1
|
Costa RM, Cerqueira DM, Bruder-Nascimento A, Alves JV, Awata WMC, Singh S, Kufner A, Prado DS, Johny E, Cifuentes-Pagano E, Hawse WF, Dutta P, Pagano PJ, Ho J, Bruder-Nascimento T. Role of the CCL5 and Its Receptor, CCR5, in the Genesis of Aldosterone-Induced Hypertension, Vascular Dysfunction, and End-Organ Damage. Hypertension 2024; 81:776-786. [PMID: 38240165 PMCID: PMC10954408 DOI: 10.1161/hypertensionaha.123.21888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Center for Pediatrics Research in Obesity and Metabolism at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Department of Medicine, Division of Cardiology (R.M.C., P.D.), University of Pittsburgh, PA
- Academic Unit of Health Sciences, Federal University of Jatai, GO, Brazil (R.M.C.)
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil (R.M.C.)
| | - Débora M Cerqueira
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Nephrology Division at UPMC Children's Hospital of Pittsburgh (D.M.C., J.H.), University of Pittsburgh, PA
| | - Ariane Bruder-Nascimento
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Center for Pediatrics Research in Obesity and Metabolism at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
| | - Juliano V Alves
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Center for Pediatrics Research in Obesity and Metabolism at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
| | - Wanessa M C Awata
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Center for Pediatrics Research in Obesity and Metabolism at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
| | - Shubhnita Singh
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Center for Pediatrics Research in Obesity and Metabolism at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
| | - Alexander Kufner
- Vascular Medicine Institute (A.K., E.J., E.C.-P., P.D., P.J.P., T.B.-N.), University of Pittsburgh, PA
- Department of Pharmacology and Chemical Biology (A.K., E.C.-P., P.J.P.), University of Pittsburgh, PA
| | - Douglas S Prado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA (D.S.P., W.F.H., P.D.), University of Pittsburgh, PA
| | - Ebin Johny
- Vascular Medicine Institute (A.K., E.J., E.C.-P., P.D., P.J.P., T.B.-N.), University of Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Vascular Medicine Institute (A.K., E.J., E.C.-P., P.D., P.J.P., T.B.-N.), University of Pittsburgh, PA
- Department of Pharmacology and Chemical Biology (A.K., E.C.-P., P.J.P.), University of Pittsburgh, PA
| | - William F Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA (D.S.P., W.F.H., P.D.), University of Pittsburgh, PA
| | - Partha Dutta
- Vascular Medicine Institute (A.K., E.J., E.C.-P., P.D., P.J.P., T.B.-N.), University of Pittsburgh, PA
- Department of Medicine, Division of Cardiology (R.M.C., P.D.), University of Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA (D.S.P., W.F.H., P.D.), University of Pittsburgh, PA
| | - Patrick J Pagano
- Vascular Medicine Institute (A.K., E.J., E.C.-P., P.D., P.J.P., T.B.-N.), University of Pittsburgh, PA
- Department of Pharmacology and Chemical Biology (A.K., E.C.-P., P.J.P.), University of Pittsburgh, PA
| | - Jacqueline Ho
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Nephrology Division at UPMC Children's Hospital of Pittsburgh (D.M.C., J.H.), University of Pittsburgh, PA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, (R.M.C., D.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., J.H., T.B.-N.), University of Pittsburgh, PA
- Center for Pediatrics Research in Obesity and Metabolism at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh (R.M.C., A.B.-N., J.V.A., W.M.C.A., S.S., T.B.-N.), University of Pittsburgh, PA
- Vascular Medicine Institute (A.K., E.J., E.C.-P., P.D., P.J.P., T.B.-N.), University of Pittsburgh, PA
| |
Collapse
|
2
|
Gilly A, Park YC, Tsafantakis E, Karaleftheri M, Dedoussis G, Zeggini E. Genome-wide meta-analysis of 92 cardiometabolic protein serum levels. Mol Metab 2023; 78:101810. [PMID: 37778719 PMCID: PMC10582065 DOI: 10.1016/j.molmet.2023.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVES Global cardiometabolic disease prevalence has grown rapidly over the years, making it the leading cause of death worldwide. Proteins are crucial components in biological pathways dysregulated in disease states. Identifying genetic components that influence circulating protein levels may lead to the discovery of biomarkers for early stages of disease or offer opportunities as therapeutic targets. METHODS Here, we carry out a genome-wide association study (GWAS) utilising whole genome sequencing data in 3,005 individuals from the HELIC founder populations cohort, across 92 proteins of cardiometabolic relevance. RESULTS We report 322 protein quantitative trait loci (pQTL) signals across 92 proteins, of which 76 are located in or near the coding gene (cis-pQTL). We link those association signals with changes in protein expression and cardiometabolic disease risk using colocalisation and Mendelian randomisation (MR) analyses. CONCLUSIONS The majority of previously unknown signals we describe point to proteins or protein interactions involved in inflammation and immune response, providing genetic evidence for the contributing role of inflammation in cardiometabolic disease processes.
Collapse
Affiliation(s)
- Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany.
| |
Collapse
|
3
|
Mei J, Wang Y, Song X, Xie XH, Wang G, Chen C, Chen G, Liu Z. The needle in the haystack: Identifying and validating common genes of depression, insomnia, and inflammation. J Affect Disord 2023; 342:45-53. [PMID: 37657625 DOI: 10.1016/j.jad.2023.08.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Insomnia, inflammation, and depression are often co-occurring conditions. The mechanisms underlying these conditions remain unclear. MATERIALS AND METHODS We collected microarray datasets of depression and insomnia from GEO and analyzed them for differentially expressed genes (DEGs). We then overlapped the DEGs with a list of inflammatory response-related genes to identify genes associated with all three conditions. We next performed analyses of enrichment analyses, KEGG mapping, and protein-protein interaction to identify hub genes. Furthermore, we established a depression rat model with inflammation and insomnia to validate the potential genes. At last, a two-sample Mendelian randomization (MR) study was conducted to confirm the association of identified target genes with depression outcomes. RESULTS We obtained 32 common DEGs associated with the depression, insomnia and inflammatory, and found that the PI3K-AKT signaling pathway might be involved in the inflammatory response in insomnia and depression. CREB1, CYBB, FYN, and CCR5 were identified as targets for the next validation. In model rats, the CCR5 and PI3K-AKT pathways were significantly up-regulated, while the model group exhibited significantly lower hippocampal p-CREB protein expression. The MR study suggested a potential causal relationship between CREB1 and the risk of depression (OR = 1.11, p = 0.013). LIMITATIONS The identified potential genes and pathways require further laboratory and clinical evidence verification. CONCLUSION We identified four potential inflammatory related-genes (CREB1, CYBB, FYN, and CCR5). CREB1 may be a potential inflammatory response-related biomarker and drug target for depression and insomnia, as validated by the followed rat model and MR study.
Collapse
Affiliation(s)
- Junhua Mei
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan 430060, China
| | - Ying Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan 430060, China
| | - Xinhua Song
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan 430060, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan 430060, China
| | - Guang Wang
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao Chen
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Chen
- Department of Neurology, Wuhan First Hospital, No. 215 Zhongshan Road, Wuhan 430022, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan 430060, China; Taikang center for life and medical sciences, Wuhan University, Wuhan 430000, PR China.
| |
Collapse
|
4
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Costa RM, Cerqueira DM, Bruder-Nascimento A, Alves JV, Awata WAC, Singh S, Kufner A, Cifuentes-Pagano E, Pagano PJ, Ho J, Bruder-Nascimento T. Role Of The C-C Motif Chemokine Ligand 5 (CCL5) And Its Receptor, C-C Motif Chemokine Receptor 5 (CCR5) In The Genesis Of Aldosterone-induced Hypertension, Vascular Dysfunction, And End-organ Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558020. [PMID: 37790434 PMCID: PMC10542153 DOI: 10.1101/2023.09.22.558020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Aldosterone, a mineralocorticoid steroid hormone, has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of C-C Motif Chemokine Ligand 5 (CCL5) and its receptor, C-C Motif Chemokine Receptor 5 (CCR5), are well known in infectious diseases, but their roles in the genesis of aldosterone-induced vascular injury and hypertension are unknown. Methods We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 μg/kg/day for 14 days) while receiving 1% saline to drink. Results Here, we show that CCR5 plays a central role in aldosterone-induced vascular injury, hypertension, and renal damage. Long-term infusion of aldosterone in CCR5+/+ mice resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression. Aldosterone treatment also triggered vascular injury, characterized by endothelial dysfunction and inflammation, hypertension, and renal damage. Mice lacking CCR5 were protected from aldosterone-induced vascular damage, hypertension, and renal injury. Mechanistically, we demonstrated that CCL5 increased NADPH oxidase 1 (Nox1) expression, reactive oxygen species (ROS) formation, NFκB activation, and inflammation and reduced nitric oxide production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aortae incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking Nox1, NFκB, or with Maraviroc treatment. Conclusions Our data demonstrate that CCL5/CCR5, through activation of NFkB and Nox1, is critically involved in aldosterone-induced vascular and renal damage and hypertension. Our data place CCL5 and CCR5 as potential targets for therapeutic interventions in conditions with aldosterone excess.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, BR
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, BR
| | - Débora M Cerqueira
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Nephrology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ariane Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V Alves
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa A C Awata
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Kufner
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugenia Cifuentes-Pagano
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Pagano
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacqueline Ho
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Nephrology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Pawluk H, Kołodziejska R, Grześk G, Woźniak A, Kozakiewicz M, Kosinska A, Pawluk M, Grześk-Kaczyńska M, Grzechowiak E, Wojtasik J, Kozera G. The Potential Role of RANTES in Post-Stroke Therapy. Cells 2023; 12:2217. [PMID: 37759440 PMCID: PMC10526279 DOI: 10.3390/cells12182217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
One of the key response mechanisms to brain damage, that results in neurological symptoms, is the inflammatory response. It triggers processes that exacerbate neurological damage and create the right environment for the subsequent repair of damaged tissues. RANTES (Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted) chemokine(C-C motif) ligand 5 (CCL5) is one of the chemokines that may have a dual role in stroke progression involving aggravating neuronal damage and playing an important role in angiogenesis and endothelial repair. This study concerned patients with ischemic stroke (AIS), whose CCL5 concentration was measured at various time intervals and was compared with the control group. In addition, the effect of this biomarker on neurological severity and functional prognosis was investigated. Compared to healthy patients, a higher concentration of this chemokine was demonstrated in less than 4.5 h, 24 h and on the seventh day. Differences in CCL5 levels were found to be dependent on the degree of disability and functional status assessed according to neurological scales (modified Rankin Scale, National Institutes of Health Stroke Scale). In addition, differences between various subtypes of stroke were demonstrated, and an increase in CCL5 concentration was proven to be a negative predictor of mortality in patients with AIS. The deleterious effect of CCL5 in the acute phase of stroke and the positive correlation between the tested biomarkers of inflammation were also confirmed.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168 Bydgoszcz, Poland; (G.G.); (M.G.-K.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Mariusz Kozakiewicz
- Division of Biochemistry and Biogerontology, Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3, 85-626 Bydgoszcz, Poland;
| | - Agnieszka Kosinska
- Centre for Languages & International Education, University College London, 26 Bedford Way, London WC1H 0AP, UK;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (A.W.); (M.P.)
| | - Magdalena Grześk-Kaczyńska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168 Bydgoszcz, Poland; (G.G.); (M.G.-K.)
| | - Elżbieta Grzechowiak
- Department of Neurology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Marii Skłodowskiej Curie 9, 85-094 Bydgoszcz, Poland;
| | - Jakub Wojtasik
- Statistical Analysis Centre, Nicolaus Copernicus University in Toruń, Chopin 12/18, 87-100 Toruń, Poland;
| | - Grzegorz Kozera
- Centre of Medical Simulations, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland;
| |
Collapse
|
7
|
da Silva LS, Germano DB, Fonseca FAH, Shio MT, da Silva Nali LH, Tuleta ID, Juliano Y, de Oliveira Izar MC, Ribeiro AP, Kato JT, do Amaral JB, França CN. Persistence of a proinflammatory status after treatment of the acute myocardial infarction. Geriatr Gerontol Int 2023; 23:700-707. [PMID: 37522226 DOI: 10.1111/ggi.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
AIM To evaluate the lipid-lowering and antiplatelet combined strategies on the expression of the receptors CCR2, CCR5, and CX3CR1 and the percentage of CCR2, CCR5, and CX3CR1 cells in monocyte subtypes after acute myocardial infarction. METHODS Prospective, randomized, open-label study, with blinded analyses of endpoints (PROBE, ClinicalTrials.gov Identifier: NCT02428374, registration date: April 28, 2015). Participants were treated with rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg. The chemokine receptors CCR2, CCR5, and CX3CR1 were analyzed by real-time polymerase chain reaction as well as the percentages of CCR2, CCR5, and CX3CR1 cells in the monocyte subtypes (classical, intermediate, and non-classical), which were quantified by flow cytometry, at baseline, and after 1 and 6 months of treatment. RESULTS After comparisons between the three visits, regardless of the treatment arm, there was an increase in CCR2 expression after treatment, as well as an increase in intermediate monocytes CCR2+ and a reduction in non-classical monocytes CCR2+ at the end of treatment. There was also a lower expression of CCR5 after treatment and an increase in classical and non-classical monocytes CCR5+. Concerning CX3CR1, there were no differences in the expression after treatment; however, there were reductions in the percentage of intermediate and non-classical monocytes CX3CR1+ at the end of treatment. CONCLUSIONS The results suggest the persistence of the inflammatory phenotype, known as trained immunity, even with the highly-effective lipid-lowering and antiplatelet therapies. Geriatr Gerontol Int 2023; 23: 700-707.
Collapse
Affiliation(s)
| | | | | | - Marina Tiemi Shio
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Ana Paula Ribeiro
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Juliana Tieko Kato
- Medicine Department, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| |
Collapse
|
8
|
Alshammary AF, Alshammari AM, Alsobaie SF, Alageel AA, Ali Khan I. Evidence from genetic studies among rs2107538 variant in the CCL5 gene and Saudi patients diagnosed with type 2 diabetes mellitus. Saudi J Biol Sci 2023; 30:103658. [PMID: 37181637 PMCID: PMC10172835 DOI: 10.1016/j.sjbs.2023.103658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder that affects the adult population. Chemokines are proinflammatory cytokines that play a role in the development of chronic diseases such as obesity, gestational diabetes, and T2DM. The C-C Motif Chemokine Ligand 5 (CCL5) gene plays a role in antiviral immunity, tumor development, obesity, impaired glucose tolerance, and T2DM. This study aimed to investigate the genetic role of the rs2107538 variant in the CCL5 gene in Saudi patients with T2DM. Sixty subjects with T2DM patients and 60 healthy controls participated in this prospective case-control study. Prior to Sanger sequencing, genomic DNA was extracted and amplified with Polymerase chain reaction (PCR), after which the PCR products were purified. The collected data were used to conduct various statistical analyses to determine the relationship between T2DM and control subjects. The findings of the current study revealed a positive association for most parameters between T2DM and control subjects (p < 0.05). The frequency of genotypes (p = 0.002, AA vs.GG: p = 0.008, GA + AA vs. GG: p = 0.0002) and alleles (A vs. G: p = 0.0007) revealed a strong risk association. Multiple logistic regression with individual effects revealed a link between SBP and HDLc levels (p = 0.03). In patients with T2DM, waist (p = 0.001), TG (p = 0.0007), and LDLc (p = 0.0004) levels were all associated with the ANOVA. Finally, the rs2107538 variant was linked to an increased risk of T2DM in the Saudi Population. The GA and AA genotypes were strongly connected to the T2DM subjects. In order to rule out disease-causing variants in the global population, future research should use a large sample size.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Abdulrahman M. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarah F. Alsobaie
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Arwa A. Alageel
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Imran Ali Khan
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Nowicki M, Wierzbowska A, Szymańska B, Nowicki G, Szmigielska-Kapło A. Inflammation-related mRNA expression in patients with multiple myeloma undergoing hematopoietic stem cell mobilization. Exp Hematol 2023:S0301-472X(23)00069-3. [PMID: 36906219 DOI: 10.1016/j.exphem.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Mobilization of CD34+ cells is a key element in the therapy of patients with multiple myeloma undergoing autologous stem cell transplantation. The use of chemotherapy and the granulocyte colony-stimulating factor can significantly affect the expression of inflammation-related proteins and the migration of hematopoietic stem cells. We assessed the mRNA expression of selected proteins involved in the inflammatory landscape in MM patients (n=71). The aim of the study was to evaluate C-C motif chemokine ligand 3, 4, 5 (CCL3, CCL4, CCL5), leukocyte cell-derived chemotaxin 2 (LECT2), tumor necrosis factor (TNF), and formyl peptide receptor 2 (FPR2) levels in the course of mobilization and their role in the CD34+ collection efficacy. mRNA expression from peripheral blood plasma was evaluated by RT-PCR. We observed a deep decline in CCL3, CCL4, LECT2, and TNF mRNA expression on the day of the first apheresis (day A) as compared to baseline. A negative correlation was observed between CCL3, FPR2, LECT2, TNF level, and the CD34+ cells count in peripheral blood on day A, and the number of CD34+ cells obtained at first apheresis . Our results indicate that the investigated mRNAs significantly alter and may regulate the migration of CD34+ cells during mobilization. Moreover, in case of FPR2 and LECT2, the results obtained in patients differ from the murine models.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Poland; Department of Hematology, Medical University of Lodz, Poland.
| | - Agnieszka Wierzbowska
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Poland; Department of Hematology, Medical University of Lodz, Poland
| | - Bożena Szymańska
- Central Scientific Laboratory, Medical University of Lodz, Poland
| | | | - Anna Szmigielska-Kapło
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Poland; Department of Hematology, Medical University of Lodz, Poland
| |
Collapse
|
10
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
11
|
CCL5 Levels Predict Stroke Volume Growth in Acute Ischemic Stroke and Significantly Diminish in Hemorrhagic Stroke Patients. Int J Mol Sci 2022; 23:ijms23179967. [PMID: 36077361 PMCID: PMC9456070 DOI: 10.3390/ijms23179967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke remains an important health challenge. Here, we study whether circulating chemokine (C-C motif) ligand 5 (CCL5) levels may predict clinical outcomes for stroke patients. A total of 100 consecutive stroke patients (36 acute ischemic and 64 hemorrhagic) were admitted to the stroke unit. Clinical history data and monitoring parameters were recorded. Blood serum was collected at days 0, 1, and hospital discharge to measure CCL5 levels by ELISA. Infarct or hemorrhagic volume, neurological severity (NIHSS), and functional prognosis (mRankin scale) were measured as clinical outcomes. CCL5 levels were lower in patients with hemorrhagic stroke than in patients with acute ischemic stroke. No differences were found between females and males in both types of stroke. Ischemic stroke patients whose infarct volume grew had lower CCL5 levels at day 0. Levels of CCL5 in ischemic and hemorrhagic patients were not associated with more severe symptoms/worse prognosis (NIHSS > 3; mRankin > 2) at admission or at 3 months. CCL5 could be used as a diagnostic marker to distinguish between ischemic and hemorrhagic strokes. Furthermore, CCL5 levels could predict the infarct volume outcomes in ischemic patients.
Collapse
|
12
|
van Eekeren LE, Matzaraki V, Zhang Z, van de Wijer L, Blaauw MJT, de Jonge MI, Vandekerckhove L, Trypsteen W, Joosten LAB, Netea MG, de Mast Q, Koenen HJPM, Li Y, van der Ven AJAM. People with HIV have higher percentages of circulating CCR5+ CD8+ T cells and lower percentages of CCR5+ regulatory T cells. Sci Rep 2022; 12:11425. [PMID: 35794176 PMCID: PMC9259737 DOI: 10.1038/s41598-022-15646-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
CCR5 is the main HIV co-receptor. We aimed to (1) compare CCR5 expression on immune cells between people living with HIV (PLHIV) using combination antiretroviral therapy (cART) and HIV-uninfected controls, (2) relate CCR5 expression to viral reservoir size and (3) assess determinants of CCR5 expression. This cross-sectional study included 209 PLHIV and 323 controls. Percentages of CCR5+ cells (%) and CCR5 mean fluorescence intensity assessed by flow cytometry in monocytes and lymphocyte subsets were correlated to host factors, HIV-1 cell-associated (CA)-RNA and CA-DNA, plasma inflammation markers and metabolites. Metabolic pathways were identified. PLHIV displayed higher percentages of CCR5+ monocytes and several CD8+ T cell subsets, but lower percentages of CCR5+ naive CD4+ T cells and regulatory T cells (Tregs). HIV-1 CA-DNA and CA-RNA correlated positively with percentages of CCR5+ lymphocytes. Metabolome analysis revealed three pathways involved in energy metabolism associated with percentage of CCR5+ CD8+ T cells in PLHIV. Our results indicate that CCR5 is differently expressed on various circulating immune cells in PLHIV. Hence, cell-trafficking of CD8+ T cells and Tregs may be altered in PLHIV. Associations between energy pathways and percentage of CCR5+ CD8+ T cells in PLHIV suggest higher energy demand of these cells in PLHIV.
Collapse
Affiliation(s)
- Louise E van Eekeren
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhenhua Zhang
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa van de Wijer
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc J T Blaauw
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Leo A B Joosten
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - André J A M van der Ven
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Diaz Villamil E, De Roeck L, Vanorlé M, Communi D. UTP Regulates the Cardioprotective Action of Transplanted Stem Cells Derived From Mouse Cardiac Adipose Tissue. Front Pharmacol 2022; 13:906173. [PMID: 35784739 PMCID: PMC9240194 DOI: 10.3389/fphar.2022.906173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Adipose tissue is a source of stem cells with a high potential of differentiation for cell-based regenerative therapies. We previously identified mouse P2Y2, an ATP and UTP nucleotide receptor, as a regulator of adipogenic and endothelial differentiation of cardiac adipose-derived stem cells (cADSC). We investigated here the potential involvement of P2Y2 receptor in the cardioprotective action of undifferentiated cADSC transplantation in mouse ischemic heart. Transplantation of cADSC was realized in the periphery of the infarcted zone of ischemic heart, 3 days after left anterior descending artery ligation. A strong reduction of collagen stained area was observed 14 days after cADSC injection, compared to PBS injection. Interestingly, loss of P2Y2 expression totally inhibits the ability of transplanted cADSC to reduce cardiac fibrosis. A detailed gene ontology enrichment analysis was realized by comparing RNA-sequencing data obtained for UTP-treated wild type cASDC and UTP-treated P2Y2-null cASDC. We identified UTP target genes linked to extracellular matrix organization such as matrix metalloproteinases and various collagen types, UTP target genes related to macrophage chemotaxis and differentiation into pro-fibrotic foam cells, and a significant number of UTP target genes linked to angiogenesis regulation. More particularly, we showed that UTP regulated the secretion of CCL5, CXCL5, and CCL12 chemokines and serum amyloid apolipoprotein 3, in the supernatants of UTP-treated cADSC. Interestingly, CCL5 is reported as a key factor in post-infarction heart failure and in the reparative and angiogenic action of transplanted ADSC on ischemic tissue. We investigated then if a UTP-pretreatment of cADSC amplifies their effect on cardiac revascularization in mouse ischemic heart. Transplantation of cADSC was able to increase peri-infarct capillary density, 14 days after their injection. This beneficial effect on cardiac revascularization was enhanced by a UTP-pretreatment of cADSC before their transplantation, and not observed using P2Y2-null cADSC. Our data support that the efficacy of transplanted cADSC can be regulated by the release of inflammatory mediators such as extracellular nucleotides in the ischemic site. The present study highlights the P2Y2 receptor as a regulator of cADSC cardioprotective action, and as a potential target for the therapeutic use of undifferentiated cADSC in post-ischemic cardiac ischemia.
Collapse
Affiliation(s)
| | | | | | - Didier Communi
- *Correspondence: Didier Communi, , orcid.org/0000-0003-1050-1493
| |
Collapse
|
14
|
Miao H, Li X, Zhou C, Liang Y, Li D, Ji Q. NR4A2 alleviates cardiomyocyte loss and myocardial injury in rats by transcriptionally suppressing CCR5 and inducing M2 polarization of macrophages. Microvasc Res 2022; 140:104279. [PMID: 34774582 DOI: 10.1016/j.mvr.2021.104279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CC chemokine receptor 5 (CCR5) has been demonstrated to be correlated to activation of pro-inflammatory immune cells and tissue injury. This study focused on the role of CCR5 in myocardial injury in rats with diabetic cardiomyopathy (DCM) and the mechanism of action. METHODS A rat model of DCM was induced by streptozotocin (STZ). CCR5 was knocked down in rats to determine its role in myocardial injury and immune cell infiltration. The upstream regulators of CCR5 were bioinformatically predicted and the binding between nuclear receptor subfamily 4 group A member 2 (NR4A2) and CCR5 was validated. The portion of M1 and M2 macrophages in tissues was determined by flow cytometry or double-labeling immunofluorescence. Rat bone marrow mononuclear cells (BMMCs) were treated with granulocyte/macrophage colony stimulating factor (GM-CSF/M-CSF) and co-cultured with H9C2 cells for in vitro experiments. RESULTS STZ-treated rats had impaired cardiac function and increased levels of creatine kinase-MB, cardiac troponin I and lactate dehydrogenase. CCR5 inhibition significantly alleviated myocardial injury in rats and reduced the portion of M1 macrophages in rat cardiac tissues. NR4A2, which could suppress CCR5 transcription, was poorly expressed in rats with DCM. NR4A2 overexpression played a similar myocardium-protective role in rats. In vitro, overexpression of NR4A2 induced M2 polarization of macrophages, which protected the co-cultured H9C2 cells from high glucose-induced damage, but the protective role was blocked after CCR5 overexpression. CONCLUSION This study demonstrated that NR4A2 suppresses CCR5 expression and promotes M2 polarization of macrophages to alleviate cardiomyocyte loss and myocardial injury.
Collapse
MESH Headings
- Animals
- Male
- Cell Line
- Coculture Techniques
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/immunology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Disease Models, Animal
- Down-Regulation
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phenotype
- Rats, Sprague-Dawley
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Signal Transduction
- Transcription, Genetic
- Rats
Collapse
Affiliation(s)
- Huangtai Miao
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xiaoying Li
- Department of Health Care for Cadres, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Can Zhou
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ying Liang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Deshun Li
- Department of Cardiology, Huanghua Traditional Chinese Medicine Hospital of Hebei Province, Huanghua 061100, Hebei, PR China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
15
|
Blockade of Autocrine CCL5 Responses Inhibits Zika Virus Persistence and Spread in Human Brain Microvascular Endothelial Cells. mBio 2021; 12:e0196221. [PMID: 34399621 PMCID: PMC8406327 DOI: 10.1128/mbio.01962-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a neurovirulent flavivirus that uniquely causes fetal microcephaly, is sexually transmitted, and persists in patients for up to 6 months. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier (BBB) and enables viral spread to neuronal compartments. We found that CCL5, a chemokine with prosurvival effects on immune cells, was highly secreted by ZIKV-infected hBMECs. Although roles for CCL5 in endothelial cell (EC) survival remain unknown, the presence of the CCL5 receptors CCR3 and CCR5 on ECs suggested that CCL5 could promote ZIKV persistence in hBMECs. We found that exogenous CCL5 induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in hBMECs and that ERK1/2 cell survival signaling was similarly activated by ZIKV infection. Neutralizing antibodies to CCL5, CCR3, or CCR5 inhibited persistent ZIKV infection of hBMECs. While knockout (KO) of CCL5 failed to prevent ZIKV infection of hBMECs, at 3 days postinfection (dpi), we observed a >90% reduction in ZIKV-infected CCL5-KO hBMECs and a multilog reduction in ZIKV titers. In contrast, the addition of CCL5 to CCL5-KO hBMECs dose-dependently rescued ZIKV persistence in hBMECs. Inhibiting CCL5 responses using CCR3 (UCB35625) and CCR5 (maraviroc) receptor antagonists reduced the number of ZIKV-infected hBMECs and ZIKV titers (50% inhibitory concentrations [IC50s] of 2.5 to 12 μM), without cytotoxicity (50% cytotoxic concentration [CC50] of >80 μM). These findings demonstrate that ZIKV-induced CCL5 directs autocrine CCR3/CCR5 activation of ERK1/2 survival responses that are required for ZIKV to persistently infect hBMECs. Our results establish roles for CCL5 in ZIKV persistence and suggest the potential for CCL5 receptor antagonists to therapeutically inhibit ZIKV spread and neurovirulence.
Collapse
|
16
|
Turgunova LG, Shalygina AA, Zalkalns JP, Klyuyev DA, Akhmaltdinova LL, Dosmagambetova RS. Assessment of Adipokines, CXCL16 Chemokine Levels in Patients With Rheumatoid Arthritis Combined With Metabolic Syndrome. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2021; 14:1179544120985860. [PMID: 33613035 PMCID: PMC7868477 DOI: 10.1177/1179544120985860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
Objective: Rheumatoid arthritis (RA), which is a chronic systemic inflammatory disease, is associated with accelerated atherosclerosis and an increased risk of cardiovascular disease (CVD), but the causal factors have yet to be completely elucidated. The studies show that the prevalence of metabolic syndrome (MtS) was significantly higher in RA patients compared to the population. In RA and MetS inflammation and atherosclerosis are closely linked. The level of chemokines and adipokines, which may play a role in the development of atherogenesis in RA with MetS patients is currently unknown. In this study, we investigated the level of chemokine C-X-C motif chemokine ligand 16 (CXCL16) and adipokine in RA with MetS patients and assessed the association of biomarkers with clinical and biochemical activity scores of RA and components of MetS. Methods: Blood serum of 298 people (48—patients with RA and MetS, 82—with RA without MetS, 105—with MetS, 63—control group without both RA and MetS) was tested for (CXCL16), Resistin, Leptin and Fibroblast Growth Factor 21 (FGF21) levels by fluorescent antibody technique. Statistical analysis was performed using SPSS version 18.0. Results: The biomarker study showed the highest level in the RA with MetS patient group; but as compared with the RA group the differences were insignificant. CXCL16 (Me = 426.2 pg/ml (Q25-75 250.5-527.6), resistin (Me = 8685.4 pg/ml (Q25-75 6480.8-13 629.1), and FGF21 (Me = 443.6 pg/ml (Q25-75 772.9-916.3) proved to be significantly augmented in RA with MetS patients group, and in RA without MetS patients group (Me = 312.7 (Q25-75 199.4-517.7) pg/ml; Me = 8265.3 (Q25-75 5779.7-13 340.5) pg/ml; Me = 412.4 (Q25-75 300.4-497.4) pg/ml, respectively) as compared with MetS patients group (Me = 189.4 (Q25-75 130.3-280.6) pg/ml; Me = 5364.8 (Q25-75 2368.9-10 160.9) pg/ml; Me = 133.2 (Q25-75 76.2-268.6) pg/ml, respectively; P = <.001). Leptin level in all groups was higher than in the control group, but there were no differences between groups. The correlation analysis found a positive relationship between the leptin level and the waist circumference (rs = 0.39; P = .007) in the RA with MetS patients, the association of biomarkers with DAS28 score and ESR did not have any statistical significance. Conclusions: The augmented chemokine, resistin and FGF21 in the RA with MetS patients proves the systemic inflammation which is the basis of RA; the augmented leptin is linked to the abdominal obesity. These data are somewhat of an explanation of the increased risk of the CVD development in RA with MetS people. A differentiated specification can be useful to assess the cardiovascular risk of patients and justify prompt personalized treatment.
Collapse
|