1
|
Tian R, Li R, Chen Y, Liu D, Li Y, He S, Pan T, Qu H, Tan R. Shenfu injection ameliorates endotoxemia-associated endothelial dysfunction and organ injury via inhibiting PI3K/Akt-mediated glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118634. [PMID: 39089657 DOI: 10.1016/j.jep.2024.118634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microcirculatory dysfunction is one of the main characteristics of sepsis. Shenfu Injection (SFI) as a traditional Chinese medicine is widely applied in clinical severe conditions. Recent studies have shown that SFI has the ability to ameliorate sepsis-induced inflammation and to improve microcirculation perfusion. AIM OF THE STUDY This study aims to investigate the underlying mechanism of SFI for ameliorating sepsis-associated endothelial dysfunction and organ injury. MATERIALS AND METHODS Side-stream dark-field (SDF) imaging was used to monitor the sublingual microcirculation of septic patients treated with or without SFI. Septic mouse model was used to evaluate the effects of SFI in vivo. Metabolomics and transcriptomics were performed on endothelial cells to identify the underlying mechanism for SFI-related protective effect on endothelial cells. RESULTS SFI effectively abolished the disturbance and loss of sublingual microcirculation in septic patients. Twenty septic shock patients with or without SFI administration were enrolled and the data showed that SFI significantly improved the levels of total vessel density (TVD), perfused vessel density (PVD), microvascular flow index (MFI), and the proportion of perfused vessels (PPV). The administration of SFI significantly decreased the elevated plasma levels of Angiopoietin-2 (Ang2) and Syndecan-1, which are biomarkers indicative of endothelial damage in sepsis patients. In the mouse septic model in vivo, SFI inhibited the upregulation of endothelial adhesion molecules and Ly6G + neutrophil infiltration while restored the expression of VE-Cadherin in the vasculature of the lung, kidney, and liver tissue. Additionally, SFI reduced the plasma levels of Ang2, Monocyte Chemoattractant Protein-1(MCP1), and Interleukin-6 (IL6), and alleviated liver and kidney injury in septic mice. Moreover, SFI significantly inhibited the inflammatory activation and increased permeability of endothelial cells induced by endotoxins in vitro. By performing metabolomics and transcriptomics, we identified the activation of PI3K/Akt-mediated glycolysis as the underlying mechanism for SFI-related protective effect on endothelial cells. CONCLUSIONS Our findings revealed that SFI may improve microcirculation perfusion and endothelial function in sepsis via inhibiting PI3K/Akt-mediated glycolysis, providing theoretical evidence for the clinical application of SFI.
Collapse
Affiliation(s)
- Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Di Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Shiyuan He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
2
|
Wang Y, Wang B, Ling H, Li Y, Fu S, Xu M, Li B, Liu X, Wang Q, Li A, Zhang X, Liu M. Navigating the Landscape of Coronary Microvascular Research: Trends, Triumphs, and Challenges Ahead. Rev Cardiovasc Med 2024; 25:288. [PMID: 39228508 PMCID: PMC11366996 DOI: 10.31083/j.rcm2508288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 09/05/2024] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to structural and functional abnormalities of the microcirculation that impair myocardial perfusion. CMD plays a pivotal role in numerous cardiovascular diseases, including myocardial ischemia with non-obstructive coronary arteries, heart failure, and acute coronary syndromes. This review summarizes recent advances in CMD pathophysiology, assessment, and treatment strategies, as well as ongoing challenges and future research directions. Signaling pathways implicated in CMD pathogenesis include adenosine monophosphate-activated protein kinase/Krüppel-like factor 2/endothelial nitric oxide synthase (AMPK/KLF2/eNOS), nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), Angiotensin II (Ang II), endothelin-1 (ET-1), RhoA/Rho kinase, and insulin signaling. Dysregulation of these pathways leads to endothelial dysfunction, the hallmark of CMD. Treatment strategies aim to reduce myocardial oxygen demand, improve microcirculatory function, and restore endothelial homeostasis through mechanisms including vasodilation, anti-inflammation, and antioxidant effects. Traditional Chinese medicine (TCM) compounds exhibit therapeutic potential through multi-targeted actions. Small molecules and regenerative approaches offer precision therapies. However, challenges remain in translating findings to clinical practice and developing effective pharmacotherapies. Integration of engineering with medicine through microfabrication, tissue engineering and AI presents opportunities to advance the diagnosis, prediction, and treatment of CMD.
Collapse
Affiliation(s)
- Yingyu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital,
Hengyang Medical School, University of South China, 410000 Changsha, Hunan, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Sunjing Fu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Mengting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Qin Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center,
Peking University First Hospital, 100005 Beijing, China
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences &
Peking Union Medical College, 100005 Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, 100005 Beijing, China
- Diabetes Research Center, Chinese Academy of Medical Science, 100005
Beijing, China
| |
Collapse
|
3
|
Li L, Ye J, Zhao Z, Hu S, Liang H, Ouyang J, Hu Z. Shenfu injection improves isoproterenol-induced heart failure in rats by modulating co-metabolism and regulating the trimethylamine-N-oxide - inflammation axis. Front Pharmacol 2024; 15:1412300. [PMID: 38966553 PMCID: PMC11222397 DOI: 10.3389/fphar.2024.1412300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
Heart failure (HF) is a chronic condition that progressively worsens and continues to be a major financial burden and public health concern. The "gut-heart" axis provides an innovative perspective and therapeutic strategy for preventing and treating heart failure. Shenfu injection (SFI) is a Traditional Chinese Medicine-based treatment demonstrating potential as a therapeutic strategy for heart failure. However, the precise therapeutic mechanisms of SFI in heart failure are not completely characterized. In this study, HF models were established utilizing subcutaneous multipoint injection of isoproterenol (ISO) at a dosage of 5 mg kg-1·d-1 for 7 days. Serum levels of inflammatory biomarkers were quantified using protein microarrays. Rat feces were analyzed using untargeted metabolomics research and 16S rRNA sequencing. The link between gut microbiota and metabolites was examined using a MetOrigin and Spearman correlation analysis. Our results show that Shenfu injection effectively enhances cardiac function in rats with ISO-induced heart failure by potentially modulating pro-/anti-inflammatory imbalance and reducing serum and urine Trimethylamine-N-oxide (TMAO) levels. Moreover, SFI significantly increases the abundance of Bacteroidota at the phylum level, thereby improving disrupted gut microbiota composition. Additionally, SFI supplementation enriches specific genera known for their capacity to produce short-chain fatty acids. SFI was found to be associated with three key metabolic pathways, as revealed by fecal metabonomics analysis, including the pentose phosphate pathway, pyrimidine metabolism, and purine metabolism. Metabolite tracing analysis revealed that Taurine and hypotaurine metabolism was found to be specific to the microbial community. The biosynthesis of Pyrimidine metabolism, Purine metabolism, beta-alanine metabolism, Naphthalene degradation, Pantothenate, and CoA biosynthesis were identified as co-metabolic pathways between microbes and host. The Spearman correlation analysis was also significantly correlated to differentially expressed metabolites regulated by SFI and the gut microbiota. These results suggest that SFI improves ISO-induced heart failure by modulating co-metabolism and regulating the TMAO-inflammation axis.
Collapse
Affiliation(s)
- Lin Li
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiahao Ye
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenyu Zhao
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyuan Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hao Liang
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ji Ouyang
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhixi Hu
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Hua T, Lu Z, Wang M, Zhang Y, Chu Y, Liu Y, Xiao W, Zhou W, Cui X, Shi W, Zhang J, Yang M. Shenfu injection alleviate gut ischemia/reperfusion injury after severe hemorrhagic shock through improving intestinal microcirculation in rats. Heliyon 2024; 10:e31377. [PMID: 38845930 PMCID: PMC11153106 DOI: 10.1016/j.heliyon.2024.e31377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Background Shenfu (SF) injection, a traditional Chinese medication, would improve microcirculation in cardiogenic shock and infectious shock. This study was aimed to explore the therapeutic potential of the SF injection in gut ischemia-reperfusion (I/R) injury after severe hemorrhagic shock (SHS) and resuscitation. Furthermore, we also investigated the optimal adm? inistration timing. Methods Twenty-four male SD rats were randomly divided into four groups: Sham group (sham, n = 6), Control group (n = 6), SF injection group (SF, n = 6), and Delayed Shenfu injection administration group (SF-delay, n = 6). In SHS and resuscitation model, rats were induced by blood draw to a mean arterial pressure (MAP) of 40 ± 5 mmHg within 1 h and then maintained for 40 min; HR, MAP 'were recorded, microcirculation index [De Backer score, perfused small vessel density (PSVD), total vessel density (TVD), microcirculation flow index score (MFI), flow heterogeneity index (HI)] were analyzed. The blood gas index was detected, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), diamine oxidase (DAO), malondialdehyde (MDA) were measured by ELISA; ZO-1, and claudin-1 were measured by Western blotting. In addition, hematoxylin-eosin (HE) and periodic acid schiff (PAS) staining pathological sections of the intestinal mucosal tissues were also performed. Results SF injection increased the MAP, relieved the metabolic acidosis degree associated with the hypoperfusion, and improved the intestinal microcirculatory density and perfusion quality after I/R injury. The expression of DAO, MDA in intestinal tissue, and plasma IL-6, TNF-α significantly decreased in the SF injection group compared to the control group. The concentration of ZO-1 and claudin-1 is also higher in the SF injection group. In addition, the HE and PAS staining results also showed that SF injection could decrease mucosal damage and maintain the structure. In the SF-delay group, the degree of intestinal tissue damage was intermediate between that of the control group and SF injection group. Conclusions SF injection protect the intestine from I/R injury induced by SHS and resuscitation, the mechanism of which might be through improving intestinal microcirculation, reducing the excessive release of inflammatory factors and increasing intestinal mucosal permeability. Furthermore, the protection effect is more pronounced if administration during the initial resuscitation phase.
Collapse
Affiliation(s)
- Tianfeng Hua
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Zongqing Lu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Minjie Wang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Yijun Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Yuqian Chu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Yue Liu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Cardiovascular Disease Center of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Wenyan Xiao
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Wuming Zhou
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Xuanxuan Cui
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Wei Shi
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Jin Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230601, PR China
| |
Collapse
|
5
|
Xu FF, Xie XF, Hu HY, Tong RS, Peng C. Shenfu injection: a review of pharmacological effects on cardiovascular diseases. Front Pharmacol 2024; 15:1279584. [PMID: 38420190 PMCID: PMC10899515 DOI: 10.3389/fphar.2024.1279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Shenfu injection (SFI), composed of ginseng and aconite, is a Chinese patent developed from the classic traditional prescription Shenfu Decoction created more than 700 years ago. SFI has been widely used in China for over 30 years for treating cardiovascular diseases. The main components in it include ginsenosides and aconitum alkaloids. In recent years, the role of SFI in the treatment of cardiovascular diseases has attracted much attention. The pharmacological effects and therapeutic applications of SFI in cardiovascular diseases are summarized here, highlighting pharmacological features and potential mechanisms developments, confirming that SFI can play a role in multiple ways and is a promising drug for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Fei-Fei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Fang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Hu
- Sichuan Nursing Vocational College, Chengdu, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Berlin N, Shekhar AC, Berg KM. Shenfu injection as treatment for critical illness: a narrative review of clinical trials. J Thorac Dis 2024; 16:661-670. [PMID: 38410595 PMCID: PMC10894405 DOI: 10.21037/jtd-23-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/18/2023] [Indexed: 02/28/2024]
Abstract
Background and Objective Shenfu injection (SFI) is a traditional herbal medicine derived from components of ginseng and aconite and is commonly used in China to treat a variety of conditions. Shenfu has been suggested to have beneficial effects in various critical illnesses, including heart failure, cardiac arrest, and septic shock. In recent years, there have been a number of studies reporting that SFI improves patient outcomes when used concurrently with other treatments, but its use has not been adopted outside of China. This narrative review explored the results of clinical trials that have tested SFI's efficacy in various critical illnesses. Methods PubMed was searched for clinical trials, systematic reviews and meta-analyses published between 1990 and July 2022 relating to clinical trials using SFI in various critical illnesses. Systematic reviews and meta-analyses were included to enable inclusion of data from trials originally not published in English. The selected articles were then summarized in the following disease categories: heart failure, cardiac arrest, sepsis, and severe pulmonary disease. Key Content and Findings Clinical trials testing SFI in heart failure, cardiac arrest, sepsis, and pulmonary disease were reviewed. The design, methodology, and key findings of each trial or meta-analysis are summarized and discussed. Key limitations were also highlighted and discussed. Overall, several clinical trials suggest SFI may hold therapeutic potential for the treatment of critical illness, however, additional research is likely still needed. Conclusions Based on the current body of literature, further research-especially multi-center randomized, double-blind trials with detailed reporting of all methods and results according to international guidelines-is needed to evaluate whether SFI is a useful addition to existing treatments for these conditions.
Collapse
Affiliation(s)
- Noa Berlin
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Aditya C. Shekhar
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Katherine M. Berg
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
Shock is the clinical manifestation of acute circulatory failure, which results in inadequate utilization of cellular oxygen. It is a common condition with high mortality rates in intensive care units. The intravenous administration of Shenfu Injection (SFI) may attenuate inflammation, regulate hemodynamics and oxygen metabolism; inhibit ischemia-reperfusion responses; and have adaptogenic and antiapoptotic effects. In this review, we have discussed the clinical applications and antishock pharmacological effects of SFI. Further in-depth and large-scale multicenter clinical studies are warranted to determine the therapeutic effects of SFI on shock.
Collapse
Affiliation(s)
- Ming-Qing Zhang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chun-Sheng Li
- Department of Emergency Medicine, Critical Care Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China.
| |
Collapse
|
8
|
Yin K, Sheng J, Chen J, Gao F, Miao C, Liu D. Protective effect of phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide on vascular endothelial cells in vitro and in vivo. Chem Biol Drug Des 2023; 102:1213-1230. [PMID: 37550016 DOI: 10.1111/cbdd.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The purpose of this study was to prepare phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide (PPS) and investigate its protective effect on vascular endothelial cells (VECs) in vitro and in vivo and the underlying mechanisms. Sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) were used as phosphorylation reagents and PPS was characterized by Fourier transform infrared (FT-IR), 13 C nuclear magnetic resonance (13 C NMR) and 31 P nuclear magnetic resonance (31 P NMR) spectra. Chemical analysis demonstrated that PPS was composed of mannose, glucosamine, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose with a molar ratio of 11.36:0.42:4.03:1.12:1.81:0.26:33.25:24.12:6.85:14.46:2.32 and a molecular weight of 28,837 Da. Results from in vitro and in vivo assays revealed that PPS protected human umbilical vein endothelial cells (HUVECs) against H2 O2 -induced oxidative injury and attenuated D-galactose-induced VECs damage in mice. RNA sequencing (RNA-seq) analysis identified 18 differentially expressed genes (DEGs) between D-galactose-treated and PPS-pretreated mice abdominal aorta. A deep analysis of these DEGs disclosed that PPS regulated the expression of genes involved in the functions of vascular endothelium repairment, cell growth and proliferation, cell survival and apoptosis, inflammation, angiogenesis and antioxidant, indicating that these biological processes might play crucial roles in the protective actions of PPS on VECs.
Collapse
Affiliation(s)
- Kaiyue Yin
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiyu Chen
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Changqing Miao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China,Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China,Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
10
|
Zhang J, Li D, Zhong D, Zhou Q, Yin Y, Gao J, Peng C. Processed lateral root of Aconitum carmichaelii Debx.: A review of cardiotonic effects and cardiotoxicity on molecular mechanisms. Front Pharmacol 2022; 13:1026219. [PMID: 36324672 PMCID: PMC9618827 DOI: 10.3389/fphar.2022.1026219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fuzi, the lateral root of A. carmichaelii Debx., is a typical traditional herbal medicine with both poisonousness and effectiveness, and often used in the treatment of heart failure and other heart diseases. In this review, we searched domestic and foreign literature to sort out the molecular mechanisms of cardiotonic and cardiotoxicity of Fuzi, also including its components. The major bioactive components of Fuzi for cardiotonic are total alkaloids, polysaccharide and the water-soluble alkaloids, with specific mechanisms manifested in the inhibition of myocardial fibrosis, apoptosis and autophagy, and improvement of mitochondrial energy metabolism, which involves RAAS system, PI3K/AKT, JAK/STAT, AMPK/mTOR signaling pathway, etc. Diester-diterpenoid alkaloids in Fuzi can produce cardiotoxic effects by over-activating Na+ and Ca2+ ion channels, over-activating NLRP3/ASC/caspase-3 inflammatory pathway and mitochondria mediated apoptosis pathway. And three clinically used preparations containing Fuzi are also used as representatives to summarize their cardiac-strengthening molecular mechanisms. To sum up, Fuzi has shown valuable cardiotonic effects due to extensive basic and clinical studies, but its cardiotonic mechanisms have not been systematically sorted out. Therefore, it is a need for deeper investigation in the mechanisms of water-soluble alkaloids with low content but obvious therapeutic effect, as well as polysaccharide.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinmei Zhou
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jihai Gao
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jihai Gao, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jihai Gao, ; Cheng Peng,
| |
Collapse
|
11
|
Chen L, Yu D, Ling S, Xu JW. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front Cardiovasc Med 2022; 9:988360. [PMID: 36172573 PMCID: PMC9510640 DOI: 10.3389/fcvm.2022.988360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
According to traditional Chinese medicine (TCM), chronic heart failure has the basic pathological characteristics of “heart-kidney yang deficiency.” Chronic heart failure with heart- and kidney-Yang deficiency has good overlap with New York Heart Association (NYHA) classes III and IV. Traditional Chinese medicine classical prescriptions for the treatment of chronic heart failure often take “warming and tonifying kidney-Yang” as the core, supplemented by herbal compositions with functions of “promoting blood circulation and dispersing blood stasis.” Nowadays, there are still many classical and folk prescriptions for chronic heart failure treatment, such as Zhenwu decoction, Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili Qiangxin capsule. This review focuses on classical formulations and their active constituents that play a key role in preventing chronic heart failure by suppressing inflammation and modulating immune and neurohumoral factors. In addition, given that mitochondrial metabolic reprogramming has intimate relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory role of classical prescriptions and their active components in metabolic reprogramming, including glycolysis and lipid β-oxidation, is also presented. Although the exact mechanism is unknown, the classical TCM prescriptions still have good clinical effects in treating chronic heart failure. This review will provide a modern pharmacological explanation for its mechanism and offer evidence for clinical medication by combining TCM syndrome differentiation with chronic heart failure clinical stages.
Collapse
|
12
|
Wang S, Liu G, Chen L, Xu X, Jia T, Zhu C, Xiong J. EFFECTS OF SHENFU INJECTION ON SUBLINGUAL MICROCIRCULATION IN SEPTIC SHOCK PATIENTS: A RANDOMIZED CONTROLLED TRIAL. Shock 2022; 58:196-203. [PMID: 35959775 DOI: 10.1097/shk.0000000000001975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Background and Objective: The optimization of macrocirculatory hemodynamics is recommended by current sepsis guidelines. However, microcirculatory dysfunction is considered the cause of severe sepsis. In the present study, we designed to verify whether the application of Shenfu injection (SFI) restores microcirculation, thereby improving tissue perfusion and inhibiting organ dysfunction, resulting in improved outcomes. Design: We conducted a prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Intervention: Patients were randomly assigned to group receiving SFI (n = 20) or placebo (n = 20) for 5 days. We administered SFI or glucose injection for 5 days and blinded the investigators and clinical staff by applying light-proof infusion equipment that concealed therapy allocation. Measurements and Results: We measured the systemic dynamics and lactate levels, biomarkers of endothelial dysfunction, and inflammatory cytokines in the plasma. The parameters of sublingual microcirculation were assessed using side-stream dark-field imaging. Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) score, total dose, and duration of vasopressor use, emergency intensive care unit (EICU) stay, and 28-day mortality were evaluated. After treatment with SFI, the disturbance of the sublingual microcirculation was considerably alleviated, as indicated by the significant increase in total vessel density, perfused vessel density, and microvascular flow index. Moreover, the plasma biomarker levels of endothelial dysfunction, including Ang-2, Syn-1, and ET-1, were reversed after SFI treatment. Importantly, the SFI group had a more favorable prognosis than the control group in terms of the APACHE-II score, SOFA score, duration of vasopressor administration, and length of EICU stay. However, the difference in mortality at day 28 was not statistically different between the SFI (15%, 3/20) and placebo (25%, 5/20) groups ( P = 0.693). Conclusions : Shenfu injection provided apparent effects in improving sublingual microcirculatory perfusion in patients with septic shock, and this protection may be related with the inhibition of endothelial dysfunction and vasodilatory effects.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Xu C, Xia Y, Jia Z, Wang S, Zhao T, Wu L. The curative effect of Shenfu-injection in the treatment of burn sepsis and its effect on the patient's immune function, HMGB, and vWF. Am J Transl Res 2022; 14:2428-2435. [PMID: 35559405 PMCID: PMC9091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate and analyze the immune regulatory effect of Shenfu-Injection (SFI) on patients with burn-injured sepsis by monitoring the serum level of high mobility group box 1 (HMGB1) and von Willebrand factor (vWF). METHODS In this retrospective study, the Acute Physiology and Chronic Health Evaluation (APACHE II) score, Marshall score, peripheral blood T lymphocyte count, and NK cell concentration, levels of cytokines such as HMGB-1, and vWF in peripheral blood before and after treatment in patients from the control group (convention treatments, n=51) and the observation group (convention treatments plus SFI treatment, n=57) were analyzed. The prognosis of the two groups of patients at 28 days was analyzed and compared. RESULTS After treatment, APACHE II score, Marshall score, IL-6, CPR, HMGB-1, and vWF in patients from the two groups decreased greatly when compared with those before the treatment (P<0.05). The APACHE II score, Marshall score, IL-6, CPR, HMGB-1, and vWF in the group for observation were significantly lower (P<0.05) than those in the control group. Concentrations of CD3+, CD4+, and NK cells in these two groups after 7 days of treatment were greatly higher than those before the treatment (P<0.05). Concentrations of CD3+, CD4+, and NK cells in the observation group were higher than those in the control group after treatment (P<0.05). There was no significant difference in terms of mortality between these two groups after 28 days (P<0.05). The average survival time of the non-survivors in the observation group was significantly longer than that in the control group (P<0.05). CONCLUSION SFI can effectively improve the immunity of patients with burn-injured sepsis, reduce the expression of cytokines such as HMGB and vWF, and is of great help for the improvement of clinical prognosis.
Collapse
Affiliation(s)
- Chuanzhen Xu
- Department of Burn and Plastic Surgery, Binzhou Medical University HospitalBinzhou 256603, Shandong, China
| | - Yongfu Xia
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University HospitalBinzhou 256603, Shandong, China
| | - Zhuting Jia
- Department of Emergency Medicine, Binzhou Medical University HospitalBinzhou 256603, Shandong, China
| | - Shasha Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University HospitalBinzhou 256603, Shandong, China
| | - Tongzhen Zhao
- Department of Oncology, Binzhou Municipal Hospital of Traditional Chinese MedicineBinzhou 256603, Shandong, China
| | - Liqiang Wu
- Department of Emergency Medicine, Binzhou Medical University HospitalBinzhou 256603, Shandong, China
| |
Collapse
|
14
|
Han NR, Kim KC, Kim JS, Park HJ, Ko SG, Moon PD. SBT (Composed of Panax ginseng and Aconitum carmichaeli) and Stigmasterol Enhances Nitric Oxide Production and Exerts Curative Properties as a Potential Anti-Oxidant and Immunity-Enhancing Agent. Antioxidants (Basel) 2022; 11:199. [PMID: 35204082 PMCID: PMC8868359 DOI: 10.3390/antiox11020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Immune dysregulation is a risk factor for several diseases, including infectious diseases. Immunostimulatory agents have been used for the treatment of immune dysregulation, but deleterious adverse effects have been reported. The present study aims to establish the anti-oxidant and immunity-enhancing effects of Sambu-Tang (SBT), composed of Panax ginseng and Aconitum carmichaeli, and stigmasterol (Stig), an active compound of SBT. Immune-related factors were analyzed in RAW264.7 macrophage cells, mouse primary splenocytes, and the serum and spleen of cyclophosphamide-induced immunosuppressed mice. Results showed that the production levels of nitric oxide (NO) and expression levels of inducible NO synthase and heme oxygenase-1 were increased following SBT or Stig treatment in RAW264.7 cells. SBT or Stig increased the production levels of G-CSF, IFN-γ, IL-12, IL-2, IL-6, and TNF-α and induced the activation of NF-κB in RAW264.7 cells. SBT or Stig promoted splenic lymphocyte proliferation and increased splenic NK cell cytotoxic activity. In addition, SBT or Stig enhanced the levels of IFN-γ, IL-12, IL-2, IL-6, or TNF-α in the serum and spleen of the immunosuppressed mice. SBT or Stig increased the superoxide dismutase activity in the spleen. Collectively, SBT and Stig possess anti-oxidant and immunomodulatory activities, so they may be considered effective natural compounds for the treatment of various symptoms caused by immune dysregulation.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.-C.K.); (J.-S.K.)
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.-C.K.); (J.-S.K.)
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
15
|
Zhao Q, Tohda M. Clarifying the pharmacological mechanisms of action of Shenfu Decoction on cardiovascular diseases using a network pharmacology approach. Drug Discov Ther 2021; 15:197-203. [PMID: 34471004 DOI: 10.5582/ddt.2021.01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the molecular mechanisms underlying in the pathogenesis of cardiovascular diseases (CVD) are extremely complex and have not yet been elucidated in detail, CVD remain the leading cause of death worldwide. Traditional Chinese medicine involves the treatment of disease from an overall perspective, and its therapeutic effects on CVD have been demonstrated. However, the mechanisms contributing to the multiscale treatment of cardiovascular diseases at the systematic level remain unclear. Network pharmacology methods and a gene chip data analysis were integrated and applied in the present study, which was conducted to investigate the potential target genes and related pathways of Shenfu Decoction (SFD) for the treatment of myocardial injury. The gene chip analysis was initially performed, followed by network pharmacology to identify differentially expressed genes (DEG) and a functional enrichment analysis. Protein-protein networks were constructed and a module analysis was conducted. A network analysis was used to identify the target genes of SFD. Regarding the results obtained, 1134 DEG were identified using the STRING website. The module analysis revealed that nine hub genes exhibited ubiquitin-protein ligase activity. Therefore, SFD significantly alters the expression of ubiquitination-related genes and, thus, plays an important therapeutic role in the treatment of heart failure. In conclusion, hub genes may provide a more detailed understanding of the molecular mechanisms of action of as well as candidate targets for SFD therapy.
Collapse
Affiliation(s)
- Qingfeng Zhao
- Field of Consilienceology for Wakan-yaku, Major of Biological Information System Course, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Michihisa Tohda
- Field of Consilienceology for Wakan-yaku, Major of Biological Information System Course, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Laboratory of Consilienceology for Wakan-yaku, Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Ecklonia cava Extract and Its Derivative Dieckol Promote Vasodilation by Modulating Calcium Signaling and PI3K/AKT/eNOS Pathway in In Vitro and In Vivo Models. Biomedicines 2021; 9:biomedicines9040438. [PMID: 33921856 PMCID: PMC8073412 DOI: 10.3390/biomedicines9040438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO), an endothelial-derived relaxing factor synthesized by endothelial nitric oxide synthase (eNOS) in endothelial cells, enhances vasodilation by modulating vascular tone. The calcium concentration critically influences eNOS activation in endothelial cells. Thus, modulation of calcium-dependent signaling pathways may be a potential therapeutic strategy to enhance vasodilation. Marine algae reportedly possess protective effects against cardiovascular disorders, including hypertension and vascular dysfunction; however, the underlying molecular signaling pathways remain elusive. In the present study, we extracted and isolated dieckol from Ecklonia cava and investigated calcium transit-enhanced vasodilation. Calcium modulation via the well-known M3 muscarinic acetylcholine receptor (AchM3R), which is linked to NO formation, was investigated and the vasodilatory effect of dieckol was verified. Our results indicated that dieckol effectively promoted NO generation via the PI3K/Akt/eNOS axis and calcium transients influenced by AchM3R. We also treated Tg(flk: EGFP) transgenic zebrafish with dieckol to assess its vasodilatory effect. Dieckol promoted vasodilation by enlarging the dorsal aorta diameter, thus regulating blood flow velocity. In conclusion, our findings suggest that dieckol modulates calcium transit through AchM3R, increases endothelial-dependent NO production, and efficiently enhances vasodilation. Thus, E. cava and its derivative, dieckol, can be considered as potential natural vasodilators.
Collapse
|
17
|
A Critical Overview of Systematic Reviews of Shenfu Injection for Heart Failure. Cardiovasc Ther 2021; 2021:8816590. [PMID: 33777184 PMCID: PMC7960068 DOI: 10.1155/2021/8816590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/01/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Shenfu Injection (SFI) was widely used in the treatment of heart failure (HF) in China. A plethora of systematic reviews/meta-analyses (SRs/MAs) has been conducted in this research area, although with scattered results. The purpose of this overview was to conduct a comprehensive review to summarize and critically evaluate the existing evidence. Methods Digital databases were searched for SRs/MAs up to January 28, 2021. Two authors independently screened the reviews and assessed the methodological quality of included SRs/MAs using Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2). Quality of evidence for outcomes evaluated within the reviews was appraised with the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE). Results Thirteen SRs/MAs met the inclusion criteria. Based on AMSTAR-2, the quality of all SRs/MAs was critically low, because all of them have more than one critical domains that were unmet. Based on GRADE, the evidence quality of 24 outcome measures was low or very low, 27 outcome measures was moderate, and none outcome measure was high. Descriptive analysis showed that SFI was an effective and safe method for HF. Conclusions The use of SFI for the treatment of HF may be clinically effective and safe. However, this conclusion must be interpreted cautiously due to the generally low methodological quality and low evidence quality of the included SRs/MAs. More rigorously designed SRs/MAs and RCTs with high methodological quality are necessary for further proof.
Collapse
|
18
|
Chen R, Chen T, Wang T, Dai X, Zhang S, Jiang D, Meng K, Wang Y, Geng T, Xu J, Zhou K, Wang Y. Tongmai Yangxin pill reduces myocardial No-reflow via endothelium-dependent NO-cGMP signaling by activation of the cAMP/PKA pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113462. [PMID: 33058924 DOI: 10.1016/j.jep.2020.113462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease. Previous studies have confirmed that TMYX can improve vascular endothelial function in patients with coronary heart disease by upregulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels remains unclear. AIM OF THE STUDY This study aimed to reveal whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels. The underlying cAMP/PKA and NO-cGMP signaling pathway-dependent mechanism is also explored. MATERIALS AND METHODS The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish the NR model. TMYX (4.0 g/kg) was orally administered throughout the experiment. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were used to evaluate the NR and ischemic areas. Pathological changes in the myocardium were assessed by hematoxylin-eosin staining. An automated biochemical analyzer and kit were used to detect the activities of myocardial enzymes and myocardial oxidants, including CK, CK-MB, LDH, reactive oxygen species, superoxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins related to the cAMP/PKA and NO/cGMP signaling pathways were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was used to detect coronary artery diastolic function in vitro. RESULTS TMYX elevated the EF, FS, LVOT peak, LVPWd and LVPWs values, decreased the LVIDd, LVIDs, LV-mass, IVSd, and LV Vols values, demonstrating cardio-protective effects, and reduced the NR and ischemic areas. Pathological staining showed that TMYX could significantly reduce inflammatory cell number and interstitial edema. The activities of CK, LDH, and MDA were reduced, NO activity was increased, and oxidative stress was suppressed after treatment with TMYX. TMYX not only enhanced the expression of Gs-α, AC, PKA, and eNOS but also increased the expression of sGC and PKG. Furthermore, TMYX treatment significantly decreased ROCK expression. We further showed that TMYX (25-200 mg/mL) relaxed isolated coronary microvessels. CONCLUSIONS TMYX attenuates myocardial NR after ischemia and reperfusion by activating the cAMP/PKA and NO/cGMP signaling pathways, further upregulating NO activity and relaxing coronary microvessels.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ting Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tianqi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shuying Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Di Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ke Meng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yanyan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tong Geng
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Research Institute Branch, Tianjin, 300457, China.
| | - Jinpeng Xu
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Drug Marketing Co., Ltd, Tianjin, 300193, China.
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
19
|
Ji X, Wang X, Ling Z, Lv Y, Yu W, Jia R, Ding H. Cys-peptide mediates the protective role in preeclampsia-like rat and cell models. Life Sci 2020; 251:117625. [PMID: 32247003 DOI: 10.1016/j.lfs.2020.117625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The present study was designed to investigate whether the novel peptide cysteine-based peptide (Cys-peptide) had protective effects on preeclamptic animal and cell models. METHODS We investigated effects of Cys-peptide on (1) preeclamptic symptoms (e.g. hypertension, proteinuria, fetal growth restriction (FGR)) in preeclampia-like rat models induced by lipopolysaccharides (LPS), (2) TNFα-induced cytotoxicity of human umbilical vascular endothelial cells (HUVECs) and HTR-8 cells (an immortalised human trophoblast cell line), (3) endothelial dysfunction and injured angiogenesis, (4) migration and invasion of trophoblast cells induced by TNFα. RESULTS Cys-peptide ameliorated LPS-induced hypertension, proteinuria and FGR and other PE symptoms in preeclampia-like rat models. In addition, Cys-peptide attenuated TNFα-induced cytotoxicity by decreasing soluble fms-like tyrosine kinase-1 (sFlt-1), endothelin-1 (ET-1) and tissue plasminogen activator (tPA) mRNA expression in both cells. Furthermore, Cys-peptide restored endothelial dysfunction and rescued angiogenesis caused by TNFα in vitro. Importantly, Cys-peptide could reverse insufficient ability to invade and migrate of trophoblast cells. CONCLUSIONS These results suggest Cys-peptide can play beneficial roles in preeclampsia-like rat and cell models. Therefore, we propose that Cys-peptide is probably a novel therapeutic candidate for PE.
Collapse
Affiliation(s)
- Xiaohong Ji
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xing Wang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Zhonghui Ling
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yan Lv
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Wei Yu
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ruizhe Jia
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China.
| | - Hongjuan Ding
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China.
| |
Collapse
|