1
|
Kyriatzis G, Khrestchatisky M, Ferhat L, Chatzaki EA. Neurotensin and Neurotensin Receptors in Stress-related Disorders: Pathophysiology & Novel Drug Targets. Curr Neuropharmacol 2024; 22:916-934. [PMID: 37534788 PMCID: PMC10845085 DOI: 10.2174/1570159x21666230803101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 08/04/2023] Open
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide widely distributed in the CNS that has been involved in the pathophysiology of many neural and psychiatric disorders. There are three known neurotensin receptors (NTSRs), which mediate multiple actions, and form the neurotensinergic system in conjunction with NT. NTSR1 is the main mediator of NT, displaying effects in both the CNS and the periphery, while NTSR2 is mainly expressed in the brain and NTSR3 has a broader expression pattern. In this review, we bring together up-to-date studies showing an involvement of the neurotensinergic system in different aspects of the stress response and the main stress-related disorders, such as depression and anxiety, post-traumatic stress disorder (PTSD) and its associated symptoms, such as fear memory and maternal separation, ethanol addiction, and substance abuse. Emphasis is put on gene, mRNA, and protein alterations of NT and NTSRs, as well as behavioral and pharmacological studies, leading to evidence-based suggestions on the implicated regulating mechanisms as well as their therapeutic exploitation. Stress responses and anxiety involve mainly NTSR1, but also NTSR2 and NTSR3. NTSR1 and NTSR3 are primarily implicated in depression, while NTSR2 and secondarily NTSR1 in PTSD. NTSR1 is interrelated with substance and drug abuse and NTSR2 with fear memory, while all NTSRs seem to be implicated in ethanol consumption. Some of the actions of NT and NTSRs in these pathological settings may be driven through interactions between NT and corticotrophin releasing factor (CRF) in their regulatory contribution, as well as by NT's pro-inflammatory mediating actions.
Collapse
Affiliation(s)
- Grigorios Kyriatzis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Michel Khrestchatisky
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Lotfi Ferhat
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Ekaterini Alexiou Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
2
|
Avvisato R, Jankauskas SS, Varzideh F, Kansakar U, Mone P, Santulli G. Sortilin and hypertension. Curr Opin Nephrol Hypertens 2023; 32:134-140. [PMID: 36683537 PMCID: PMC9976622 DOI: 10.1097/mnh.0000000000000866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The current review aims to present the latest scientific updates on the role of Sortilin in the pathophysiology of hypertension. RECENT FINDINGS The main focus of this systematic overview is on the functional contribution of Sortilin to the pathogenesis of hypertension. Sortilin is a glycoprotein mostly known for its actions as a trafficking molecule directing proteins to specific secretory or endocytic compartments of the cell. Emerging evidence indicates that Sortilin is associated with pathological conditions, including inflammation, arteriosclerosis, dyslipidemia, insulin resistance, and vascular calcification. Most recently, Sortilin has been shown to finely control endothelial function and to drive hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress. SUMMARY The latest findings linking Sortilin and hypertension that are herein discussed can inspire novel areas of research which could eventually lead to the discovery of new therapeutic strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research and
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
4
|
Tripathi A, Scaini G, Barichello T, Quevedo J, Pillai A. Mitophagy in depression: Pathophysiology and treatment targets. Mitochondrion 2021; 61:1-10. [PMID: 34478906 PMCID: PMC8962570 DOI: 10.1016/j.mito.2021.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria, the 'powerhouse' of eukaryotic cells, play a key role in cellular homeostasis. However, defective mitochondria increase mitochondrial ROS (mtROS) production and cell-free mitochondrial DNA (mtDNA) release, leading to increased inflammation. Mitophagy is a vital pathway, which selectively removes defective mitochondria through the process of autophagy. Thus, an impairment in the mitophagy pathway might trigger the gradual accumulation of defective mitochondria. Accumulating evidence suggest that inflammation and mitochondrial dysfunction are linked to the pathogenesis of depression. In this article, we have reviewed the role of impaired mitophagy as a contributing factor in depression pathophysiology. Further, we have discussed the potential therapeutic interventions aimed at modulating mitophagy in depression.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
5
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
6
|
BDNF and pro-BDNF in serum and exosomes in major depression: Evolution after antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110229. [PMID: 33358963 DOI: 10.1016/j.pnpbp.2020.110229] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The study of clinically related biological indicators in Major Depression (MD) is important. The Brain Derived Neurotrophic Factor (BDNF) appears to play an important role in MD, through its neurotrophic effect, and its levels are significantly decreased. The variation in the serum levels of its precursor proBDNF, which has opposite effects, is not known. Their distribution between serum and exosomes and their evolution during antidepressant treatment is also not known, and may be important in modulating their effects. The aim of this study is to evaluate whether serum and exosome mBDNF and proBDNF levels are altered in patients with MD during antidepressant treatment compared to controls, and their association with clinical improvement and clinical variables. MATERIALS AND METHODS 42 MD subjects and 40 controls were included. Questionnaires to assess the severity of depression and cognitive impairment and blood samples were collected during the three visits at D0 (inclusion) and 3 and 7 weeks after the start of antidepressant treatment. Assays for mBDNF and proBDNF levels were performed in serum and exosomes by ELISA. RESULTS MD subjects had decreased serum and exosomal BDNF levels and increased proBDNF levels at D0 compared to controls. BDNF and pro-BDNF vary in an inverse manner in both serum and exosomes during antidepressant treatment. No relationship of BDNF and proBDNF levels to clinical improvement and depression scales was found. CONCLUSION We demonstrated an evolution of those molecules either in serum or in exosomes after MD treatment. These transport vesicles could have a role in the regulation of BDNF.
Collapse
|
7
|
Wang Y, Wang X, Li Y, Chen D, Liu Z, Zhao Y, Tu L, Wang S. Regulation of progranulin expression and location by sortilin in oxygen-glucose deprivation/reoxygenation injury. Neurosci Lett 2020; 738:135394. [PMID: 32949659 DOI: 10.1016/j.neulet.2020.135394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Progranulin is a secreted glycoprotein expressed in neurons and microglial cells that is involved in maintaining physiological functions. Many studies have found that progranulin may play a protective role against ischemic brain injury, but little is known about how the expression level and cellular localization status of progranulin is regulated after hypoxia-ischemia. Research has confirmed that sortilin, encoded by SORT1, can bind with progranulin and deliver a mature secretory isoform of progranulin to lysosomes, and progranulin is then cleaved. In the present study, we aimed to figure out whether sortilin could affect the expression and cellular localization of progranulin and regulate cell apoptosis during hypoxia-ischemia. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons was used to mimic hypoxic-ischemic episodes. After OGD/R, the neuroprotective effects of progranulin against hypoxia-ischemia were examined, and primary cortical neurons were transduced with a SORT1 knockdown lentivirus to inhibit the expression of sortilin. The results showed that sortilin inhibition increased PGRN expression and alleviated cell injury induced by hypoxia-ischemia. Additionally, sortilin inhibition was associated with less PGRN localization in lysosomes. All of these findings suggest that sortilin can regulate the expression of PGRN, most likely by transporting it to lysosomes and affecting the cell injury in hypoxia-ischemia.
Collapse
Affiliation(s)
- Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Zhao Liu
- Chongqing General Hospotal, University of Chinese Academy of Science, China
| | - Yu Zhao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Liu Tu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|