1
|
Lei C, Zhou Q, Lv L, Liu D, Qian H. Inhibition of GPR4 Attenuates the Formation of Abdominal Aortic Aneurysm Through Inhibiting the SP-1/VEGF-A Signaling. J Biochem Mol Toxicol 2025; 39:e70118. [PMID: 39799555 DOI: 10.1002/jbt.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored. In this study, we examined the impact of GPR4 deletion on the development of AAA in ApoE-deficient mice. The mice were categorized into four distinct groups: the ApoE-/- with saline group, the ApoE-/-GPR4-/- with saline group, the ApoE-/- with Ang II group, and the ApoE-/-GPR4-/- with Ang II group. AAA were induced in the ApoE-/- mice through the perfusion of angiotensin II (Ang II). Notably, GPR4 was substantially elevated in the AAA tissues from both human subjects and experimental mice. The deletion of GPR4 substantially decreased the formation of Ang II-induced AAA, damages to elastin, and the expression of aortic inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), as well as vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 (VEGF-A/VEGF-R2), in ApoE-/- mice. Human aortic endothelial cells (HAECs) were transfected with lenti-viral GPR4 shRNA and subsequently stimulated with Ang II. Our findings indicate that the knockout of GPR4 attenuated Ang II-induced angiogenic tube formation in HAECs by decreasing the expression of VEGF-A and VEGF-R2. Furthermore, GPR4 knockout also hindered the activation of specificity protein-1 (SP-1) by reducing its expression and transcriptional activity. Notably, the overexpression of SP-1 reversed the inhibitory effects of GPR4 knockout on angiogenic tube formation and the expression of VEGF-A/VEGF-R2. This suggests that the protective effects of GPR4 knockout are achieved through the inhibition of SP-1. In summary, the absence of GPR4 impeded AAA formation, indicating that GPR4 could potentially serve as a therapeutic target for AAA.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Mice
- Humans
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/genetics
- Male
- Mice, Knockout
- Angiotensin II/metabolism
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chenggang Lei
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China
| | - Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China
| | - Lizhen Lv
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China
| | - Di Liu
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China
| |
Collapse
|
2
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
3
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Men L, Guo J, Cao Y, Huang B, Wang Q, Huo S, Wang M, Peng D, Peng L, Shi W, Li S, Lin L, Lv J. IL-6/gp130/STAT3 signaling contributed to the activation of the PERK arm of the unfolded protein response in response to chronic β-adrenergic stimulation. Free Radic Biol Med 2023; 205:163-174. [PMID: 37307935 DOI: 10.1016/j.freeradbiomed.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic β-adrenergic stimulation. STAT3 plays a critical role in β-adrenergic functions in the heart. However, whether STAT3 contributed to β-adrenoceptor-mediated PERK activation and how β-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic β-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic β-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional β-blockers to attenuate β-adrenoceptor-mediated maladaptive UPR.
Collapse
Affiliation(s)
- Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Cao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Cao S, Wei Y, Xu H, Weng J, Qi T, Yu F, Liu S, Xiong A, Liu P, Zeng H. Crosstalk between ferroptosis and chondrocytes in osteoarthritis: a systematic review of in vivo and in vitro studies. Front Immunol 2023; 14:1202436. [PMID: 37520558 PMCID: PMC10376718 DOI: 10.3389/fimmu.2023.1202436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Recent scientific reports have revealed a close association between ferroptosis and the occurrence and development of osteoarthritis (OA). Nevertheless, the precise mechanisms by which ferroptosis influences OA and how to hobble OA progression by inhibiting chondrocyte ferroptosis have not yet been fully elucidated. This study aims to conduct a comprehensive systematic review (SR) to address these gaps. Methods Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020, we conducted a comprehensive search of the Embase, Ovid, ProQuest, PubMed, Scopus, the Cochrane Library, and Web of Science databases to identify relevant studies that investigate the association between ferroptosis and chondrocytes in OA. Our search included studies published from the inception of these databases until January 31st, 2023. Only studies that met the predetermined quality criteria were included in this SR. Results In this comprehensive SR, a total of 21 studies that met the specified criteria were considered suitable and included in the current updated synthesis. The mechanisms underlying chondrocyte ferroptosis and its association with OA progression involve various biological phenomena, including mitochondrial dysfunction, dysregulated iron metabolism, oxidative stress, and crucial signaling pathways. Conclusion Ferroptosis in chondrocytes has opened an entirely new chapter for the investigation of OA, and targeted regulation of it is springing up as an attractive and promising therapeutic tactic for OA. Systematic review registration https://inplasy.com/inplasy-2023-3-0044/, identifier INPLASY202330044.
Collapse
Affiliation(s)
- Siyang Cao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
7
|
Steffen BT, Pankow JS, Norby FL, Lutsey PL, Demmer RT, Guan W, Pankratz N, Li A, Liu G, Matsushita K, Tin A, Tang W. Proteomics Analysis of Genetic Liability of Abdominal Aortic Aneurysm Identifies Plasma Neogenin and Kit Ligand: The ARIC Study. Arterioscler Thromb Vasc Biol 2023; 43:367-378. [PMID: 36579647 PMCID: PMC9995137 DOI: 10.1161/atvbaha.122.317984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genome-wide association studies have reported 23 gene loci related to abdominal aortic aneurysm (AAA)-a potentially lethal condition characterized by a weakened dilated vessel wall. This study aimed to identify proteomic signatures and pathways related to these risk loci to better characterize AAA genetic susceptibility. METHODS Plasma concentrations of 4870 proteins were determined using a DNA aptamer-based array. Linear regression analysis estimated the associations between the 23 risk alleles and plasma protein levels with adjustments for potential confounders in a race-stratified analysis of 1671 Black and 7241 White participants. Significant proteins were then evaluated for their prediction of clinical AAA (454 AAA events in 11 064 individuals), and those significantly associated with AAA were further interrogated using Mendelian randomization analysis. RESULTS Risk variants proximal to PSRC1-CELSR2-SORT1, PCIF1-ZNF335-MMP9, RP11-136O12.2/TRIB1, ZNF259/APOA5, IL6R, PCSK9, LPA, and APOE were associated with 118 plasma proteins in Whites and 59 were replicated in Black participants. Novel associations with clinical AAA incidence were observed for kit ligand (HR, 0.59 [95% CI, 0.42-0.82] for top versus first quintiles) and neogenin (HR, 0.64 [95% CI, 0.46-0.88]) over a median 21.2-year follow-up; neogenin was also associated with ultrasound-detected asymptomatic AAA (N=4295; 57 asymptomatic AAA cases). Mendelian randomization inverse variance weighted estimates suggested that AAA risk is promoted by lower levels of kit ligand (OR per SD=0.67; P=1.4×10-5) and neogenin (OR per SD=0.50; P=0.03). CONCLUSIONS Low levels of neogenin and kit ligand may be novel risk factors for AAA development in potentially causal pathways. These findings provide insights and potential targets to reduce AAA susceptibility.
Collapse
Affiliation(s)
- Brian T. Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
- Division of Health Data Science, Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| | - Faye L. Norby
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Health System, Los Angeles, CA 90048
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, 55455
| | - Nathan Pankratz
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Aixin Li
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| | - Guning Liu
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center, School of Public Health, Houston, TX 77030
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD 21205
| | - Adrienne Tin
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| |
Collapse
|
8
|
Silencing IL12p35 Promotes Angiotensin II-Mediated Abdominal Aortic Aneurysm through Activating the STAT4 Pathway. Mediators Inflamm 2021; 2021:9450843. [PMID: 34354545 PMCID: PMC8331298 DOI: 10.1155/2021/9450843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe−/−) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe−/− mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe−/− mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.
Collapse
|
9
|
Wang J, Liu T, Chen X, Jin Q, Chen Y, Zhang L, Han Z, Chen D, Li Y, Lv Q, Xie M. Bazedoxifene Regulates Th17 Immune Response to Ameliorate Experimental Autoimmune myocarditis via Inhibition of STAT3 Activation. Front Pharmacol 2021; 11:613160. [PMID: 33643041 PMCID: PMC7903338 DOI: 10.3389/fphar.2020.613160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023] Open
Abstract
Myocarditis is a type of inflammatory cardiomyopathy that has no specific treatment. Accumulating evidence suggests that Th17 cells play a prominent role in the pathogenesis of myocarditis. Interleukin-(IL)-6-mediated signal transducer and activation of transcription 3 (STAT3) signaling is essential for Th17 cell differentiation and secretion of inflammatory cytokines. Bazedoxifene inhibits IL-6/STAT3 signaling in cancer cells, but its effect on the Th17 immune response induced by myocarditis remains unknown. Here we explore the effect of Bazedoxifene on Th17 immune response and cardiac inflammation in a mouse model of experimental autoimmune myocarditis, which has been used to mimic human inflammatory heart disease. After eliciting an immune response, we found Bazedoxifene ameliorated cardiac inflammatory injury and dysfunction. Th17 cells and related inflammatory factors in splenic CD4+ T cells at day 14 and in the heart at day 21 were increased, which were reduced by Bazedoxifene. Furthermore, Bazedoxifene could regulate autophagy induction in polarized Th17 cells. In conclusion, Bazedoxifene affected STAT3 signaling and prevented cardiac inflammation deterioration, so may provide a promising therapeutic strategy for the treatment of experimental autoimmune myocarditis (EAM).
Collapse
Affiliation(s)
- Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, United States
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zhengyang Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dandan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
10
|
Shi W, Lv J, Lin L. Coagulopathy in COVID-19: Focus on vascular thrombotic events. J Mol Cell Cardiol 2020; 146:32-40. [PMID: 32681845 PMCID: PMC7362808 DOI: 10.1016/j.yjmcc.2020.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 causes a phenotype of pneumonia with diverse manifestation, which is termed as coronavirus disease 2019 (COVID-19). An impressive high transmission rate allows COVID-19 conferring enormous challenge for clinicians worldwide, and developing to a pandemic level. Combined with a series of complications, a part of COVID-19 patients progress into severe cases, which critically contributes to the risk of fatality. To date, coagulopathy has been found as a prominent feature of COVID-19 and severe coagulation dysfunction may be associated with poor prognosis. Coagulopathy in COVID-19 may predispose patients to hypercoagulability-related disorders including thrombosis and even fatal vascular events. Inflammatory storm, uncontrolled inflammation-mediated endothelial injury and renin angiotensin system (RAS) dysregulation are the potential mechanisms. Ongoing efforts made to develop promising therapies provide several potential strategies for hypercoagulability in COVID-19. In this review, we introduce the clinical features of coagulation and the increased vascular thrombotic risk conferred by coagulopathy according to present reports about COVID-19. The potential underlying mechanisms and emerging therapeutic avenues are discussed, emphasizing an urgent need for effective interventions.
Collapse
Affiliation(s)
- Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
11
|
Chen X, Li Y, Xiao J, Zhang H, Yang C, Wei Z, Chen W, Du X, Liu J. Modulating Neuro-Immune-Induced Macrophage Polarization With Topiramate Attenuates Experimental Abdominal Aortic Aneurysm. Front Pharmacol 2020; 11:565461. [PMID: 32982758 PMCID: PMC7485436 DOI: 10.3389/fphar.2020.565461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
The development of abdominal aortic aneurysm (AAA) is attributed to psychological and physical factors. Topiramate, which is an agonist of the GABAA receptor, makes contributions to neuronal disease and is partially involved in immune regulation, may be effective upon abdominal aortic aneurysm progression. We used experimental abdominal aortic aneurysm models: Angiotensin II (Ang II)–induced ApoE−/− male mice (Ang II/APOE model) in our study. In the Ang II/APOE model, all mice (n=64) were divided into four groups: sham group (PBS treatment), control group (Ang II treatment), low-dose group (Ang II + low-dose topiramate, 3 mg/day per mouse), and high-dose group (Ang II + high-dose topiramate, 6 mg/day per mouse). All treatments began on the day after surgery. Moreover, collected tissues and cultured cell were used for histology and biochemical examination. In vitro, the effects of topiramate on bone marrow-derived macrophage stimulated by LPS were investigated. Our data implied that topiramate treatment significantly promoted macrophages preservation and conversion of M1 to M2 macrophage phenotypes in vivo and in vitro. Accordingly, proinflammatory activities mediated by the M1 macrophages were decreased and the repair process mediated by M2 macrophages was enhanced. The low-dose and high-dose groups had abdominal aortic aneurysm incidences of 50% and 37.5%, respectively, compared with 75% in the control group. Topiramate, a promising drug for the psychological disease, that target neuro-immune-induced macrophage polarization may attenuate experimental abdominal aortic aneurysm progression.
Collapse
Affiliation(s)
- Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiao
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanlei Yang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanjie Wei
- Department of Thyroid and Breast Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqiang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|