1
|
Manhas D, Malairaman U. Impact of Moringa oleifera Hydro-Alcoholic Bark Extract on Diabetic Wound Healing: A Topical Approach. INT J LOW EXTR WOUND 2024:15347346241297829. [PMID: 39636130 DOI: 10.1177/15347346241297829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE The current study was aimed to evaluate the potential of Moringa oleifera against diabetic foot ulcer, where the wound healing is impaired and susceptible to infection. METHODS The effects of M. oleifera hydroalcoholic bark extract (MOHE) on different parameters influencing diabetic wound healing were comprehensively investigated including: anti-inflammatory effects, antibacterial properties, antioxidant activity, anti-diabetic properties, and fibroblast proliferation and migration. Furthermore, in vivo studies were conducted in diabetic rats and Zebrafish to investigate the topical effects of MOHE on wound healing. RESULTS The findings of this study demonstrated that MOHE has strong anti-diabetic effect, including a significant inhibition of α-amylase activity (IC50 = 0.043 mg/mL) and 2.92-fold increase in 2-NBDG uptake in McCoy cells. MOHE demonstrated considerable antioxidant activity, inhibiting DPPH (IC50: 0.046 mg/mL) and ABTS (IC50: 0.04 mg/mL) free radicals. In in vitro wound healing studies employing MOHE revealed a significant increase in McCoy fibroblast proliferation (148.83%) and improved migration, resulting in a wound closure rate of 46.3%. MOHE exhibited significant antibacterial activity against pathogenic bacteria species. It efficiently reduced heat-induced RBC hemolysis, with anti-inflammatory effect of 73% at 0.2 mg/mL. Furthermore, MOHE demonstrated better results in the treatment of diabetic wounds in Wistar rats and fin regeneration in Zebra fish compared to Calendula cream. CONCLUSION This evidence based pharmacological study highlights the promising potential of MOHE in facilitating the healing of diabetic wounds, offering a topical approach to address this challenging healthcare issue.
Collapse
Affiliation(s)
- Diksha Manhas
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Udayabanu Malairaman
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Alev-Tuzuner B, Oktay S, Cergel E, Elik G, Magaji UF, Sacan O, Yanardag R, Yarat A. Moringa oleifera hydroalcoholic leaf extracts mitigate valproate-induced oxidative status in the extraorbital lacrimal gland in a rat model. Exp Eye Res 2024; 248:110104. [PMID: 39303844 DOI: 10.1016/j.exer.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Dysfunction of the extraorbital lacrimal gland (ELG) can lead to loss of vision due to damage to the epithelium of cornea. The broad-spectrum anti-epileptic drug sodium valproate (SV) has numerous side effects. Moringa oleifera (M.oleifera) is widely used as a food and in folk medicine. The effects of orally administered SV and M. oleifera hydroalcoholic leaf extract on rat ELG were investigated in this study by analysing both antioxidant and oxidant parameters. Additionally, boron level and tissue factor (TF) activity were determined. Protein changes were detected by sodium dodecyl sulfate gel electrophoresis (SDS-PAGE). Significantly lower values of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) were observed in the SV group compared to the control group. Treatment with Moringa extract significantly increased SOD, CAT and TAS values in the Moringa given SV group (SVM). While no significant differences were observed between the sialic acid values of the groups, lipid peroxidation (LPO), nitric oxide (NO) and total oxidant status (TOS) values were significantly elevated in the SV group compared to the control group. Due to the effect of Moringa extract, LPO, NO and TOS levels were significantly decreased in the SVM group compared to the SV group. TF activity was not meaningfully altered between groups. Compared to control rats, oxidative stress index (OSI) level significantly increased, whereas the boron level decreased in the SV group. Moringa extract treatment noticeably reduced OSI in the SVM group. According to SDS-PAGE, decreases in the density of protein bands with molecular weights of 51, 83, and 90 kDa were observed in SV given rats compared to the other groups. These decreases were reversed by the administration of Moringa extract. Moringa extract has shown protective properties arising from antioxidant potential, especially with its very low OSI value. Individuals undergoing SV treatment and having ELG complications might consider using Moringa extract to mitigate valproate induced damage.
Collapse
Affiliation(s)
- Burcin Alev-Tuzuner
- Istanbul Gelisim University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Avcilar, Istanbul, Turkiye; Istanbul Gelisim University, Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul, Turkiye.
| | - Sehkar Oktay
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Maltepe, Istanbul, Turkiye.
| | - Eda Cergel
- Haliç University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Eyupsultan, Istanbul, Turkiye.
| | - Gulsum Elik
- Egil District State Hospital, Department of Nutrition and Dietetics, Egil, Diyarbakir, Turkiye.
| | - Umar Faruk Magaji
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, Istanbul, Turkiye; Federal University Birnin Kebbi, Department of Biochemistry and Molecular Biology, Birnin Kebbi, Kebbi, Nigeria.
| | - Ozlem Sacan
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, Istanbul, Turkiye.
| | - Refiye Yanardag
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, Istanbul, Turkiye.
| | - Aysen Yarat
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Maltepe, Istanbul, Turkiye.
| |
Collapse
|
3
|
Wakhle B, Sharma S, Patel KS, Pandey PK, Lučić M, Fiket Ž, Yurdakul S, Varol S, Martín-Ramos P, Al-Yousef HM, Mothana RA. Multi-element Contamination and Health Risks in Green Leafy Vegetables from Ambagarh Chowki, Chhattisgarh, India. Biol Trace Elem Res 2024:10.1007/s12011-024-04285-3. [PMID: 38976141 DOI: 10.1007/s12011-024-04285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024]
Abstract
Leafy plants are commonly consumed as vegetables in India due to their high nutrient and vitamin content. This study, conducted in Ambagarh Chowki (India), investigated the accumulation potential of 52 elements (including Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn) in seven leafy vegetable species, namely Amaranthus tricolor L., Corchorus olitorius L., Cordia myxa L., Hibiscus sabdariffa L., Ipomoea batatas (L.) Lam., Moringa oleifera Lam., and Spinacia oleracea L. Technique: Inductively coupled plasma mass spectrometry (ICP-MS) was employed for analysis. The maximum concentrations of elements such as Al, Ba, Be, Bi, Cd, Co, Cr, Fe, Ga, Ge, Li, Mn, Ni, Pb, Sb, Th, Tl, U, V, W, and REEs were observed in S. oleracea leaves, indicating their highest accumulation potential. In contrast, the maximum concentrations of As were found in H. sabdariffa leaves; Ca and Si in M. oleifera leaves; Mg, Sr, and Mo in A. tricolor leaves; and P, K, Cu, and Zn in C. myxa leaves, respectively. Twenty-one elements (Cr, Cd, Pb, Ni, Co, V, Cu, Zn, Fe, Mn, Th, Sb, Ba, Be, Li, Sr, Tl, U, Se, Sn, and REEs) exceeded permissible limits set by the WHO. The elevated hazard index values indicated significant non-carcinogenic effects. The sources of these elements could be attributed to a combination of geological factors and agricultural practices. This study highlights the need for further investigation into the potential health implications of consuming these vegetables in the aforementioned region.
Collapse
Affiliation(s)
- Bhagyashri Wakhle
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG, India
| | - Saroj Sharma
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur, CG, India
| | - Khageshwar Singh Patel
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, 493225, CG, India.
| | - Piyush Kant Pandey
- Department of Applied Sciences, Amity University, Baloda-Bazar Road, Raipur, 493225, CG, India
| | - Mavro Lučić
- Laboratory for Inorganic Environmental Geochemistry and Chemodynamics of Nanoparticles, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Željka Fiket
- Laboratory for Inorganic Environmental Geochemistry and Chemodynamics of Nanoparticles, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sema Yurdakul
- Environmental Engineering Department, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Simge Varol
- Department of Geology, Faculty of Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Pablo Martín-Ramos
- ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Hanan Mohamed Al-Yousef
- Pharmacognosy Department, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ramzi Ahmed Mothana
- Pharmacognosy Department, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
El Bilali H, Dan Guimbo I, Nanema RK, Falalou H, Kiebre Z, Rokka VM, Tietiambou SRF, Nanema J, Dambo L, Grazioli F, Naino Jika AK, Gonnella M, Acasto F. Research on Moringa ( Moringa oleifera Lam.) in Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1613. [PMID: 38931045 PMCID: PMC11207860 DOI: 10.3390/plants13121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
While Moringa oleifera Lam. is gaining importance in Africa, especially sub-Saharan Africa, it is unclear whether research is following the quick pace of its development on the continent. Therefore, this article analyzes the landscape of research dealing with moringa in Africa. This systematic review draws upon 299 eligible articles identified through a search carried out on the Web of Science in April 2023. Research on M. oleifera is rather recent in Africa but interest is increasing among scholars. While the research field is multidisciplinary and cross-sectoral, the literature seems to focus on biological and environmental sciences. Moreover, research is performed mainly in South Africa, Nigeria, Egypt, and Ghana. The analysis suggests a significant potential contribution of moringa to food security and nutrition, climate change mitigation/adaptation, farming systems resilience, and livelihoods. Its versatility and diverse applications and uses make moringa particularly interesting for developing countries, such as African ones. However, this review also underscores some factors hindering its development. Therefore, there is a need to strengthen research on moringa to unlock its potential in Africa. Investments in research, innovation, and development can help address the many challenges that Africa faces and contribute to the transition towards sustainable and resilient food systems.
Collapse
Affiliation(s)
- Hamid El Bilali
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM-Bari), Via Ceglie 9, Valenzano, 70010 Bari, Italy
| | - Iro Dan Guimbo
- Department of Rural Engineering, Water and Forests, Faculty of Agronomy, Abdou Moumouni University, Niamey P.O. Box 237, Niger;
| | - Romaric Kiswendsida Nanema
- Department of Plant Biology and Physiology, Joseph Ki-Zerbo University, PB 7021, Ouagadougou 03, Burkina Faso; (R.K.N.); (Z.K.)
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger;
| | - Zakaria Kiebre
- Department of Plant Biology and Physiology, Joseph Ki-Zerbo University, PB 7021, Ouagadougou 03, Burkina Faso; (R.K.N.); (Z.K.)
| | - Veli-Matti Rokka
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland;
| | | | - Jacques Nanema
- Programme Agrinovia, Joseph Ki-Zerbo University, 03 BP, Ouagadougou 7021, Burkina Faso;
| | - Lawali Dambo
- Department of Geography, Faculty of Letters and Human Sciences, Abdou Moumouni University, Niamey P.O. Box 237, Niger;
| | - Francesca Grazioli
- Alliance Bioversity International—CIAT (Centro Internacional de Agricultura Tropical), Via San Domenico 1, 00153 Rome, Italy
| | - Abdel Kader Naino Jika
- Department of Crop Production, Faculty of Agronomy, Abdou Moumouni University, Niamey P.O. Box 237, Niger;
| | - Maria Gonnella
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Filippo Acasto
- Italian Agency for Development Cooperation (AICS), Ouaga 2000—Secteur 54, Arrondissement n. 12, Ouagadougou 01, Burkina Faso;
| |
Collapse
|
5
|
Garg P, Pundir S, Ali A, Panja S, Chellappan DK, Dua K, Kulshrestha S, Negi P. Exploring the potential of Moringa oleifera Lam in skin disorders and cosmetics: nutritional analysis, phytochemistry, geographical distribution, ethnomedicinal uses, dermatological studies and cosmetic formulations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3635-3662. [PMID: 38055069 DOI: 10.1007/s00210-023-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Moringa oleifera Lam. is a pan-tropical plant well known to the ancient world for its extensive therapeutic benefits in the Ayurvedic and Unani medical systems. The ancient world was familiar with this tree, but it has only lately been rediscovered as a multifunctional species with a huge range of possible therapeutic applications. It is a folk remedy for skin diseases, edema, sore gums, etc. This review comprises the history, ethnomedicinal applications, botanical characteristics, geographic distribution, propagation, nutritional and phytochemical profile, dermatological effects, and commercially available cosmeceuticals of Moringa oleifera Lam.Compilation of all the presented data has been done by employing various search engines like Science Direct, Google, PubMed, Research Gate, EBSCO, SciVal, SCOPUS, and Google Scholar.Studies on phytochemistry claim the presence of a variety of substances, including fatty acids, phenolic acids, sterols, oxalates, tocopherols, carotenoids, flavonoids, flavonols glycosides, tannins, terpenoids, terpene, saponins, phylates, alkaloids, glucosinolates, glycosides, and isothiocyanate. The pharmacological studies have shown the efficacy of Moringa oleifera Lam. as an antibacterial, antifungal, anti-inflammatory, antioxidant, anti-atopic dermatitis, antipsoriatic, promoter of wound healing, effective in treating herpes simplex virus, photoprotective, and UV protective. As a moisturizer, conditioner, hair growth promoter, cleanser, antiwrinkle, anti-aging, anti-acne, scar removal, pigmentation, and control for skin infection, sores, as well as sweating, it has also been utilized in a range of cosmeceuticals.he Moringa oleifera Lam. due to its broad range of phytochemicals can be proven boon for the treatment of dermatological disorders.
Collapse
Affiliation(s)
- Prakrati Garg
- School of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
- Center for Omics and Biodiversity Research, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Aaliya Ali
- School of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
- Center for Omics and Biodiversity Research, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Sebika Panja
- School of Bioengineering and Food Technology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Saurabh Kulshrestha
- School of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India.
- Center for Omics and Biodiversity Research, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India.
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
6
|
Dantas DL, Alves MDC, Dantas GMS, Campos ARN, Santana RACD, Soares JKB, Freitas JCR. Supplementation with Moringa oleifera Lam leaf and seed flour during the pregnancy and lactation period of Wistar rats: Maternal evaluation of initial and adult neurobehavioral development of the rat progeny. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117904. [PMID: 38342151 DOI: 10.1016/j.jep.2024.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a tree species of Indian origin popularly known as the "tree of life". In various cultures, it is used by pregnant women to increase milk production, yet studies on its effects during pregnancy and lactation are lacking. AIM OF THE STUDY To evaluate the nutraceutical aspects of flours produced from the leaves and seeds of M. oleifera, and to evaluate the effect of supplementation of pregnant Wistar rats during the gestation and lactation period, with the aim of studying the weight gain and neonatal parameters of the pregnant rats, as well as effects on the neurobehavioral development and memory in their offspring. MATERIALS AND METHODS The flour supplementation was conducted at a concentration of 100 mg per kg of animal body weight. For the memory tests, the Open Field Habituation test was performed and repeated after seven days. The Object Recognition test was conducted with the animal exposed to the open field in short and long familiarization sessions. The data obtained were analyzed using Kruskal-Wallis tests for non-parametric data and one-way and two-way ANOVA for parametric data. RESULTS Flour produced from both the leaf and seed of M. oleifera was found to contain significant amounts of nutrients (protein, fibre, carbohydrates, etc.), making them suitable for supplementation. The exposure of pregnant rats to M. oleifera leaf and seed flours did not affect weight gain, did not have harmful effects on the birth of offspring, and did not result in abortions or mutations in the offspring. Regarding the supplemented group's offspring, early maturation of the senses in the offspring compared to the control group was observed in all tests were conducted; indicating that supplementation positively impacted cognitive development. Further, the offspring of the supplemented rats presented reduced locomotion and greater exploration of new objects compared to the control group offspring, indicating positive effects on learning. CONCLUSION This study describes for the first time the beneficial effects on pregnant Wistar rats and their offspring of maternal supplementation with flour products from the leaves and seeds of M. oleifera.
Collapse
Affiliation(s)
- Danilo Lima Dantas
- Chemistry Department, Federal Rural University of Pernambuco, Zip Code: 52171-900, Recife, Pernambuco State, Brazil.
| | - Maciel da Costa Alves
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Zip Code: 59078-970, Natal, Rio Grande do Norte State, Brazil.
| | - Gabriel Magno Santos Dantas
- Chemistry Department, Organic Synthesis Laboratory, Federal University of Campina Grande, Zip Code: 58175-000, Cuité, Paraíba State, Brazil.
| | - Ana Regina Nascimento Campos
- Department of Chemical Engineering, Federal University of Campina Grande, Zip Code: 58109-970, Campina Grande, Paraíba state, Brazil.
| | - Renato Alexandre Costa de Santana
- Department of Mechanical Engineering, Federal University of Campina Grande, Zip Code: 58109-970, Campina Grande, Paraíba state, Brazil.
| | - Juliana Késsia Barbosa Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Zip Code: 58175-000, Cuité, Paraíba State, Brazil.
| | - Juliano Carlo Rufino Freitas
- Chemistry Department, Organic Synthesis Laboratory, Federal University of Campina Grande, Zip Code: 58175-000, Cuité, Paraíba State, Brazil.
| |
Collapse
|
7
|
Twinomujuni SS, Atukunda EC, Mukonzo JK, Nicholas M, Roelofsen F, Ogwang PE. Evaluation of the effects of Artemisia Annua L. and Moringa Oleifera Lam. on CD4 count and viral load among PLWH on ART at Mbarara Regional Referral Hospital: a double-blind randomized controlled clinical trial. AIDS Res Ther 2024; 21:22. [PMID: 38627722 PMCID: PMC11020329 DOI: 10.1186/s12981-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Initiation of ART among people living with HIV (PLWH) having a CD4 count ≤ 350cells/µl, produces poor immunological recovery, putting them at a high risk of opportunistic infections. To mitigate this, PLWH on ART in Uganda frequently use herbal remedies like Artemisia annua and Moringa oleifera, but their clinical benefits and potential antiretroviral (ARV) interactions remain unknown. This study examined the impact of A. annua and M. oleifera on CD4 count, viral load, and potential ARV interactions among PLWH on ART at an HIV clinic in Uganda. METHODS 282 HIV-positive participants on antiretroviral therapy (ART) with a CD4 count ≤ 350cells/µl were randomized in a double-blind clinical trial to receive daily, in addition to their routine standard of care either; 1) A. annua leaf powder, 2) A. annua plus M. oleifera, and 3) routine standard of care only. Change in the CD4 count at 12 months was our primary outcome. Secondary outcomes included changes in viral load, complete blood count, and ARV plasma levels. Participants were followed up for a year and outcomes were measured at baseline, 6 and 12 months. RESULTS At 12 months of patient follow-up, in addition to standard of care, administration of A. annua + M. oleifera resulted in an absolute mean CD4 increment of 105.06 cells/µl, (p < 0.001), while administration of A. annua plus routine standard of care registered an absolute mean CD4 increment of 60.84 cells/µl, (p = 0.001) compared to the control group. The A. annua plus M. oleifera treatment significantly reduced viral load (p = 0.022) and increased platelet count (p = 0.025) and white blood cell counts (p = 0.003) compared to standard care alone, with no significant difference in ARV plasma levels across the groups. CONCLUSION A combination of A. annua and M. oleifera leaf powders taken once a day together with the routine standard of care produced a significant increase in CD4 count, WBCs, platelets, and viral load suppression among individuals on ART. A. annua and M. oleifera have potential to offer an affordable alternative remedy for managing HIV infection, particularly in low-resource communities lacking ART access. TRIAL REGISTRATION ClinicalTrials.gov NCT03366922.
Collapse
Affiliation(s)
- Silvano S Twinomujuni
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda.
| | - Esther C Atukunda
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Jackson K Mukonzo
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Musinguzi Nicholas
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Felicitas Roelofsen
- Action for Natural Medicine in the Tropics (ANAMED INTERNATIONAL), Winnenden, Germany
| | - Patrick E Ogwang
- Department of Pharmacy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
8
|
Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7343-7361. [PMID: 37532676 DOI: 10.1002/jsfa.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Moringa oleifera is an important medicinal plant in several countries; for example, Nigeria, the USA, Turkey, Germany, Greece, and Ukraine. The abundant bioactive and nutritional properties of this plant make it useful in many and diverse areas of life, including the health, cosmetic, agricultural, and food industries to mention but a few. Research has found that the presence of proteins, carbohydrates, lipids, vitamins, minerals, flavonoids, phenols, alkaloids, fatty acids, saponins, essential oils, folate, aromatic hydrocarbons, sterols, glucosinolates, and glycosides, among others, characterize the moringa nutrient profile and, as a result, give rise to its remedial effects on ailments such as wounds, stomach and duodenal ulcers, allergies, obesity, diabetes, inflammation, asthma, and so on. It is the aim of this review to provide an insight into such medicinal and pharmacological remedies attributed to moringa, stating both the past and recent discoveries. This review article also takes a look into the botanical features, bioactive compounds, antinutrients, food applications, bacterial fermentation products, biosafety, industrial applications, and other uses of moringa. Finally, with the belief that knowledge is progressive, we acknowledge that there are things yet undiscovered about this wonder plant that will be of value both to medicine and general life; we therefore recommend that research work continues on the moringa plant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Great Iruoghene Edo
- Department of Chemical Science, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
9
|
Zouboulis CC, Hossini AM, Hou X, Wang C, Weylandt KH, Pietzner A. Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types. Int J Mol Sci 2023; 24:10332. [PMID: 37373478 DOI: 10.3390/ijms241210332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The seeds of Moringa oleifera (horseradish tree) contain about 40% of one of the most stable vegetable oils (Moringa seed oil). Therefore, the effects of Moringa seed oil on human SZ95 sebocytes were investigated and were compared with other vegetable oils. Immortalized human SZ95 sebocytes were treated with Moringa seed oil, olive oil, sunflower oil, linoleic acid and oleic acid. Lipid droplets were visualized by Nile Red fluorescence, cytokine secretion via cytokine antibody array, cell viability with calcein-AM fluorescence, cell proliferation by real-time cell analysis, and fatty acids were determined by gas chromatography. Statistical analysis was performed by the Wilcoxon matched-pairs signed-rank test, the Kruskal-Wallis test and Dunn's multiple comparison test. The vegetable oils tested stimulated sebaceous lipogenesis in a concentration-dependent manner. The pattern of lipogenesis induced by Moringa seed oil and olive oil was comparable to lipogenesis stimulated by oleic acid with also similar fatty acid secretion and cell proliferation patterns. Sunflower oil induced the strongest lipogenesis among the tested oils and fatty acids. There were also differences in cytokine secretion, induced by treatment with different oils. Moringa seed oil and olive oil, but not sunflower oil, reduced the secretion of pro-inflammatory cytokines, in comparison to untreated cells, and exhibited a low n-6/n-3 index. The anti-inflammatory oleic acid detected in Moringa seed oil probably contributed to its low levels of pro-inflammatory cytokine secretion and induction of cell death. In conclusion, Moringa seed oil seems to concentrate several desired oil properties on sebocytes, such as high content level of the anti-inflammatory fatty acid oleic acid, induction of similar cell proliferation and lipogenesis patterns compared with oleic acid, lipogenesis with a low n-6/n-3 index and inhibition of secretion of pro-inflammatory cytokines. These properties characterize Moringa seed oil as an interesting nutrient and a promising ingredient in skin care products.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Xiaoxiao Hou
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Chaoxuan Wang
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School and Faculty of Health Sciences Brandenburg, 16816 Neuruppin, Germany
- Division of Psychosomatic Medicine, Medical Department, Campus Benjamin Franklin, Charité-Universitaetsmedizin Berlin, 12203 Berlin, Germany
| | - Karsten H Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School and Faculty of Health Sciences Brandenburg, 16816 Neuruppin, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School and Faculty of Health Sciences Brandenburg, 16816 Neuruppin, Germany
| |
Collapse
|
10
|
Polo-Castellano C, Mateos RM, Visiedo F, Palma M, Barbero GF, Ferreiro-González M. Optimizing an Enzymatic Extraction Method for the Flavonoids in Moringa ( Moringa oleifera Lam.) Leaves Based on Experimental Designs Methodologies. Antioxidants (Basel) 2023; 12:antiox12020369. [PMID: 36829929 PMCID: PMC9952375 DOI: 10.3390/antiox12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera Lam. is known to have significant antioxidant properties. Because of this, the development of an optimal extraction method is crucial to obtain pharmacological products based on the bioactive compounds produced by this tree. Through a Plackett-Burman and a Box-Behnken design, enzymatic extraction conditions (temperature, agitation, solvent pH and composition, sample-to-solvent ratio, enzyme-to-sample ratio and extraction time) have been optimized using normalized areas (UA/g) as response variable and relative mass (mg/g) as quantification variable. Extractions were performed in an incubator, where all the extraction conditions could be digitally controlled. Thus, 58.9 °C, 50 rpm, 4.0 pH, 32.5% EtOH, 0.2 g sample in 15 mL solvent and 106 U/g were established as the optimal extraction conditions for the extraction with a mix of pectinases coming from Aspergillus niger. Under these optimal conditions, two-minute extractions were performed and evaluated through a single factor design. The enzymatic extraction method demonstrated its suitability to produce extracts with good antioxidant power (antioxidant activity 4.664 ± 0.059 mg trolox equivalent/g sample and total phenolic compounds 6.245 ± 0.101 mg gallic acid equivalent/g sample). The method was also confirmed to have good repeatability (1.39%) and intermediate precision (2.37%) levels.
Collapse
Affiliation(s)
- Curro Polo-Castellano
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Rosa María Mateos
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, 11519 Cadiz, Spain
| | - Francisco Visiedo
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| |
Collapse
|
11
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
12
|
Moringa oleifera Leaf Extract Promotes Healing of Infected Wounds in Diabetic Rats: Evidence of Antimicrobial, Antioxidant and Proliferative Properties. Pharmaceuticals (Basel) 2022; 15:ph15050528. [PMID: 35631354 PMCID: PMC9147243 DOI: 10.3390/ph15050528] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/21/2023] Open
Abstract
Moringa oleifera is known to possess wound healing activity. The present study evaluated the healing properties of methanolic extract of M. oleifera leaves in excision wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) or P. aeruginosa in diabetic rats. An in vitro study was also carried out to determine the gene expression of VEGF and TGF-β1. Preliminary phytochemical and GC-MS analyses were carried out to determine different chemical constituents present in the extract. M. oleifera was applied locally as an ointment at two different concentrations. Wound contraction, period of epithelization, antioxidant enzyme activities and histological changes were determined. For the gene expression study, HaCaT cell lines were used. The formulation of M. oleifera extract improved wound contraction and decreased the period of epithelization, which was associated with an increase in antioxidant enzyme activities, epithelization, capillary density and collagen formation in MRSA-infected diabetic rats. However, this effect was reduced in diabetic animals infected with P. aeruginosa. An increase in the expression of VEGF and TGF-β1 was observed in HaCaT cell lines. M. oleifera extract promotes the healing of infected wounds in MRSA-infected diabetic rats but is less effective in the healing of wounds infected with P. aeruginosa in diabetic rats.
Collapse
|
13
|
Adji AS, Atika N, Kusbijantoro YB, Billah A, Putri A, Handajani F. A review of Leaves and Seeds Moringa oleifera Extract: The potential Moringa oleifera as Antibacterial, Anti-Inflammatory, Antidiarrhoeal, And Antiulcer Approaches To Bacterial Gastroenteritis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Bacterial gastroenteritis is a disease in the tropics in the form of inflammation of the stomach and intestines due to several bacteria, such as Salmonella, Campylobacter, Shigella, Escherichia coli, Vibrio, Yersinia, and Listeria with symptoms of diarrhea without or with vomiting and frequent fever. Gastroenteritis is a global disease with the highest prevalence in the agricultural community, especially farmers and fishermen.
AIM: This research is to determine the potential of leaf and seed extract Moringa oleifera as an alternative therapy for bacterial gastroenteritis.
METHODS: A literature review approach derived from the analysis and synthesis of various related references is used. The author selects journals full text and books published in the last ten years maximum through several databases, namely PubMed, Google Scholar, ScienceDirect, and Cochrane with the keywords: diarrhea, gastroenteritis, antibacterial, antiulcer, anti-inflammation, and M. oleifera.
RESULTS: Seed and leaf extract M. oleifera played a role in preventing some of the effects of the pathogenesis of diarrhea due to bacterial infection. Methanol, N-hexane, ethyl acetate, flavonoids, phenols, saponins, alkaloids, tannins, and steroids from seed and leaf extract M. oleifera have antibacterial effects. The content of quercetin has an anti-inflammatory effect. The content of tannins, flavonoids, and alkaloids has antidiarrheal activity. The content of ethanol and tannins has an antiulcer effect. This potential can help cure patients with bacterial gastroenteritis.
CONCLUSION: Leaf and seed extract of M. oleifera has good antibacterial, anti-inflammatory, antiulcer, and antidiarrheal potential for the treatment of bacterial gastroenteritis.
Collapse
|
14
|
Louisa M, Patintingan CGH, Wardhani BWK. Moringa Oleifera Lam. in Cardiometabolic Disorders: A Systematic Review of Recent Studies and Possible Mechanism of Actions. Front Pharmacol 2022; 13:792794. [PMID: 35431967 PMCID: PMC9006177 DOI: 10.3389/fphar.2022.792794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiometabolic disorders (CMD) have become a global emergency and increasing burden on health and economic problems. Due to the increasing need for new drugs for cardiometabolic diseases, many alternative medicines from plants have been considered and studied. Moringa oleifera Lam. (MO), one of the native plants from several Asian countries, has been used empirically by people for various kinds of illnesses. In the present systematic review, we aimed to investigate the recent studies of MO in CMD and its possible mechanism of action. We systematically searched from three databases and summarized the data. This review includes a total of 108 papers in nonclinical studies and clinical trials of MO in cardiometabolic-related disorders. Moringa oleifera, extracts or isolated compound, exerts its effect on CMD through its antioxidative, anti-inflammatory actions resulting in the modulation in glucose and lipid metabolism and the preservation of target organ damage. Several studies supported the beneficial effect of MO in regulating the gut microbiome, which generates the diversity of gut microbiota and reduces the number of harmful bacteria in the caecum. Molecular actions that have been studied include the suppression of NF-kB translocation, upregulation of the Nrf2/Keap1 pathway, stimulation of total antioxidant capacity by reducing PKCζ activation, and inhibiting the Nox4 protein expression and several other proposed mechanisms. The present review found substantial evidence supporting the potential benefits of Moringa oleifera in cardiovascular or metabolic disorders.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Bantari W. K. Wardhani
- Department of Pharmacology, Faculty of Military Pharmacy, Indonesia Defense University, West Java, Indonesia
| |
Collapse
|
15
|
Taufek NM, Zainol Ariffin SNN, Mohd Arshad N, Mazlishah MSH. Current status of dietary Moringa oleifera and its application in poultry nutrition. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2016037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Norhidayah Mohd Taufek
- AquaNutri Biotech Research Laboratory, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Norhafiza Mohd Arshad
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
16
|
Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14358-14371. [PMID: 34843254 DOI: 10.1021/acs.jafc.1c04581] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.
Collapse
Affiliation(s)
- Saurav Ghimire
- Department of Neuroscience, Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, 33076 Bordeaux, France
| | - Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Namrata Acharya
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
17
|
Yasoob TB, Khalid AR, Zhang Z, Zhu X, Hang S. Liver transcriptome of rabbits supplemented with oral Moringa oleifera leaf powder under heat stress is associated with modulation of lipid metabolism and up-regulation of genes for thermo-tolerance, antioxidation and immunity. Nutr Res 2021; 99:25-39. [DOI: 10.1016/j.nutres.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022]
|
18
|
Grosshagauer S, Pirkwieser P, Kraemer K, Somoza V. The Future of Moringa Foods: A Food Chemistry Perspective. Front Nutr 2021; 8:751076. [PMID: 34796194 PMCID: PMC8594418 DOI: 10.3389/fnut.2021.751076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
The tree Moringa oleifera Lam. provides its leaves, pods, flowers and seeds for human nutrition. The chemical profile of all these Moringa products varies substantially, not only among the different parts of the plants used. Cultivating, processing as well as storage conditions chiefly determine the contents of nutrients and anti-nutritive constituents. Anti-nutrients, e.g., phytic acid or tannins, are present in notable amounts and may affect micronutrient bioavailability. Although Moringa oleifera products have been promoted for several health benefits and are discussed as an alternative treatment in various diseases, risk assessment studies evaluating contamination levels are scarce. Recent investigations have demonstrated alarming contents of heavy metals, polycyclic aromatic hydrocarbons and mycotoxins in Moringa oleifera products, indicating the need for a comprehensive risk assessment and contingent legal regulation of these products. In this mini review, we briefly outline pivotal, food chemistry and nutrition related data on Moringa preparations in order to stimulate in-depth research to close the presented knowledge gaps.
Collapse
Affiliation(s)
- Silke Grosshagauer
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Philip Pirkwieser
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Klaus Kraemer
- Sight and Life Foundation, Basel, Switzerland.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Chair of Nutritional Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|