1
|
Chandrashekar DS, Afaq F, Karthikeyan SK, Athar M, Shrestha S, Singh R, Manne U, Varambally S. Bromodomain inhibitor treatment leads to overexpression of multiple kinases in cancer cells. Neoplasia 2024; 57:101046. [PMID: 39241280 PMCID: PMC11408867 DOI: 10.1016/j.neo.2024.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The bromodomain and extraterminal (BET) family of proteins show altered expression across various cancers. The members of the bromodomain (BRD) family contain epigenetic reader domains that bind to acetylated lysine residues in both histone and non-histone proteins. Since BRD proteins are involved in cancer initiation and progression, therapeutic targeting of these proteins has recently been an area of interest. In experimental settings, JQ1, a commonly used BRD inhibitor, is the first known inhibitor to target BRD-containing protein 4 (BRD4), a ubiquitously expressed BRD and extraterminal family protein. BRD4 is necessary for a normal cell cycle, and its aberrant expression activates pro-inflammatory cytokines, leading to tumor initiation and progression. Various BRD4 inhibitors have been developed recently and tested in preclinical settings and are now in clinical trials. However, as with many targeted therapies, BRD inhibitor treatment can lead to resistance to treatment. Here, we investigated the kinases up-regulated on JQ1 treatment that may serve as target for combination therapy along with BRD inhibitors. To identify kinase targets, we performed a comparative analysis of gene expression data using RNA from BRD inhibitor-treated cells or BRD-modulated cells and identified overexpression of several kinases, including FYN, NEK9, and ADCK5. We further validated, by immunoblotting, the overexpression of FYN tyrosine kinase; NEK9 serine/threonine kinase and ADCK5, an atypical kinase, to confirm their overexpression after BRD inhibitor treatment. Importantly, our studies show that targeting FYN or NEK9 along with BRD inhibitor effectively reduces proliferation of cancer cells. Therefore, our research emphasizes a potential approach of utilizing inhibitors targeting some of the overexpressed kinases in conjunction with BRD inhibitors to enhance therapeutic effectiveness.
Collapse
Affiliation(s)
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Rahnasto-Rilla M, Puumalainen T, Karttunen V, Adla SK, Lahtela-Kakkonen M. Novel inhibitors of bromodomain and extra-terminal domain trigger cell death in breast cancer cell lines. Bioorg Med Chem 2024; 112:117884. [PMID: 39226716 DOI: 10.1016/j.bmc.2024.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Small molecule inhibitors targeting the bromodomain and extra-terminal domain (BET) family proteins have emerged as a promising class of anti-cancer drugs. Nevertheless, the clinical advancement of these agents has been significantly hampered by challenges related to their potency, oral bioavailability, or toxicity. In this study, virtual screening approaches were employed to discover novel inhibitors of the bromodomain-containing protein 4 (BRD4) by analyzing their comparable chemical structural features to established BRD4 inhibitors. Several of these compounds exhibited inhibitory effects on BRD4 activity ranging from 60 % to 70 % at 100 µM concentrations, while one compound also exhibited an 84 % inhibition of Sirtuin 2 (SIRT2) activity. Furthermore, a subset of structurally diverse compounds from the BRD4 inhibitors was selected to investigate their anti-cancer properties in both 2D and 3D cell cultures. These compounds exhibited varying effects on cell numbers depending on the specific cell line, and some of them induced cell cycle arrest in the G0/G1 phase in breast cancer (MDA-MB-231) cells. Moreover, all the compounds studied reduced the sizes of spheroids, and the most potent compound exhibited a 90 % decrease in growth at a concentration of 10 µM in T47D cells. These compounds hold potential as epigenetic regulators for future studies.
Collapse
Affiliation(s)
| | - Tatu Puumalainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Vilma Karttunen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | | |
Collapse
|
3
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. Cell Commun Signal 2024; 22:184. [PMID: 38493137 PMCID: PMC10944605 DOI: 10.1186/s12964-024-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However, the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. METHODS To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ. Additional Analysis of publicly available data sets were performed on SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. Validation of in silico findings were performed with qPCR, immunoblots, and collagen gel contraction assays measure the effect of JQ1 on cytoskeleton associated genes, proteins and contractility in mechanically active cells. Likelihood ratio test and FDR adjusted p-values were used to determine significant differentially expressed genes. Student ttest were used to calculate statistical significance of qPCR and contractility analyses. RESULTS Comparing PDGF and TGFβ stimulated SMC and fibroblasts identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. Additional in silico analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition with JQ1. In vitro validation demonstrated JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. CONCLUSIONS These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Gryniukova A, Borysko P, Myziuk I, Alieksieieva D, Hodyna D, Semenyuta I, Kovalishyn V, Metelytsia L, Rogalsky S, Tcherniuk S. Anticancer activity features of imidazole-based ionic liquids and lysosomotropic detergents: in silico and in vitro studies. Mol Divers 2024:10.1007/s11030-023-10779-4. [PMID: 38246950 DOI: 10.1007/s11030-023-10779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/23/2024]
Abstract
Long-chain imidazole-based ionic liquids (compounds 2, 4, 9) and lysosomotropic detergents (compounds 7, 3, 8) with potent anticancer activity were synthesized. Their inhibitory activities against neuroblastoma and leukaemia cell lines were predicted by the new in silico QSAR models. The cytotoxic activities of the synthesized imidazole derivatives were investigated on the SK-N-DZ (human neuroblastoma) and K-562 (human chronic myeloid leukaemia) cell lines. Compounds 2 and 7 showed the highest in vitro cytotoxic effect on both cancer cell lines. The docking procedure of compounds 2 and 7 into the NAD+ coenzyme binding site of deacetylase Sirtuin-1 (SIRT-1) showed the formation of protein-ligand complexes with calculated binding energies of - 8.0 and - 8.1 kcal/mol, respectively. The interaction of SIRT1 with compounds 2, 7 and 9 and the interaction of Bromodomain-containing protein 4 (BRD4) with compounds 7 and 9 were also demonstrated by thermal shift assay. Compounds 2, 4, 7 and 9 inhibited SIRT1 deacetylase activity in the SIRT-Glo assay. Compounds 7 and 9 showed a moderate inhibitory activity against Aurora kinase A. In addition, compounds 3, 4, 8 and 9 inhibited the Janus kinase 2 activity. The results obtained showed that long-chain imidazole derivatives exhibited cytotoxic activities on K562 leukaemia and SK-N-DZ neuroblastoma cell lines. Furthermore, these compounds inhibited a panel of molecular targets involved in leukaemia and neuroblastoma tumorigenesis. All these results suggest that both long-chain imidazole-based ionic liquids and lysosomotropic detergents may be an effective alternative for the treatment of neuroblastoma and chronic myeloid leukemia and merit further investigation.
Collapse
Affiliation(s)
- Anastasiia Gryniukova
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Academician Kukhar Str, Kyiv, 02094, Ukraine
- Bienta/Enamine Ltd, 78 Winston Churchill Str, Kyiv, 02094, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd, 78 Winston Churchill Str, Kyiv, 02094, Ukraine
| | - Iryna Myziuk
- Bienta/Enamine Ltd, 78 Winston Churchill Str, Kyiv, 02094, Ukraine
| | | | - Diana Hodyna
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Academician Kukhar Str, Kyiv, 02094, Ukraine
| | - Ivan Semenyuta
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Academician Kukhar Str, Kyiv, 02094, Ukraine
| | - Vasyl Kovalishyn
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Academician Kukhar Str, Kyiv, 02094, Ukraine
| | - Larysa Metelytsia
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Academician Kukhar Str, Kyiv, 02094, Ukraine
| | - Sergiy Rogalsky
- Laboratory of Modification of Polymers, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 50 Kharkivske shose, Kyiv, 02160, Ukraine.
| | - Sergey Tcherniuk
- IdeSip, 4 Rue Pierre Fontaine, 91058, Évry-Courcouronnes, France.
- Department of Biological Sciences, Youth Academy of Sciences, 2 Nemyrovych-Danchenko Str, Kyiv, 01011, Ukraine.
| |
Collapse
|
5
|
Saraswat A, Vartak R, Hegazy R, Fu Y, Rao TJR, Billack B, Patel K. Oral lipid nanocomplex of BRD4 PROteolysis TArgeting Chimera and vemurafenib for drug-resistant malignant melanoma. Biomed Pharmacother 2023; 168:115754. [PMID: 37871557 DOI: 10.1016/j.biopha.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BRAF inhibitors (BRAFi) like vemurafenib (VEM) provide initial regression in mutated melanoma but rapidly develop resistance. Molecular pathways responsible for development of resistance against VEM finally converge towards the activation of oncogenic c-Myc. We identified an epigenetic approach to inhibit the c-Myc expression and resensitize BRAFi-resistant melanoma cells. ARV-825 (ARV) was employed as a BRD4 targeted PROteolysis TArgeting Chimera that selectively degrades the BRD4 to downregulate c-Myc. ARV synergistically enhanced the cytotoxicity of VEM in vitro to overcome its resistance in melanoma. Development of ARV and VEM-loaded lipid nanocomplex (NANOVB) significantly improved their physicochemical properties for oral delivery. Most importantly, oral administration of NANOVB substantially inhibited tumor growth at rate of 41.07 mm3/day in nude athymic mice. NANOVB treatment resulted in prolonged survival with 50% of mice surviving until the experimental endpoint. Histopathological analysis revealed significant tumor necrosis and downregulation of Ki-67 and BRD4 protein in vivo. Promising in vivo antitumor activity and prolonged survival demonstrated by NANOVB signifies its clinical translational potential for BRAFi-resistant melanoma.
Collapse
Affiliation(s)
- Aishwarya Saraswat
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rehab Hegazy
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yige Fu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Blase Billack
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
6
|
Barman S, Sahoo SS, Padhan J, Sudhamalla B. Identification of novel natural product inhibitors of BRD4 using high throughput virtual screening and MD simulation. J Biomol Struct Dyn 2023; 41:10569-10581. [PMID: 36524430 DOI: 10.1080/07391102.2022.2155346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Bromodomains are evolutionarily conserved structural motifs that recognize acetylated lysine residues on histone tails. They play a crucial role in shaping chromatin architecture and regulating gene expression in various biological processes. Mutations in bromodomains containing proteins lead to multiple human diseases, which makes them attractive target for therapeutic intervention. Extensive studies have been done on BRD4 as a target for several cancers, such as Acute Myeloid Leukemia (AML) and Burkitt Lymphoma. Several potential inhibitors have been identified against the BRD4 bromodomain. However, most of these inhibitors have drawbacks such as non-specificity and toxicity, decreasing their appeal and necessitating the search for novel non-toxic inhibitors. This study aims to address this need by virtually screening natural compounds from the NPASS database against the Kac binding site of BRD4-BD1 using high throughput molecular docking followed by similarity clustering, pharmacokinetic screening, MD simulation and MM-PBSA binding free energy calculations. Using this approach, we identified five natural product inhibitors having a similar or better binding affinity to the BRD4 bromodomain compared to JQ1 (previously reported inhibitor of BRD4). Further systematic analysis of these inhibitors resulted in the top three hits: NPC268484 (Palodesangren-B), NPC295021 (Candidine) and NPC313112 (Buxifoliadine-D). Collectively, our in silico results identified some promising natural products that have the potential to act as potent BRD4-BD1 inhibitors and can be considered for further validation through future in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Snehasudha Subhadarsini Sahoo
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
7
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567076. [PMID: 38014184 PMCID: PMC10680757 DOI: 10.1101/2023.11.14.567076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ and identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. We also analyzed data sets from SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. This analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition. JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
8
|
Kusuma WA, Fadli A, Fatriani R, Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Purwestri YA, Swasono RT. Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study. Heliyon 2023; 9:e21149. [PMID: 37954374 PMCID: PMC10637925 DOI: 10.1016/j.heliyon.2023.e21149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.
Collapse
Affiliation(s)
- Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, 16128, Indonesia
| | - Aulia Fadli
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
| | - Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, 16128, Indonesia
| | - Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta, 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
9
|
Zheng X, Diktonaite K, Qiu H. Epigenetic Reader Bromodomain-Containing Protein 4 in Aging-Related Vascular Pathologies and Diseases: Molecular Basis, Functional Relevance, and Clinical Potential. Biomolecules 2023; 13:1135. [PMID: 37509171 PMCID: PMC10376956 DOI: 10.3390/biom13071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is a key independent risk factor of various vascular diseases, for which the regulatory mechanisms remain largely unknown. Bromodomain-containing protein 4 (BRD4) is a member of the Bromodomain and Extra-Terminal domain (BET) family and is an epigenetic reader playing diverse roles in regulating transcriptional elongation, chromatin remodeling, DNA damage response, and alternative splicing in various cells and tissues. While BRD4 was initially recognized for its involvement in cancer progression, recent studies have revealed that the aberrant expression and impaired function of BRD4 were highly associated with aging-related vascular pathology, affecting multiple key biological processes in the vascular cells and tissues, providing new insights into the understanding of vascular pathophysiology and pathogenesis of vascular diseases. This review summarizes the recent advances in BRD4 biological function, and the progression of the studies related to BRD4 in aging-associated vascular pathologies and diseases, including atherosclerosis, aortic aneurism vascular neointima formation, pulmonary hypertension, and essential hypertension, providing updated information to advance our understanding of the epigenetic mechanisms in vascular diseases during aging and paving the way for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
| | - Kotryna Diktonaite
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
- Department of Internal Medicine, Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|
10
|
Pappalardo XG, Risiglione P, Zinghirino F, Ostuni A, Luciano D, Bisaccia F, De Pinto V, Guarino F, Messina A. Human VDAC pseudogenes: an emerging role for VDAC1P8 pseudogene in acute myeloid leukemia. Biol Res 2023; 56:33. [PMID: 37344914 DOI: 10.1186/s40659-023-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered. RESULTS We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML). CONCLUSIONS Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Pierpaolo Risiglione
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Federica Zinghirino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Daniela Luciano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
- we.MitoBiotech S.R.L, C.so Italia 172, 95125, Catania, Italy
- I.N.B.B, National Institute for Biostructures and Biosystems, Interuniversity Consortium, Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125, Catania, Italy
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
- we.MitoBiotech S.R.L, C.so Italia 172, 95125, Catania, Italy
- I.N.B.B, National Institute for Biostructures and Biosystems, Interuniversity Consortium, Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125, Catania, Italy
| | - Angela Messina
- we.MitoBiotech S.R.L, C.so Italia 172, 95125, Catania, Italy.
- I.N.B.B, National Institute for Biostructures and Biosystems, Interuniversity Consortium, Catania, Italy.
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125, Catania, Italy.
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy.
| |
Collapse
|
11
|
Yan B, Gui Y, Guo Y, Sun J, Saifeddine M, Deng J, Hill JA, Hollenberg MD, Jiang ZS, Zheng XL. Impact of Short-Term (+)-JQ1 Exposure on Mouse Aorta: Unanticipated Inhibition of Smooth Muscle Contractility. Cells 2023; 12:1461. [PMID: 37296583 PMCID: PMC10252217 DOI: 10.3390/cells12111461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
(+)-JQ1, a specific chemical inhibitor of bromodomain and extraterminal (BET) family protein 4 (BRD4), has been reported to inhibit smooth muscle cell (SMC) proliferation and mouse neointima formation via BRD4 regulation and modulate endothelial nitric oxide synthase (eNOS) activity. This study aimed to investigate the effects of (+)-JQ1 on smooth muscle contractility and the underlying mechanisms. Using wire myography, we discovered that (+)-JQ1 inhibited contractile responses in mouse aortas with or without functional endothelium, reducing myosin light chain 20 (LC20) phosphorylation and relying on extracellular Ca2+. In mouse aortas lacking functional endothelium, BRD4 knockout did not alter the inhibition of contractile responses by (+)-JQ1. In primary cultured SMCs, (+)-JQ1 inhibited Ca2+ influx. In aortas with intact endothelium, (+)-JQ1 inhibition of contractile responses was reversed by NOS inhibition (L-NAME) or guanylyl cyclase inhibition (ODQ) and by blocking the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. In cultured human umbilical vein endothelial cells (HUVECs), (+)-JQ1 rapidly activated AKT and eNOS, which was reversed by PI3K or ATK inhibition. Intraperitoneal injection of (+)-JQ1 reduced mouse systolic blood pressure, an effect blocked by co-treatment with L-NAME. Interestingly, (+)-JQ1 inhibition of aortic contractility and its activation of eNOS and AKT were mimicked by the (-)-JQ1 enantiomer, which is structurally incapable of inhibiting BET bromodomains. In summary, our data suggest that (+)-JQ1 directly inhibits smooth muscle contractility and indirectly activates the PI3K/AKT/eNOS cascade in endothelial cells; however, these effects appear unrelated to BET inhibition. We conclude that (+)-JQ1 exhibits an off-target effect on vascular contractility.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Jiaxing Sun
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Mahmoud Saifeddine
- Department of Physiology & Pharmacology, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Jingti Deng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| |
Collapse
|
12
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
13
|
Sethi B, Kumar V, Jayasinghe TD, Dong Y, Ronning DR, Zhong HA, Coulter DW, Mahato RI. Targeting BRD4 and PI3K signaling pathways for the treatment of medulloblastoma. J Control Release 2023; 354:80-90. [PMID: 36599397 PMCID: PMC9974792 DOI: 10.1016/j.jconrel.2022.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 μM) compared to SF2523 (IC50 12.6 μM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thilina D Jayasinghe
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haizhen A Zhong
- Department of Chemistry, the University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, USA
| | - Donald W Coulter
- Department of Pediatrics, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Zhang XP, Pei JP, Zhang CD, Yusupu M, Han MH, Dai DQ. Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention. Biomed Pharmacother 2022; 156:113921. [DOI: 10.1016/j.biopha.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
15
|
Riffo-Campos AL, Perez-Hernandez J, Martinez-Arroyo O, Ortega A, Flores-Chova A, Redon J, Cortes R. Biofluid Specificity of Long Non-Coding RNA Profile in Hypertension: Relevance of Exosomal Fraction. Int J Mol Sci 2022; 23:ijms23095199. [PMID: 35563588 PMCID: PMC9101961 DOI: 10.3390/ijms23095199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNA (ncRNA)-mediated targeting of various genes regulates the molecular mechanisms of the pathogenesis of hypertension (HTN). However, very few circulating long ncRNAs (lncRNAs) have been reported to be altered in essential HTN. The aim of our study was to identify a lncRNA profile in plasma and plasma exosomes associated with urinary albumin excretion in HTN by next-generation sequencing and to assess biological functions enriched in response to albuminuria using GO and KEGG analysis. Plasma exosomes showed higher diversity and fold change of lncRNAs than plasma, and low transcript overlapping was found between the two biofluids. Enrichment analysis identified different biological pathways regulated in plasma or exosome fraction, which were implicated in fatty acid metabolism, extracellular matrix, and mechanisms of sorting ncRNAs into exosomes, while plasma pathways were implicated in genome reorganization, interference with RNA polymerase, and as scaffolds for assembling transcriptional regulators. Our study found a biofluid specific lncRNA profile associated with albuminuria, with higher diversity in exosomal fraction, which identifies several potential targets that may be utilized to study mechanisms of albuminuria and cardiovascular damage.
Collapse
Affiliation(s)
- Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Computer Science, ETSE, University of Valencia, 46010 Valencia, Spain
| | - Javier Perez-Hernandez
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (O.M.-A.); (A.F.-C.); (J.R.)
- Department of Nutrition and Health, Valencian International University (VIU), 46002 Valencia, Spain
- T-Cell Tolerance, Biomarkers and Therapies in Type 1 Diabetes Team, Institut Cochin CNRS, INSERM, Université de Paris Cité, F-75014 Paris, France
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (O.M.-A.); (A.F.-C.); (J.R.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-961973517 (R.C.)
| | - Ana Flores-Chova
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (O.M.-A.); (A.F.-C.); (J.R.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, 28029 Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (O.M.-A.); (A.F.-C.); (J.R.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-961973517 (R.C.)
| |
Collapse
|
16
|
Hoffner O’Connor M, Berglind A, Kennedy Ng MM, Keith BP, Lynch ZJ, Schaner MR, Steinbach EC, Herzog J, Trad OK, Jeck WR, Arthur JC, Simon JM, Sartor RB, Furey TS, Sheikh SZ. BET Protein Inhibition Regulates Macrophage Chromatin Accessibility and Microbiota-Dependent Colitis. Front Immunol 2022; 13:856966. [PMID: 35401533 PMCID: PMC8988134 DOI: 10.3389/fimmu.2022.856966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction In colitis, macrophage functionality is altered compared to normal homeostatic conditions. Loss of IL-10 signaling results in an inappropriate chronic inflammatory response to bacterial stimulation. It remains unknown if inhibition of bromodomain and extra-terminal domain (BET) proteins alters usage of DNA regulatory elements responsible for driving inflammatory gene expression. We determined if the BET inhibitor, (+)-JQ1, could suppress inflammatory activation of macrophages in Il10-/- mice. Methods We performed ATAC-seq and RNA-seq on Il10-/- bone marrow-derived macrophages (BMDMs) cultured in the presence and absence of lipopolysaccharide (LPS) with and without treatment with (+)-JQ1 and evaluated changes in chromatin accessibility and gene expression. Germ-free Il10-/- mice were treated with (+)-JQ1, colonized with fecal slurries and underwent histological and molecular evaluation 14-days post colonization. Results Treatment with (+)-JQ1 suppressed LPS-induced changes in chromatin at distal regulatory elements associated with inflammatory genes, particularly in regions that contain motifs for AP-1 and IRF transcription factors. This resulted in attenuation of inflammatory gene expression. Treatment with (+)-JQ1 in vivo resulted in a mild reduction in colitis severity as compared with vehicle-treated mice. Conclusion We identified the mechanism of action associated with a new class of compounds that may mitigate aberrant macrophage responses to bacteria in colitis.
Collapse
Affiliation(s)
- Michelle Hoffner O’Connor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ana Berglind
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Meaghan M. Kennedy Ng
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin P. Keith
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary J. Lynch
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erin C. Steinbach
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy Herzog
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Omar K. Trad
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William R. Jeck
- Department of Pathology, Duke University, Durham, NC, United States
| | - Janelle C. Arthur
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M. Simon
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Liu Z, Li Y, Chen H, Lai HT, Wang P, Wu SY, Wold EA, Leonard PG, Joseph S, Hu H, Chiang CM, Brasier AR, Tian B, Zhou J. Discovery, X-ray Crystallography, and Anti-inflammatory Activity of Bromodomain-containing Protein 4 (BRD4) BD1 Inhibitors Targeting a Distinct New Binding Site. J Med Chem 2022; 65:2388-2408. [PMID: 34982556 PMCID: PMC8989062 DOI: 10.1021/acs.jmedchem.1c01851] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 (52) targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities in vitro and in vivo. The X-ray crystal structural analysis of ZL0590 in complex with human BRD4 BD1 and the associated mutagenesis study illustrate a first-in-class nonacetylated lysine (KAc) binding site located at the helix αB and αC interface that contains important BRD4 residues (e.g., Glu151) not commonly shared among other family members and is spatially distinct from the classic KAc recognition pocket. This new finding facilitates further elucidation of the complex biology underpinning bromodomain specificity among BRD4 and its protein-protein interaction partners.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul G Leonard
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Sarah Joseph
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | | | | | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison School of Medicine and Public Health, 4248 Health Sciences Learning Center, Madison, Wisconsin 53705, United States
| | | | | |
Collapse
|
18
|
He MY, Halford MM, Liu R, Roy JP, Grant ZL, Coultas L, Thio N, Gilan O, Chan YC, Dawson MA, Achen MG, Stacker SA. Three-dimensional CRISPR screening reveals epigenetic interaction with anti-angiogenic therapy. Commun Biol 2021; 4:878. [PMID: 34267311 PMCID: PMC8282794 DOI: 10.1038/s42003-021-02397-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis underlies development, physiology and pathogenesis of cancer, eye and cardiovascular diseases. Inhibiting aberrant angiogenesis using anti-angiogenic therapy (AAT) has been successful in the clinical treatment of cancer and eye diseases. However, resistance to AAT inevitably occurs and its molecular basis remains poorly understood. Here, we uncover molecular modifiers of the blood endothelial cell (EC) response to a widely used AAT bevacizumab by performing a pooled genetic screen using three-dimensional microcarrier-based cell culture and CRISPR–Cas9. Functional inhibition of the epigenetic reader BET family of proteins BRD2/3/4 shows unexpected mitigating effects on EC survival and/or proliferation upon VEGFA blockade. Moreover, transcriptomic and pathway analyses reveal an interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs via the cell cycle regulator CDC25B phosphatase. Collectively, our findings provide insight into epigenetic regulation of the EC response to VEGFA blockade and may facilitate development of quality biomarkers and strategies for overcoming resistance to AAT. Through three-dimensional CRISPR screening, He et al. report that functional inhibition of BET family of proteins BRD2/3/4 shows mitigating effects on blood endothelial cell (EC) survival and/or proliferation upon VEGFA blockade. An interaction between epigenetic regulation and anti-angiogenesis, which may affect chromosomal structure and activity in ECs through CDC25B phosphatase, is potentially involved with EC resistance to anti-angiogenic therapy.
Collapse
Affiliation(s)
- Michael Y He
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael M Halford
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ruofei Liu
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - James P Roy
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Zoe L Grant
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Gladstone Institutes, San Francisco, CA, USA
| | - Leigh Coultas
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Niko Thio
- Bioinformatics Core, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Omer Gilan
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Yih-Chih Chan
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia.,Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marc G Achen
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
20
|
Reeves BN, Beckman JD. Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2021; 16:304-313. [PMID: 33876389 DOI: 10.1007/s11899-021-00630-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Thrombosis remains a leading cause of morbidity and mortality in BCR/ABL negative myeloproliferative neoplasms (MPN). Circulating blood cells are both increased in quantity and qualitatively abnormal in MPN, resulting in an increased thrombotic risk. Herein, we review recently elucidated mechanisms of MPN thrombosis and discuss implications of drugs currently under investigation for MPN. RECENT FINDINGS Recent studies highlight that in JAK2V617F granulocytes and platelets, thrombo-inflammatory genes are upregulated. Furthermore, in JAK2V617F granulocytes, protein expression of integrin CD11b, tissue factor, and leukocyte alkaline phosphatase are all increased. Overall, myeloid cells, namely neutrophils, may contribute in several ways, such as through increased adhesion via β1 integrin binding to VCAM1, increased infiltration, and enhanced inducibility to extrude neutrophil extracellular traps. Non-myeloid inflammatory cells may also contribute via secretion of cytokines. With regard to red blood cells, number, rigidity, adhesion, and generation of microvesicles may lead to increased vascular resistance as well as increased cell-cell interactions that promote rolling and adhesion. Platelets may also contribute in a similar fashion. Lastly, the vasculature is also increasingly appreciated, as several studies have demonstrated increased endothelial expression of pro-coagulant and pro-adhesive proteins, such as von Willebrand factor or P-selectin in JAK2V617F endothelial cells. With the advent of molecular diagnostics, MPN therapeutics are advancing beyond cytoreduction. Our increased understanding of pro-inflammatory and thrombotic pathophysiology in MPN provides a rational basis for evaluation of in-development MPN therapeutics to reduce thrombosis.
Collapse
Affiliation(s)
- Brandi N Reeves
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan D Beckman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St. SE, MMC 480, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|