growth and adenosine release. We examined the anti-tumor efficacy of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in animal models, revealing the role of PLAG in inhibiting tumor progression by promoting the degradation of adenosine 2B receptors (A2BRs) in tumors. PLAG induced the expression of thioredoxin-interacting protein (TXNIP), a type of α-arrestin that accelerates A2BR internalization by interacting with A2BR complexes containing β-arrestin. Engulfed receptors bound to TXNIP were rapidly degraded after E3 ligase recruitment and ubiquitination, resulting in early termination of intracellular signals that promote tumor overgrowth. However, in control cancer cells, A2BRs bound to protein phosphatase 2A and were returned to the cell membrane instead of being degraded, resulting in continuous receptor-mediated signaling by pathways including the Raf-Erk axis, which promotes tumor proliferation. A TXNIP-silenced cell-implanted mouse model and TXNIP knockout (KO) mice were used to verify that PLAG-mediated suppression of tumor progression is dependent on TXNIP expression. Increased tumor growth was observed in TXNIP-silenced cell-implanted mice, and the anti-tumor effects of PLAG, including delayed tumor overgrowth, were greatly reduced. However, the anti-tumor effects of PLAG were observed in cancer cell-implanted TXNIP-KO mice, which indicates that PLAG produces anti-tumor effects by enhancing TXNIP expression in tumor cells. These essential functions of PLAG, including delaying tumor growth via A2BR degradation, suggest innovative directions for anticancer drug development.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea.
| |
Collapse
|
30
|
Mackiewicz T, Jacenik D, Talar M, Fichna J. The GPR35 expression pattern is associated with overall survival in male patients with colorectal cancer. Pharmacol Rep 2022; 74:709-717. [PMID: 35622222 DOI: 10.1007/s43440-022-00371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND G protein-coupled receptor 35 (GPR35) is involved in the carcinogenesis; however, limited data exist on its relevance for overall survival (OS) and disease-specific survival (DSS) in patients with cancer. METHODS We have examined The Cancer Genome Atlas dataset to check the relations between GPR35 expression pattern and OS or DSS of patients with colorectal cancer (CRC). RESULTS The performed analysis showed a negative association between positive GPR35 expression Z score and OS in males, which remains statistically significant in advanced stages of colon (COAD) and rectal (READ) adenocarcinoma combined. CONCLUSIONS These findings suggest the prognostic value of early testing of GPR35 in male patients with an increased risk of CRC development and warrant further clinical confirmation.
Collapse
Affiliation(s)
- Tomasz Mackiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.,Roche Polska Sp. z o.o., Warsaw, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
31
|
Elemam NM, Youness RA, Hussein A, Shihab I, Yakout NM, Elwany YN, Manie TM, Talaat IM, Maghazachi AA. Expression of GPR68, an Acid-Sensing Orphan G Protein-Coupled Receptor, in Breast Cancer. Front Oncol 2022; 12:847543. [PMID: 35311103 PMCID: PMC8930915 DOI: 10.3389/fonc.2022.847543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer and the leading cause of global cancer incidence in 2020. It is quite known that highly invasive cancers have disrupted metabolism that leads to the creation of an acidic tumor microenvironment. Among the proton-sensing G protein-coupled receptors is GPR68. In this study, we aimed to explore the expression pattern of GPR68 in tissues from BC patients as well as different BC cell lines. Methods: In-silico tools were used to assess the expression of GPR68 in BC patients. The expression pattern was validated in fresh and paraffin-embedded sections of BC patients using qPCR and immunohistochemistry (IHC), respectively. Also, in-silico tools investigated GPR68 expression in different BC cell lines. Validation of GPR68 expression was performed using qPCR and immunofluorescence techniques in four different BC cell lines (MCF-7, MDA-MB-231, BT-549 and SkBr3). Results: GPR68 expression was found to be significantly increased in BC patients using the in-silico tools and validation using qPCR and IHC. Upon classification according to the molecular subtypes, the luminal subtype showed the highest GPR68 expression followed by triple-negative and Her2-enriched cells. However, upon validation in the recruited cohort, the triple-negative molecular subtype of BC patients showed the highest GPR68 expression. Also, in-silico and validation data revealed that the triple-negative breast cancer cell line MDA-MB-231 showed the highest expression of GPR68. Conclusion: Therefore, this study highlights the potential utilization of GPR68 as a possible diagnostic and/or prognostic marker in BC.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Amal Hussein
- Department of Family and Community Medicine and Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Israa Shihab
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nada M. Yakout
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Nagy Elwany
- Clinical Oncology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tamer M. Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- *Correspondence: Iman M. Talaat, ; Azzam A. Maghazachi,
| | - Azzam A. Maghazachi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Iman M. Talaat, ; Azzam A. Maghazachi,
| |
Collapse
|
32
|
Identification of Dysregulated Expression of G Protein Coupled Receptors in Endocrine Tumors by Bioinformatics Analysis: Potential Drug Targets? Cells 2022; 11:cells11040703. [PMID: 35203352 PMCID: PMC8870215 DOI: 10.3390/cells11040703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Many studies link G protein-coupled receptors (GPCRs) to cancer. Some endocrine tumors are unresponsive to standard treatment and/or require long-term and poorly tolerated treatment. This study explored, by bioinformatics analysis, the tumoral profiling of the GPCR transcriptome to identify potential targets in these tumors aiming at drug repurposing. Methods: We explored the GPCR differentially expressed genes (DEGs) from public datasets (Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA)). The GEO datasets were available for two medullary thyroid cancers (MTCs), eighty-seven pheochromocytomas (PHEOs), sixty-one paragangliomas (PGLs), forty-seven pituitary adenomas and one-hundred-fifty adrenocortical cancers (ACCs). The TCGA dataset covered 92 ACCs. We identified GPCRs targeted by approved drugs from pharmacological databases (ChEMBL and DrugBank). Results: The profiling of dysregulated GPCRs was tumor specific. In MTC, we found 14 GPCR DEGs, including an upregulation of the dopamine receptor (DRD2) and adenosine receptor (ADORA2B), which were the target of many drugs. In PGL, seven GPCR genes were downregulated, including vasopressin receptor (AVPR1A) and PTH receptor (PTH1R), which were targeted by approved drugs. In ACC, PTH1R was also downregulated in both the GEO and TCGA datasets and was the target of osteoporosis drugs. Conclusions: We highlight specific GPCR signatures across the major endocrine tumors. These data could help to identify new opportunities for drug repurposing.
Collapse
|
33
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
34
|
Cho HJ, Koo J. Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review. BMB Rep 2021. [PMID: 34847986 PMCID: PMC8728539 DOI: 10.5483/bmbrep.2021.54.12.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.
Collapse
Affiliation(s)
- Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- 4New Biology Research Center (NBRC), DGIST, Daegu 42988, 5Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
35
|
Ng KF, Chen TC, Stacey M, Lin HH. Role of ADGRG1/GPR56 in Tumor Progression. Cells 2021; 10:cells10123352. [PMID: 34943858 PMCID: PMC8699533 DOI: 10.3390/cells10123352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular communication plays a critical role in diverse aspects of tumorigenesis including tumor cell growth/death, adhesion/detachment, migration/invasion, angiogenesis, and metastasis. G protein-coupled receptors (GPCRs) which constitute the largest group of cell surface receptors are known to play fundamental roles in all these processes. When considering the importance of GPCRs in tumorigenesis, the adhesion GPCRs (aGPCRs) are unique due to their hybrid structural organization of a long extracellular cell-adhesive domain and a seven-transmembrane signaling domain. Indeed, aGPCRs have been increasingly shown to be associated with tumor development by participating in tumor cell interaction and signaling. ADGRG1/GPR56, a representative tumor-associated aGPCR, is recognized as a potential biomarker/prognostic factor of specific cancer types with both tumor-suppressive and tumor-promoting functions. We summarize herein the latest findings of the role of ADGRG1/GPR56 in tumor progression.
Collapse
Affiliation(s)
- Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Hsi-Hsien Lin
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (K.-F.N.); (T.-C.C.)
- Division of Rheumatology, Allergy, and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
- Center for Medical and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
36
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
37
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
38
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
39
|
Sharma A, Lysenko A, Boroevich KA, Vans E, Tsunoda T. DeepFeature: feature selection in nonimage data using convolutional neural network. Brief Bioinform 2021; 22:6343526. [PMID: 34368836 PMCID: PMC8575039 DOI: 10.1093/bib/bbab297] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical tests. Among these methods, deep neural networks are currently among the most advanced approaches and, in particular, convolutional neural networks (CNNs) have been shown to perform excellently for a variety of difficult tasks. Despite that applications of this type of networks to high-dimensional omics data and, most importantly, meaningful interpretation of the results returned from such models in a biomedical context remains an open problem. Here we present, an approach applying a CNN to nonimage data for feature selection. Our pipeline, DeepFeature, can both successfully transform omics data into a form that is optimal for fitting a CNN model and can also return sets of the most important genes used internally for computing predictions. Within the framework, the Snowfall compression algorithm is introduced to enable more elements in the fixed pixel framework, and region accumulation and element decoder is developed to find elements or genes from the class activation maps. In comparative tests for cancer type prediction task, DeepFeature simultaneously achieved superior predictive performance and better ability to discover key pathways and biological processes meaningful for this context. Capabilities offered by the proposed framework can enable the effective use of powerful deep learning methods to facilitate the discovery of causal mechanisms in high-dimensional biomedical data.
Collapse
Affiliation(s)
- Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Artem Lysenko
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Edwin Vans
- STEMP, University of the South Pacific, Suva, Fiji
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Sheils T, Mathias SL, Siramshetty VB, Bocci G, Bologa CG, Yang JJ, Waller A, Southall N, Nguyen DT, Oprea TI. How to Illuminate the Druggable Genome Using Pharos. ACTA ACUST UNITED AC 2021; 69:e92. [PMID: 31898878 DOI: 10.1002/cpbi.92] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pharos is an integrated web-based informatics platform for the analysis of data aggregated by the Illuminating the Druggable Genome (IDG) Knowledge Management Center, an NIH Common Fund initiative. The current version of Pharos (as of October 2019) spans 20,244 proteins in the human proteome, 19,880 disease and phenotype associations, and 226,829 ChEMBL compounds. This resource not only collates and analyzes data from over 60 high-quality resources to generate these types, but also uses text indexing to find less apparent connections between targets, and has recently begun to collaborate with institutions that generate data and resources. Proteins are ranked according to a knowledge-based classification system, which can help researchers to identify less studied "dark" targets that could be potentially further illuminated. This is an important process for both drug discovery and target validation, as more knowledge can accelerate target identification, and previously understudied proteins can serve as novel targets in drug discovery. Two basic protocols illustrate the levels of detail available for targets and several methods of finding targets of interest. An Alternate Protocol illustrates the difference in available knowledge between less and more studied targets. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Search for a target and view details Alternate Protocol: Search for dark target and view details Basic Protocol 2: Filter a target list to get refined results.
Collapse
Affiliation(s)
- Timothy Sheils
- National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Stephen L Mathias
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | | - Giovanni Bocci
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Cristian G Bologa
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jeremy J Yang
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Anna Waller
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Noel Southall
- National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Tudor I Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,UNM Comprehensive Cancer Center, Albuquerque, New Mexico.,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Gonçalves-Monteiro S, Ribeiro-Oliveira R, Vieira-Rocha MS, Vojtek M, Sousa JB, Diniz C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals (Basel) 2021; 14:439. [PMID: 34066915 PMCID: PMC8148550 DOI: 10.3390/ph14050439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors' superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the nucleus as an autonomous signaling organelle (triggered by GPCRs). Nuclear GPCRs are involved in physiological (namely cell proliferation, transcription, angiogenesis and survival) and disease processes (cancer, cardiovascular diseases, etc.). In this review we summarize emerging evidence on nuclear GPCRs expression/function (with some nuclear GPCRs evidencing atypical/disruptive signaling pathways) in non-communicable disease, thus, bringing nuclear GPCRs as targets to the forefront of debate.
Collapse
Affiliation(s)
- Salomé Gonçalves-Monteiro
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ribeiro-Oliveira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Martin Vojtek
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana B. Sousa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Arakaki AKS, Pan WA, Wedegaertner H, Roca-Mercado I, Chinn L, Gujral TS, Trejo J. α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis. J Cell Sci 2021; 134:237789. [PMID: 33722977 DOI: 10.1242/jcs.254888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The α-arrestin domain containing protein 3 (ARRDC3) is a tumor suppressor in triple-negative breast carcinoma (TNBC), a highly metastatic subtype of breast cancer that lacks targeted therapies. Thus, understanding the mechanisms and targets of ARRDC3 in TNBC is important. ARRDC3 regulates trafficking of protease-activated receptor 1 (PAR1, also known as F2R), a G-protein-coupled receptor (GPCR) implicated in breast cancer metastasis. Loss of ARRDC3 causes overexpression of PAR1 and aberrant signaling. Moreover, dysregulation of GPCR-induced Hippo signaling is associated with breast cancer progression. However, the mechanisms responsible for Hippo dysregulation remain unknown. Here, we report that the Hippo pathway transcriptional co-activator TAZ (also known as WWTR1) is the major effector of GPCR signaling and is required for TNBC migration and invasion. Additionally, ARRDC3 suppresses PAR1-induced Hippo signaling via sequestration of TAZ, which occurs independently of ARRDC3-regulated PAR1 trafficking. The ARRDC3 C-terminal PPXY motifs and TAZ WW domain are crucial for this interaction and are required for suppression of TNBC migration and lung metastasis in vivo. These studies are the first to demonstrate a role for ARRDC3 in regulating GPCR-induced TAZ activity in TNBC and reveal multi-faceted tumor suppressor functions of ARRDC3. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivette Roca-Mercado
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Logan Chinn
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX. The role and mechanism of β-arrestin2 in signal transduction. Life Sci 2021; 275:119364. [PMID: 33741415 DOI: 10.1016/j.lfs.2021.119364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
β-arrestin2 is a ubiquitously expressed scaffold protein localized on the cytoplasm and plasma membrane. It was originally found to bind to GPCRs, uncoupling G proteins and receptors' binding and inhibiting the signal transduction of the GPCRs. Further investigations have revealed that β-arrestin2 not only mediates the desensitization of GPCRs but also serves as a multifunctional scaffold to mediate receptor internalization, kinase activation, and regulation of various signaling pathways, such as TLR4/NF-κB, MAPK, Wnt, TGF-β, and AMPK/mTOR pathways. β-arrestin2 regulates cell invasion, migration, autophagy, angiogenesis, and anti-inflammatory effects by regulating various signaling pathways, which play a vital role in many physiological and pathological processes. This paper reviews the structure and function of β-arrestin2, the regulation of β-arrestin2 based signaling pathways. The role and mechanism of β-arrestin2 signaling have been delineated in sufficient detail. The prospect of regulating the expression and activity of β-arrestin2 in multisystem diseases holds substantial therapeutic promise.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zi-Ang Gao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
46
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
47
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
48
|
Mazzotta S, Governa P, Borgonetti V, Marcolongo P, Nanni C, Gamberucci A, Manetti F, Pessina F, Carullo G, Brizzi A, Aiello F. Pinocembrin and its linolenoyl ester derivative induce wound healing activity in HaCaT cell line potentially involving a GPR120/FFA4 mediated pathway. Bioorg Chem 2021; 108:104657. [PMID: 33556697 DOI: 10.1016/j.bioorg.2021.104657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Wound healing represents an urgent need from the clinical point of view. Several diseases result in wound conditions which are difficult to treat, such as in the case of diabetic foot ulcer. Starting from there, the medicinal research has focused on various targets over the years, including GPCRs as new wound healing drug targets. In line with this, GPR120, known to be an attractive target in type 2 diabetes drug discovery, was studied to finalize the development of new wound healing agents. Pinocembrin (HW0) was evaluated as a suitable compound for interacting with GPR120, and was hybridized with fatty acids, which are known endogenous GPR120 ligands, to enhance the wound healing potential and GPR120 interactions. HW0 and its 7-linolenoyl derivative (HW3) were found to be innovative wound healing agents. Immunofluorescence and functional assays suggested that their activity was mediated by GPR120, and docking simulations showed that the compounds could share the same pocket occupied by the known GPR120 agonist, TUG-891.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Pharmaceutical Sciences, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Nanni
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Federica Pessina
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy - DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences - DoE 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
49
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
50
|
Identification of an extracellular vesicle-related gene signature in the prediction of pancreatic cancer clinical prognosis. Biosci Rep 2020; 40:226923. [PMID: 33169793 PMCID: PMC7724614 DOI: 10.1042/bsr20201087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Although extracellular vesicles (EVs) in body fluid have been considered to be ideal biomarkers for cancer diagnosis and prognosis, it is still difficult to distinguish EVs derived from tumor tissue and normal tissue. Therefore, the prognostic value of tumor-specific EVs was evaluated through related molecules in pancreatic tumor tissue. NA sequencing data of pancreatic adenocarcinoma (PAAD) were acquired from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). EV-related genes in pancreatic cancer were obtained from exoRBase. Protein–protein interaction (PPI) network analysis was used to identify modules related to clinical stage. CIBERSORT was used to assess the abundance of immune and non-immune cells in the tumor microenvironment. A total of 12 PPI modules were identified, and the 3-PPI-MOD was identified based on the randomForest package. The genes of this model are involved in DNA damage and repair and cell membrane-related pathways. The independent external verification cohorts showed that the 3-PPI-MOD can significantly classify patient prognosis. Moreover, compared with the model constructed by pure gene expression, the 3-PPI-MOD showed better prognostic value. The expression of genes in the 3-PPI-MOD had a significant positive correlation with immune cells. Genes related to the hypoxia pathway were significantly enriched in the high-risk tumors predicted by the 3-PPI-MOD. External databases were used to verify the gene expression in the 3-PPI-MOD. The 3-PPI-MOD had satisfactory predictive performance and could be used as a prognostic predictive biomarker for pancreatic cancer.
Collapse
|