1
|
Jiang M, Hong C, Zou W, Ye Z, Lu L, Liu Y, Zhang T, Ding Y. Recent advances in the anti-tumor activities of saponins through cholesterol regulation. Front Pharmacol 2025; 15:1469392. [PMID: 39845802 PMCID: PMC11752913 DOI: 10.3389/fphar.2024.1469392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Abnormal cholesterol metabolism has become a popular therapeutic target in cancer therapy. In recent years there has been a surge in interest in the anti-tumor activities of saponins, particularly their ability to disrupt cholesterol homeostasis in tumor cells. Cholesterol regulation by saponins is a complex process that involves multiple mechanisms. However, there are now a notable dearth of comprehensive reviews addressing their anti-tumor effects through cholesterol modulation. This review will explore the intricate mechanisms by which saponins regulate cholesterol, including modulation of synthesis, metabolism, and uptake, as well as complex formation with cholesterol. It will also outline how saponins exert their anti-cancer activities through cholesterol regulation, enhancing cytotoxicity, inhibiting tumor cell metastasis, reversing drug resistance, inducing immunotoxin macromolecule escape, and ferroptosis. This comprehensive analysis offers insights into the potential for the use of saponins anti-tumor therapies and their combinations with other drugs, advancing the understanding of their effects on cancer cells.
Collapse
Affiliation(s)
- Min Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenkui Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Qian Y, Xu Y, Zhang Q, Huang C, Li H, Gao L, Wu S, Qi C, Wen X, Zhou X, Ying C. Jaranol alleviates cognitive impairment in db/db mice through the PI3K/AKT pathway. Metab Brain Dis 2025; 40:88. [PMID: 39760807 DOI: 10.1007/s11011-024-01527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
The widely used Radix Astragali (RA) has significant therapeutic effects on cognitive impairment (CI) caused by type 2 diabetes (T2DM). However, the effective active ingredients and the precise mechanism underly RA alleviation of T2DM-induced CI still require further study. In this study, we aim to elucidate whether and how jaranol, a key effective active ingredient in RA, influences CI in db/db mice. We used various online databases and Cytoscape to screen jaranol as the most active ingredient of RA in the treatment of T2DM-induced CI. The fear conditioning experiment, new object recognition (NOR) test, and Morris water maze (MWM) test were conducted to assess the improvement effect of jaranol on CI in diabetic mice. The protein-protein interaction (PPI) network, Cytoscape, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify key genes. The levels of AKT and caspase-3 were determined by Western blotting. The number of surviving hippocampal neurons was verified through Nissl staining. AutoDock was utilized for predicting potential binding sites between jaranol and key genes.As a result, jaranol attenuated CI in db/db mice probably through activation of PI3K-AKT signaling pathway by inhibiting cell apoptosis in hippocampus. Furthermore, A329 near the active site of AKT1 had hydrogen bond with jaranol. In conclusion, we suggest that jaranol may have therapeutic applications in T2DM-induced CI by targeting the PI3K-AKT signaling pathway directly via key sites. Our study provides alternative drugs and potential therapeutic targets for the prevention and treatment of T2DM-induced CI.
Collapse
Affiliation(s)
- Ye Qian
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yue Xu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Endocrinology, Shuyang County Hospital of Traditional Chinese Medicine, Jiangsu, 223600, China
| | - Qiuyu Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Huang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hui Li
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Gao
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shidi Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiangru Wen
- Department of Chemistry, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Changjiang Ying
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
3
|
Yuan Y, Lai S, Hu T, Hu F, Zou C, Wang X, Fang M, Liu J, Huang H. Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1. Sci Rep 2025; 15:794. [PMID: 39755744 DOI: 10.1038/s41598-024-84808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality. Additionally, Pue significantly alleviated histopathological damage in MIRI-treated myocardium, as evidenced by HE staining and TUNEL assay. In vitro, Pue pretreatment significantly alleviated A/R-induced damage by decreasing LDH levels, increasing cellular activity, inhibiting autophagic lysosomal overactivation, inhibiting oxidative stress (ROS, LIP ROS, MDA), increasing antioxidant defense (SOD, GSH-Px), and increasing P62 protein expression while decreasing LC3II/I ratio. Furthermore, Pue inhibited apoptosis and maintained mitochondrial homeostasis by up-regulating the expression of Hairy and Enhancer of Split-1 (HES1) protein, which was crucial for its cardioprotective effects. Nevertheless, the cardioprotective efficacy of Pue pretreatment was negated via the knockdown of HES1 protein expression via pAD/HES1-shRNA transfection. In conclusion, Pue effectively ameliorated HES1-mediated MIRI-induced autophagy, apoptosis, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Chenchao Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiuqi Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ming Fang
- Department of Emergency, Gaoxin Branch of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
5
|
Pan X, Tao J, Xing Q, Wang B, Dou M, Zhang Y, Jin S, Wu J. Borneol promotes berberine-induced cardioprotection in a rat model of myocardial ischemia/reperfusion injury via inhibiting P-glycoprotein expression. Eur J Pharmacol 2024; 983:177009. [PMID: 39306269 DOI: 10.1016/j.ejphar.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Berberine is reported to protect the heart against ischemia/reperfusion (I/R) injury, although efficacy is limited by low bioavailability. This study aims to determine whether borneol, a classic guiding drug, can enhance the cardioprotection induced by berberine and to clarify the underlying mechanisms involving P-glycoprotein (P-gp) in the heart. Adult male Sprague Dawley rats were gavaged with berberine (200 mg/kg) with or without borneol (100 mg/kg) for 7 consecutive days. A rat model of myocardial I/R injury was established by 30 min left coronary artery occlusion followed with 120 min reperfusion. The arrhythmia score, cardiac enzyme content, and myocardial infarct size were determined following reperfusion. Heart tissues were collected for Western blot and immunofluorescence analyses to measure the protein expression levels of Bcl-2, Bax, and P-gp. The results showed that administration of berberine protected the heart against I/R injury, as demonstrated by lower arrhythmia scores, serum cTnI contents, myocardial infarct size, and cardiomyocytes apoptosis. Moreover, borneol substantially enhanced the cardioprotective effects of berberine. Western blot and immunofluorescence analyses showed that both berberine and I/R injury did not alter P-gp expression in heart. In contrast, borneol combined with berberine significantly reduced P-gp levels by 43.4% (P = 0.0240). Interestingly, treatment with borneol alone decreased P-gp levels, but did not protect against myocardial I/R injury. These findings suggest that borneol, as an adjuvant drug, improved the cardioprotective effects of berberine by inhibiting P-gp expression in heart. Borneol combined with berberine administration provides a new strategy to protect the heart against I/R injury.
Collapse
Affiliation(s)
- Xinxin Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Jing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Qijing Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Juan Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Jin B, Zhang Z, Zhang Y, Yang M, Wang C, Xu J, Zhu Y, Mi Y, Jiang J, Sun Z. Ferroptosis and myocardial ischemia-reperfusion: mechanistic insights and new therapeutic perspectives. Front Pharmacol 2024; 15:1482986. [PMID: 39411064 PMCID: PMC11473306 DOI: 10.3389/fphar.2024.1482986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant factor in the development of cardiac dysfunction following a myocardial infarction. Ferroptosis, a type of regulated cell death driven by iron and marked by lipid peroxidation, has garnered growing interest for its crucial involvement in the pathogenesis of MIRI.This review comprehensively examines the mechanisms of ferroptosis, focusing on its regulation through iron metabolism, lipid peroxidation, VDAC signaling, and antioxidant system dysregulation. We also compare ferroptosis with other forms of cell death to highlight its distinct characteristics. Furthermore, the involvement of ferroptosis in MIRI is examined with a focus on recent discoveries concerning ROS generation, mitochondrial impairment, autophagic processes, ER stress, and non-coding RNA regulation. Lastly, emerging therapeutic strategies that inhibit ferroptosis to mitigate MIRI are reviewed, providing new insights into potential clinical applications.
Collapse
Affiliation(s)
- Binwei Jin
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiming Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Wang
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jiayi Xu
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Yu Zhu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Cardiology, Taizhou hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
7
|
Yang X, Yang X, Li B, Zhang J, Yan Z. Combined non-targeted and targeted metabolomics reveals the mechanism of delaying aging of Ginseng fibrous root. Front Pharmacol 2024; 15:1368776. [PMID: 39114359 PMCID: PMC11303238 DOI: 10.3389/fphar.2024.1368776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background: The fibrous root of ginseng (GFR) is the dried thin branch root or whisker root of Ginseng (Panax ginseng C. A. Mey). It is known for its properties such as tonifying qi, producing body fluid, and quenching thirst. Clinically, it is used to treat conditions such as cough, hemoptysis, thirst, stomach deficiency, and vomiting. While GFR and Ginseng share similar metabolites, they differ in their metabolites ratios and efficacy. Furthermore, the specific role of GFR in protecting the body remains unclear. Methods: We employed ultra-high performance liquid chromatography-triple quadrupole mass spectrometry to examine alterations in brain neurotransmitters and elucidate the impact of GFR on the central nervous system. Additionally, we analyzed the serum and brain metabolic profiles of rats using ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry to discern the effect and underlying mechanism of GFR in delaying aging in naturally aged rats. Results: The findings of the serum biochemical indicators indicate that the intervention of GFR can enhance cardiovascular, oxidative stress, and energy metabolism related indicators in naturally aging rats. Research on brain neurotransmitters suggests that GFR can augment physiological functions such as learning and memory, while also inhibiting central nervous system excitation to a certain degree by maintaining the equilibrium of central neurotransmitters in aged individuals. Twenty-four abnormal metabolites in serum and seventeen abnormal metabolites in brain could be used as potential biomarkers and were involved in multiple metabolic pathways. Among them, in the brain metabolic pathways, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, histidine metabolism, and tyrosine metabolism were closely related to central neurotransmitters. Butanoate metabolism improves energy supply for life activities in the aging body. Cysteine and methionine metabolism contributes to the production of glutathione and taurine and played an antioxidant role. In serum, the regulation of glycerophospholipid metabolism pathway and proline metabolism demonstrated the antioxidant capacity of GFR decoction. Conclution: In summary, GFR plays a role in delaying aging by regulating central neurotransmitters, cardiovascular function, oxidative stress, energy metabolism, and other aspects of the aging body, which lays a foundation for the application of GFR.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shijiazhuang Food and Drug Inspection Center, Shijiazhuang, China
| | - Xiang Yang
- Beijing Apex Pharmaceutical R&D Co., Ltd., Beijing, China
| | - Bo Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Jianyun Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
9
|
Hui B, Zhang X, Wang S, Shu Y, Li R, Yang Z. Crocetin preconditioning attenuates ischemia reperfusion-induced hepatic injury by disrupting Keap1/Nrf2 interaction and activating Nrf2/HO-1 pathway. Tissue Cell 2024; 88:102411. [PMID: 38781791 DOI: 10.1016/j.tice.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Ischemia reperfusion (I/R) injury is a frequent occurrence during liver transplantation surgery, resulting from the temporary cessation of blood flow and subsequent restoration of blood flow. Serious I/R injury is a significant factor causing transplant failure. Hepatic I/R process is characterized by excessive inflammation, oxidation, and apoptosis. Crocetin (Crt) is a natural compound exhibiting beneficial roles in various I/R-induced organ damages. However, Crt's potential role in hepatic I/R remains unexplored. OBJECTIVE AND METHODS In order to reveal the impact of Crt on hepatic I/R and the associated signaling pathway, we utilized a syngeneic orthotopic liver transplantation rat model to induce hepatic I/R injury. RESULTS Pretreatment with Crt significantly mitigated hepatic I/R injury. This was evident by decreased activities of serum ALT, AST and LDH, indicating improved liver function. Crt treatment also alleviated oxidative stress, as demonstrated by decreased serum MDA content and elevated serum SOD and GSH-Px activities. Furthermore, Crt suppressed inflammatory responses by downregulating both the serum and liver IL-1β, IL-6 and TNF-α while upregulating IL-10 expression. Additionally, Crt reduced apoptosis by decreasing pro-apoptotic Bax, cleaved caspase-3 and cleaved caspase-9, while increasing anti-apoptotic Bcl2 expression. Notably, these protective effects of Crt were dose-dependent. Moreover, our data indicates that Crt plays protective functions during hepatic I/R via disrupting Keap1/Nrf2 interaction and activating Nrf2/HO-1 signaling. This was further supported by observations of alleviated hepatic histopathological changes in I/R rats treated with Crt. CONCLUSIONS Crt shows potential as a therapeutic agent for preventing hepatic I/R injury during clinical liver transplantation.
Collapse
Affiliation(s)
- Bo Hui
- Department of General Surgery Unit-4, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaogang Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shanpei Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yantao Shu
- Department of General Surgery Unit-4, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ren Li
- Department of General Surgery Unit-4, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhengan Yang
- Department of General Surgery Unit-4, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
10
|
Yue TT, Cao YJ, Cao YX, Li WX, Wang XY, Si CY, Xia H, Zhu MJ, Tang JF, Wang H. Shuxuening Injection Inhibits Apoptosis and Reduces Myocardial Ischemia-Reperfusion Injury in Rats through PI3K/AKT Pathway. Chin J Integr Med 2024; 30:421-432. [PMID: 38153596 DOI: 10.1007/s11655-023-3650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE To investigate the main components and potential mechanism of Shuxuening Injection (SXNI) in the treatment of myocardial ischemia-reperfusion injury (MIRI) through network pharmacology and in vivo research. METHODS The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to extract and evaluate the effective components of Ginkgo biloba leaves, the main component of SXNI. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were searched for disease targets and obtain the drug target and disease target intersections. The active ingredient-target network was built using Cytoscape 3.9.1 software. The STRING database, Metascape online platform, and R language were used to obtain the key targets and signaling pathways of the anti-MIRI effects of SXNI. In order to verify the therapeutic effect of different concentrations of SXNI on MIRI in rats, 60 rats were first divided into 5 groups according to random number table method: the sham operation group, the model group, SXNI low-dose (3.68 mg/kg), medium-dose (7.35 mg/kg), and high-dose (14.7 mg/kg) groups, with 12 rats in each group. Then, another 60 rats were randomly divided into 5 groups: the sham operation group, the model group, SXNI group (14.7 mg/kg), SXNI+LY294002 group, and LY294002 group, with 12 rats in each group. The drug was then administered intraperitoneally at body weight for 14 days. The main biological processes were validated using in vivo testing. Evans blue/triphenyltetrazolium chloride (TTC) double staining, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were used to investigate the efficacy and mechanism of SXNI in MIRI rats. RESULTS Eleven core targets and 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected. Among these, the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway was closely related to SXNI treatment of MIRI. In vivo experiments showed that SXNI reduced the myocardial infarction area in the model group, improved rat heart pathological damage, and reduced the cardiomyocyte apoptosis rate (all P<0.01). After SXNI treatment, the p-PI3K/PI3K and p-AKT/AKT ratios as well as B-cell lymphoma-2 (Bcl-2) protein expression in cardiomyocytes were increased, while the Bax and cleaved caspase 3 protein expression levels were decreased (all P<0.05). LY294002 partially reversed the protective effect of SXNI on MIRI. CONCLUSION SXNI protects against MIRI by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tong-Tong Yue
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Jie Cao
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Ya-Xuan Cao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Chun-Ying Si
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Han Xia
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Ming-Jun Zhu
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China
| | - He Wang
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 451200, China.
| |
Collapse
|
11
|
Cao S, Wei Y, Yue Y, Chen Y, Liao S, Li A, Liu P, Xiong A, Zeng H. Targeting ferroptosis unveils a new era for traditional Chinese medicine: a scientific metrology study. Front Pharmacol 2024; 15:1366852. [PMID: 38464725 PMCID: PMC10921231 DOI: 10.3389/fphar.2024.1366852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
In the past 11 years, there has been a surge in studies exploring the regulatory effect of Traditional Chinese Medicine (TCM) on ferroptosis. However, a significant gap persists in comprehensive scientometric analysis and scientific mapping research, especially in tracking the evolution, primary contributors, and emerging research focal points. This study aims to comprehensively update the advancements in targeting ferroptosis with various TCMs during the previous 11 years. The data, covering the period from 1 January 2012, to 30 November 2023, were retrieved from the Web of Science database. For in-depth scientometric and visualized analyses, a series of advanced analytical instruments were employed. The findings highlight China's predominant role, accounting for 71.99% of total publications and significantly shaping research in this domain. Noteworthy productivity was observed at various institutions, including Guangzhou University of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, and Zhejiang University. Thomas Efferth emerged as the foremost author within this field, while Frontiers in Pharmacology boasted the highest publication count. This study pinpointed hepatocellular carcinoma, chemical and drug-induced liver injury, mitochondrial diseases, acute kidney injury, and liver failure as the most critical disorders addressed in this research realm. The research offers a comprehensive bibliometric evaluation, enhancing our understanding of the present status of TCM therapy in managing ferroptosis-related diseases. Consequently, it aids both seasoned researchers and newcomers by accelerating access to vital information and fostering innovative concept extraction within this specialized field.
Collapse
Affiliation(s)
- Siyang Cao
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yaohang Yue
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yingqi Chen
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Chen Y, Li WW, Bi SL, Zhang HM, Sun Z, Zuo YY, Xu L, Chen SQ. Visualizing research trends and identifying hotspots of herbal components for treating cardiovascular diseases: A bibliometric analysis from 2000 to 2023. Medicine (Baltimore) 2024; 103:e35047. [PMID: 38335393 PMCID: PMC10860942 DOI: 10.1097/md.0000000000035047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the global research trends in herbal medicine for the treatment of cardiovascular disease (CVD) from 2000 to 2023. A bibliometric approach was employed to analyze international collaborations, knowledge structures, emerging trends, and research frontiers. METHOD The Web of Science (WOS) core collection was utilized as the database, employing the search formula (((TS = (traditional Chinese medicine)) OR TS = (Chinese herbal medicinal ingredient)) OR TS = (Chinese herbal medicinal constituent)) AND TS = (cardiovascular disease) to conduct the search. The search period spanned from January 1, 2000, to February 14, 2023, and the literature type included articles and reviews. RESULTS A total of 1478 papers were included in the analysis after searching the WOS database and excluding conference proceedings, news articles, retractions, editorials, and letters. China demonstrated the highest number of publications, followed by the United States and Taiwan (China). The institution with the highest publications was the Chinese Academy of Medical Sciences. China, the United States, and India were the main countries involved in research in this field, and there was significant collaboration among them. The hotspots related to herbal components for treating cardiovascular diseases from 2000 to 2023 included systematic reviews, ischemic reperfusion injury, global burden, type 2 diabetes, and protection. CONCLUSION This paper provides a reference for the future development of herbal research in cardiovascular aspects by revealing the current status, hotspots, and trends of global herbal research in cardiovascular factors over more than 20 years. Identification of potential collaborators and institutions can assist researchers in exploring new directions for future research and discovering new perspectives for potential collaborations in this field.
Collapse
Affiliation(s)
- Ying Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Wen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Ling Bi
- Shandong University of Traditional Chinese Medicine, Jinan, China
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - He-Meng Zhang
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - Zhenhai Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao-Yao Zuo
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - Liang Xu
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| | - Shou-Qiang Chen
- The Second Hospital, Shandong University of Traditional Chinese Medicine
| |
Collapse
|
13
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
14
|
Li L, Ran Y, Wen J, Lu Y, Liu S, Li H, Cheng M. Traditional Chinese Medicine-based Treatment in Cardiovascular Disease: Potential Mechanisms of Action. Curr Pharm Biotechnol 2024; 25:2186-2199. [PMID: 38347793 DOI: 10.2174/0113892010279151240116103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 09/26/2024]
Abstract
Cardiovascular Disease (CVD) is the leading cause of morbidity and death worldwide and has become a global public health problem. Traditional Chinese medicine (TCM) has been used in China to treat CVD and achieved promising results. Therefore, TCM has aroused significant interest among pharmacologists and medical practitioners. Previous research showed that TCM can regulate the occurrence and development of atherosclerosis (AS), ischemic heart disease, heart failure, myocardial injury, and myocardial fibrosis by inhibiting vascular endothelial injury, inflammation, oxidant stress, ischemia-reperfusion injury, and myocardial remodeling. It is well-known that TCM has the characteristics of multi-component, multi-pathway, and multitarget. Here, we systematically review the bioactive components, pharmacological effects, and clinical application of TCM in preventing and treating CVD.
Collapse
Affiliation(s)
- Lanlan Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yutong Ran
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jiao Wen
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yirui Lu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Shunmei Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Hong Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| |
Collapse
|
15
|
Han M, Lin J, Yang Y, Ding Y, Ge W, Fan H, Wang C, Xie W. Xinshuaining preparation protects H9c2 cells from H 2O 2-induced oxidative damage through the PI3K/Akt/Nrf-2 signaling pathway. Clin Exp Hypertens 2023; 45:2131806. [PMID: 36266998 DOI: 10.1080/10641963.2022.2131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death. Oxidative stress is an important pathological process of a variety of CVDs. Xinshuaining preparation has a therapeutic effect on the heart failure. However, the anti-oxidative stress role of Xinshuaining preparation in H9c2 cells is still unclear. METHODS The medicated serum of Xinshuaining preparation was acquired and utilized to hatch with H2O2-induced H9c2 cells. Main components in the Xinshuaining preparation were analyzed by liquid chromatography-mass spectrometry (LC/MS). The effect of medicated serum on the cell viability, apoptosis rate, the oxidative stress indicators (SOD, GSH-Px, and MDA), mitochondrial membrane potential (MMP), and ROS level was evaluated by CCK-8, flow cytometry, commercial biochemical detection kits, and JC-1 staining. Additionally, the associated mechanism was determined by the detection of the protein levels (PI3K, phosphorylated PI3K, Akt, phosphorylated Akt, and Nrf-2) through western blot assays, which was also further assessed with the application of LY294002. RESULTS The medicated serum of Xinshuaining preparation notably increased the H2O2-reduced, the cell viability, the concentration of SOD and GSH-Px, MMP level and the relative protein expression level of phosphorylated PI3K and Akt and Nrf-2, while dampened the H2O2-elevated the level of the cell apoptosis rate, MDA, and ROS. However, Xinshuaining preparation on the cell viability, apoptosis, and oxidative stress was notably antagonized by LY294002 pre-treatment. CONCLUSIONS The medicated serum of Xinshuaining preparation increased the cell viability and suppressed apoptosis and oxidative stress via the PI3K/Akt/Nrf-2 signaling pathway.
Collapse
Affiliation(s)
- Mingjun Han
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Jie Lin
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Yumei Ding
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wenjun Ge
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Haoran Fan
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Ce Wang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| | - Wen Xie
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, PR China
| |
Collapse
|
16
|
Liu J, Liu C, Chen H, Cen H, Yang H, Liu P, Liu F, Ma L, Chen Q, Wang L. Tongguan capsule for treating myocardial ischemia-reperfusion injury: integrating network pharmacology and mechanism study. PHARMACEUTICAL BIOLOGY 2023; 61:437-448. [PMID: 36789620 PMCID: PMC9937005 DOI: 10.1080/13880209.2023.2175877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/11/2022] [Accepted: 01/29/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Although Tongguan capsule (TGC) is used in the treatment of coronary atherosclerotic disease, the exact mechanism remains unclear. OBJECTIVE Network pharmacology and experimental validation were applied to examine the mechanism of TGC for treating myocardial ischemia-reperfusion injury (MIRI). MATERIALS AND METHODS The components and candidate targets were searched based on various databases such as TCMSP, TCMID, BATMAN-TCM. The binding ability was determined by molecular docking. The ischemia-reperfusion (I/R) model was constructed by ligating the left anterior descending (LAD) coronary artery. APOE-/- mice were divided into three groups (n = 6): Sham group, I/R group, and TGC group (1 g/kg/d). To further verification, HCAEC cells were subjected to hypoxia-reoxygenation (H/R) to establish in vitro model. RESULTS The compounds, such as quercetin, luteolin, tanshinone IIA, kaempferol and bifendate, were obtained after screening. The affinity values of the components with GSK-3β, mTOR, Beclin-1, and LC3 were all <-5 kcal/mol. In vivo, TGC improved LVEF and FS, reducing infarct size. In vitro, Hoechst 33258 staining result showed TGC inhibited apoptosis. Compare with the H/R model, TGC treatment increased the levels of GSK-3β, LC3, and Beclin1, while decreasing the expression of mTOR and p62 (p < 0.05). DISCUSSION AND CONCLUSION The findings revealed that TGC exerted a cardioprotective effect by up regulating autophagy-related proteins through the mTOR pathway, which may be a therapeutic option for MIRI. However, there are still some limitations in this research. It is necessary to search more databases to obtain information and further demonstrated through randomized controlled trials for generalization.
Collapse
Affiliation(s)
- Jiantao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hailong Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijian Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuling Ma
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quanfu Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Fracasso JAR, Sikina IYG, da Costa LTS, Guarnier LP, Ribeiro-Paes JT, de Ferreira FY, de Almeida LVC, de Castro Silva B, de Barros Barbosa D, Ximenes VF, Venkli D, Viel AM, dos Santos L. Toxicological Profile and Anti-Inflammatory Effect of Mucoadhesive Gel from Residues of Agave sisalana and Punica granatum. Gels 2023; 9:942. [PMID: 38131928 PMCID: PMC10743268 DOI: 10.3390/gels9120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammation is a natural protective reaction of the body against endogenous and exogenous damage, such as tissue injuries, trauma, and infections. Thus, when the response is adequate, inflammation becomes a defense mechanism to repair damaged tissue, whereas when the response is inadequate and persistent, the increase in inflammatory cells, cytosines, and chymosins impair tissue regeneration and promote a response harmful to the organism. One example is chronic tissue inflammation, in which a simple lesion can progress to ulcers and even necrosis. In this situation, the anti-inflammatory medications available in therapy are not always effective. For this reason, the search for new treatments, developed from medicinal plants, has increased. In this direction, the plants Agave sisalana (sisal) and Punica granatum (pomegranate) are rich in saponins, which are secondary metabolites known for their therapeutic properties, including anti-inflammatory effects. Although Brazil is the world's leading sisal producer, approximately 95% of the leaves are discarded after fiber extraction. Similarly, pomegranate peel waste is abundant in Brazil. To address the need for safe and effective anti-inflammatory treatments, this study aimed to create a topical mucoadhesive gel containing a combination of sisal (RS) and pomegranate residue (PR) extracts. In vitro experiments examined isolated and combined extracts, as well as the resulting formulation, focusing on (1) a phytochemical analysis (total saponin content); (2) cytotoxicity (MTT assay); and (3) a pharmacological assessment of anti-inflammatory activity (phagocytosis, macrophage spreading, and membrane stability). The results revealed saponin concentrations in grams per 100 g of dry extract as follows: SR-29.91 ± 0.33, PR-15.83 ± 0.93, association (A)-22.99 ± 0.01, base gel (G1)-0.00 ± 0.00, and association gel (G2)-0.52 ± 0.05. In MTT tests for isolated extracts, cytotoxicity values (µg/mL) were 3757.00 for SR and 2064.91 for PR. Conversely, A and G2 exhibited no cytotoxicity, with increased cell viability over time. All three anti-inflammatory tests confirmed the presence of this activity in SR, PR, and A. Notably, G2 demonstrated an anti-inflammatory effect comparable to dexamethasone. In conclusion, the gel containing SR and PR (i.e., A) holds promise as a novel herbal anti-inflammatory treatment. Its development could yield economic, social, and environmental benefits by utilizing discarded materials in Brazil.
Collapse
Affiliation(s)
- Júlia Amanda Rodrigues Fracasso
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil; (L.T.S.d.C.); (L.V.C.d.A.); (B.d.C.S.); (D.d.B.B.); (L.d.S.)
| | - Ingrid Yuri Galindo Sikina
- Department of Biotechnology, School of Sciences and Languages, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil; (I.Y.G.S.); (F.Y.d.F.)
| | - Luísa Taynara Silvério da Costa
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil; (L.T.S.d.C.); (L.V.C.d.A.); (B.d.C.S.); (D.d.B.B.); (L.d.S.)
- Department of Biotechnology, School of Sciences and Languages, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil; (I.Y.G.S.); (F.Y.d.F.)
| | - Lucas Pires Guarnier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14048-900, Brazil; (L.P.G.); (J.T.R.-P.)
| | - João Tadeu Ribeiro-Paes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14048-900, Brazil; (L.P.G.); (J.T.R.-P.)
| | - Fernando Yutaka de Ferreira
- Department of Biotechnology, School of Sciences and Languages, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil; (I.Y.G.S.); (F.Y.d.F.)
| | - Luan Victor Coelho de Almeida
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil; (L.T.S.d.C.); (L.V.C.d.A.); (B.d.C.S.); (D.d.B.B.); (L.d.S.)
| | - Beatriz de Castro Silva
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil; (L.T.S.d.C.); (L.V.C.d.A.); (B.d.C.S.); (D.d.B.B.); (L.d.S.)
| | - Débora de Barros Barbosa
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil; (L.T.S.d.C.); (L.V.C.d.A.); (B.d.C.S.); (D.d.B.B.); (L.d.S.)
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
| | - Desirre Venkli
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, Brazil
| | - Amanda Martins Viel
- São Camilo University Center, São Paulo 04263-200, Brazil;
- Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, Brazil
| | - Lucinéia dos Santos
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil; (L.T.S.d.C.); (L.V.C.d.A.); (B.d.C.S.); (D.d.B.B.); (L.d.S.)
- Department of Biotechnology, School of Sciences and Languages, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil; (I.Y.G.S.); (F.Y.d.F.)
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
| |
Collapse
|
18
|
Chen Q, Xu Q, Zhu H, Wang J, Sun N, Bian H, Li Y, Lin C. Salvianolic acid B promotes angiogenesis and inhibits cardiomyocyte apoptosis by regulating autophagy in myocardial ischemia. Chin Med 2023; 18:155. [PMID: 38017536 PMCID: PMC10685573 DOI: 10.1186/s13020-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Myocardial ischemia (MI) can cause angina, myocardial infarction, and even death. Angiogenesis is beneficial for ensuring oxygen and blood supply to ischemic tissue, promoting tissue repair, and reducing cell damage. In this study, we evaluated the effects of Salvianolic acid B (Sal B) against myocardial ischemia and explored its underlying mechanism on autophagy. METHODS The anti-apoptosis effect of Sal B was conducted by staining Annexin V-FITC/PI and Hoechst as well as evaluating apoptosis bio-markers at protein level in H9c2 cells at glucose deprivation condition. HUVECs were co-cultured with H9c2, and the tube formation assay was used to monitor Sal B's impact on angiogenesis. The MI model of mice was induced by intraperitoneal injection of isoproterenol (ISO). The effect of Sal B on MI mice was evaluated by HE, Masson, immunohistochemistry, WB and kits. In addition, Atg5 siRNA was applied to verify whether the protective effect of Sal B was regulated to autophagy. RESULTS In H9c2, Sal B reduced the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA) and reactive oxygen species (ROS), improved the levels of superoxide dismutase (SOD) and mitochondrial membrane potential, downregulated the expressions of Bax and cleaved-Caspase3, upregulated the expression of Bcl-2. Therefore, Sal B could significantly inhibit the damage of H9c2 caused by glucose deprivation. In the co-culture system of H9c2 and HUVECs, vascular endothelial growth factor (VEGF) level in the supernatant was dramatically raised by Sal B. Sal B upregulated the expressions of VEGF, platelet derived growth factor (PDGF) and endothelial marker CD31. It implied that Sal B exerted a significant pro-angiogenic effect. Moreover, Sal B increased the expression of LC3, Atg5, and Beclin1, while reducing the level of P62. When the expression of Atg5 was inhibited, the protective effects of Sal B on apoptosis and angiogenesis was reversed. CONCLUSIONS Sal B inhibited cardiomyocyte apoptosis and promoted angiogenesis by regulating autophagy, thereby improving MI.
Collapse
Affiliation(s)
- Qi Chen
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
| | - QingYang Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Huilin Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junyi Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Xianlin Avenue, Qixia District, 210023, China.
| | - Yu Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Xianlin Avenue, Qixia District, 210023, China.
| | - Chao Lin
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07514-4. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Zhao K, Chen X, Bian Y, Zhou Z, Wei X, Zhang J. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2269-2286. [PMID: 37119287 DOI: 10.1007/s00210-023-02506-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) discovered in recent years, where abnormal intracellular iron accumulation leads to the onset of lipid peroxidation, which further leads to the disruption of intracellular redox homeostasis and triggers cell death. Iron accumulation with lipid peroxidation is considered a hallmark of ferroptosis that distinguishes it from other RCDs. Myocardial ischemia-reperfusion injury (MIRI) is a process of increased myocardial cell injury that occurs during coronary reperfusion after myocardial ischemia and is associated with high post-infarction mortality. Multiple experiments have shown that ferroptosis plays an important role in MIRI pathophysiology. This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the possible link between the occurrence of MIRI and ferroptosis in cardiomyocytes. Finally, we discuss and analyze the related drugs that target ferroptosis to attenuate MIRI and its action targets, and point out the shortcomings of the current state of relevant research and possible future research directions. It is hoped to provide a new avenue for improving the prognosis of the acute coronary syndrome.
Collapse
Affiliation(s)
- Ke Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yujing Bian
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zhou Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xijin Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| |
Collapse
|
21
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
22
|
Sun J, Fan J, Yang F, Su X, Li X, Tian L, Liu C, Xing Y. Effect and possible mechanisms of saponins in Chinese herbal medicine exerts for the treatment of myocardial ischemia-reperfusion injury in experimental animal: a systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1147740. [PMID: 37564906 PMCID: PMC10410164 DOI: 10.3389/fcvm.2023.1147740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Preventing ischemia-reperfusion injury is the main direction of myocardial infarction treatment in the convalescent stage. Some studies have suggested that saponins in Traditional Chinese medicine (TCM) preparations can protect the myocardium by various mechanisms. Our meta-analysis aims to evaluate the efficacy of TCM saponins in treating myocardial ischemia-reperfusion injury (MIRI) and to summarize the potential molecular mechanisms further. Methods We conducted a literature search in six electronic databases [Web of Science, PubMed, Embase, Cochrane Library, Sinomed, China National Knowledge Infrastructure (CNKI)] until October 2022. Results Seventeen eligible studies included 386 animals (254 received saponins and 132 received vehicles). The random effect model is used to calculate the combined effect. The effect size is expressed as the weighted average difference (WMD) and 95% confidence interval (CI). Compared with placebo, saponins preconditioning reduced infarct size after MIRI significantly (WMD: -3.60,95% CI: -4.45 to -2.74, P < 0.01, I2: 84.7%, P < 0.001), and significantly increased EF (WMD: 3.119, 95% CI: 2.165 to 4.082, P < 0.01, I2: 82.9%, P < 0.0 L) and FS (WMD: 3.157, 95% CI: 2.218 to 4.097, P < 0.001, I2: 81.3%, P < 0.001). Discussion The results show that the pre-administration of saponins from TCM has a significant protective effect on MIRI in preclinical studies, which provides an application prospect for developing anti-MIRI drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Jiahao Sun
- Yanqing Hospital of Beijing Chinese Medicine Hospital, Beijing, China
| | - Jiarong Fan
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinye Li
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Tian
- Clinical Department of Integrative Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
Wang YC, Wang H, Shao CL, Li XY, Cui J, Guo HD. Screening and identification of effective components from modified Taohong Siwu decoction for protecting H9c2 cells from damage. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00773-3. [PMID: 37294373 DOI: 10.1007/s11626-023-00773-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023]
Abstract
We found that modified Taohong Siwu decoction (MTHSWD) had cardioprotective effects after myocardial ischemia-reperfusion injury. This study was to screen the effective components of MTHSWD that have protective effects on H9c2 cell injury through H2O2 injury model. Fifty-three active components were screened by CCK8 assay to detect cell viability. The anti-oxidative stress ability was evaluated by detecting the levels of total superoxide dismutase (SOD) and malondialdehyde (MDA) in cells. The anti-apoptotic effect was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL). Finally, the phosphorylation levels of ERK, AKT, and P38MAPK were detected by WB (Western blot) to study the protective mechanism of effective monomers against H9c2 cell injury. Among the 53 active ingredients of MTHSWD, ginsenoside Rb3, levistilide A, ursolic acid, tanshinone I, danshensu, dihydrotanshinone I, and astragaloside I could significantly increase the viability of H9c2 cells. The results of SOD and MDA showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA could significantly reduce the content of lipid peroxide in cells. TUNEL results showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA reduced apoptosis to varying degrees. The tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, and tanshinone I reduced the phosphorylation levels of P38MAPK and ERK in H9c2 cells induced by H2O2, and the phosphorylation level of ERK was also significantly reduced by danshensu. At the same time, tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, tanshinone I, and danshensu significantly increased AKT phosphorylation level in H9c2 cells. In conclusion, the effective ingredients in MTHSWD provide basic basis and experimental reference for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-le Shao
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiu-Ya Li
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ji Cui
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
25
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
26
|
Wu F, Lai S, Fu D, Liu J, Wang C, Feng H, Liu J, Li Z, Li P. Neuroprotective Effects and Metabolomics Study of Protopanaxatriol (PPT) on Cerebral Ischemia/Reperfusion Injury In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24021789. [PMID: 36675303 PMCID: PMC9861888 DOI: 10.3390/ijms24021789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Stroke, one of the leading causes of disability and death worldwide, is a severe neurological disease that threatens human life. Protopanaxatriol (PPT), panaxatriol-type saponin aglycone, is a rare saponin that exists in Panax ginseng and Panax Noto-ginseng. In this study, we established an oxygen-glucose deprivation (OGD)-PC12 cell model and middle cerebral artery occlusion/reperfusion (MCAO/R) model to evaluate the neuroprotective effects of PPT in vitro and in vivo. In addition, metabolomics analysis was performed on rat plasma and brain tissue samples to find relevant biomarkers and metabolic pathways. The results showed that PPT could significantly regulate the levels of LDH, MDA, SOD, TNF-α and IL-6 factors in OGD-PC12 cells in vitro. PPT can reduce the neurological deficit score and infarct volume of brain tissue in rats, restore the integrity of the blood-brain barrier, reduce pathological damage, and regulate TNF-α, IL-1β, IL-6, MDA, and SOD factors. In addition, the results of metabolomics found that PPT can regulate 19 biomarkers involving five metabolic pathways, including amino acid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. Thus, it could be inferred that PPT might serve as a novel natural agent for MCAO/R treatment.
Collapse
Affiliation(s)
- Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Sihan Lai
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongxing Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (P.L.); Tel.: +86-0431-8561-9803 (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (P.L.); Tel.: +86-0431-8561-9803 (P.L.)
| |
Collapse
|
27
|
Li H, Lin L, Xia YL, Xie Y, Yang X. Research progress on the role of ferroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:1077332. [PMID: 36620630 PMCID: PMC9815775 DOI: 10.3389/fcvm.2022.1077332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The cardiovascular disease pathogenesis is extremely complex and seriously threatens human health. Cardiomyocyte death plays a significant role in cardiovascular disease occurrence and development. In addition to the previously revealed modes of cell death (apoptosis, autophagy, and pyroptosis), ferroptosis is highly related to the development of cardiovascular diseases, including arrhythmia, atherosclerosis, and myocardial ischemia/reperfusion. Ferroptosis is a novel cell death pathway driven by lipid peroxidation and iron overload. Lipid, amino acid, and iron metabolism regulate the ferroptosis pathway. Small molecule compounds (iron chelators, antioxidants, and ferroptosis inhibitors) and genetic programming can alleviate or prevent cardiovascular disease by inhibiting the ferroptosis pathway. Ferroptosis plays a key role in various cardiovascular disease occurrence and development, and inhibiting ferroptosis in cardiomyocytes is expected to become a feasible treatment method. In this mini-review, we systematically summarize the molecular mechanisms of ferroptosis in different cardiovascular diseases, delineate the regulatory network between ferroptosis and cardiovascular diseases, and highlight its potential therapeutic targets.
Collapse
Affiliation(s)
- Han Li
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Lin
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Yunpeng Xie,
| | - Xiaolei Yang
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Xiaolei Yang,
| |
Collapse
|
28
|
Xing N, Long XT, Zhang HJ, Fu LD, Huang JY, Chaurembo AI, Chanda F, Xu YJ, Shu C, Lin KX, Yang K, Lin HB. Research progress on effects of traditional Chinese medicine on myocardial ischemia-reperfusion injury: A review. Front Pharmacol 2022; 13:1055248. [PMID: 36561346 PMCID: PMC9763941 DOI: 10.3389/fphar.2022.1055248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease (IHD) is a high-risk disease in the middle-aged and elderly population. The ischemic heart may be further damaged after reperfusion therapy with percutaneous coronary intervention (PCI) and other methods, namely, myocardial ischemia-reperfusion injury (MIRI), which further affects revascularization and hinders patient rehabilitation. Therefore, the investigation of new therapies against MIRI has drawn great global attention. Within the long history of the prevention and treatment of MIRI, traditional Chinese medicine (TCM) has increasingly been recognized by the scientific community for its multi-component and multi-target effects. These multi-target effects provide a conspicuous advantage to the anti-MIRI of TCM to overcome the shortcomings of single-component drugs, thereby pointing toward a novel avenue for the treatment of MIRI. However, very few reviews have summarized the currently available anti-MIRI of TCM. Therefore, a systematic data mining of TCM for protecting against MIRI will certainly accelerate the processes of drug discovery and help to identify safe candidates with synergistic formulations. The present review aims to describe TCM-based research in MIRI treatment through electronic retrieval of articles, patents, and ethnopharmacology documents. This review reported the progress of research on the active ingredients, efficacy, and underlying mechanism of anti-MIRI in TCM and TCM formulas, provided scientific support to the clinical use of TCM in the treatment of MIRI, and revealed the corresponding clinical significance and development prospects of TCM in treating MIRI.
Collapse
Affiliation(s)
- Na Xing
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Tong Long
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Pharmacy, Southern Medical University, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital Affiliated with Guangzhou University of Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke Yang
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China,*Correspondence: Ke Yang, ; Han-Bin Lin,
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM CAS, Zhongshan, Guangdong, China,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Ke Yang, ; Han-Bin Lin,
| |
Collapse
|
29
|
Luan F, Lei Z, Peng X, Chen L, Peng L, Liu Y, Rao Z, Yang R, Zeng N. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact 2022; 368:110245. [DOI: 10.1016/j.cbi.2022.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
|
30
|
Dong L, Shen Z, Chi H, Wang Y, Shi Z, Fang H, Yang Y, Rong J. Research Progress of Chinese Medicine in the Treatment of Myocardial Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:1-17. [PMID: 36437553 DOI: 10.1142/s0192415x23500015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vascular recanalization is the essential procedure in which severe coronary artery stenosis is diagnosed. However, the blood flow recovery associated with this procedure may cause myocardial ischemia-reperfusion injury (MIRI), which aggravates heart failure. Unfortunately, the mechanism of MIRI has historically been poorly understood. As we now know, calcium overloading, oxidative stress, mitochondrial dysfunction, inflammatory responses, and ferroptosis take part in the process of MIRI. Modern medicine has shown through clinical studies its own limited effects in the case of MIRI, whereas Chinese traditional medicine demonstrates a strong vitality. Multiple-target effects, such as anti-inflammatory, anti-oxidant, and cardio-protection effects, are central to this vitality. In our clinic center, Yixin formula is commonly used in patients with MIRI. This formula contains Astragalus, Ligusticum Wallichii, Salvia, Rhodiola Rosea, Radix Angelicae Sinensis, Cyperus Rotundus, and Cassia Twig. Its effects include warming yang energy, activating blood circulation, and eliminating blood stasis. In our previous laboratory studies, we have proved that it can reduce MIRI and oxidative stress injury in rats suffering from ischemia myocardiopathy. It can also inhibit apoptosis and protect myocardium. In this paper, we review the research of Yixin formula and other related herbal medicines in MIRI therapy.
Collapse
Affiliation(s)
- Li Dong
- Institute of Cardiology of Integrated Traditional, Chinese and Western Medicine, P. R. China
| | - Zhijie Shen
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Hao Chi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Yingjie Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Zhaofeng Shi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Hongjun Fang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Yanling Yang
- Institute of Cardiology of Integrated Traditional, Chinese and Western Medicine, P. R. China
| | - Jingfeng Rong
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| |
Collapse
|
31
|
Liu T, Juan Z, Xia B, Ren G, Xi Z, Hao J, Sun Z. HSP70 protects H9C2 cells from hypoxia and reoxygenation injury through STIM1/IP3R. Cell Stress Chaperones 2022; 27:535-544. [PMID: 35841499 PMCID: PMC9485396 DOI: 10.1007/s12192-022-01290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Calcium overload is an important factor in myocardial ischemia-reperfusion injury and can lead to apoptosis of myocardial cells. Therefore, it is of great clinical importance to find ways to regulate calcium overload and reduce apoptosis of myocardial cells, and thus alleviate myocardial ischemia-reperfusion injury. There is evidence that heat shock protein 70 (HSP70) has a protective effect on the myocardium, but the exact mechanism of this effect is not completely understood. Stromal interaction molecule 1 and inositol 1,4,5-triphosphate receptor (STIM/1IP3R) play an important role in myocardial ischemia-reperfusion injury. Therefore, this study aimed to investigate whether HSP70 plays an anti-apoptotic role in H9C2 cardiomyocytes by regulating the calcium overload pathway through STIM1/IP3R. Rat H9C2 cells were subjected to transient oxygen and glucose deprivation (incubated in glucose-free medium and hypoxia for 6 h) followed by re-exposure to glucose and reoxygenation (incubated in high glucose medium and reoxygenation for 4 h) to simulate myocardial ischemia reperfusion-induced cell injury. H9C2 cell viability was significantly decreased, and lactate dehydrogenase (LDH) release and apoptosis were significantly increased after oxygen and glucose deprivation. Transfection of HSP70 into H9C2 cells could reduce the corresponding effect, increase cell viability and anti-apoptotic signal pathway, and reduce the apoptotic rate and pro-apoptotic signal pathway. After hypoxia and reoxygenation, the expression of STIM1/IP3R and intracellular calcium concentration of HSP70-overexpressed H9C2 cells were significantly lower than those of hypoxia cells. Similarly, direct silencing of STIM1 by siRNA significantly increased cell viability and expression of anti-apoptotic protein Bcl-2 and decreased apoptosis rate and expression of pro-apoptotic protein BAX. These data are consistent with HSP70 overexpression. These results suggest that HSP70 abrogates intracellular calcium overload by inhibiting upregulation of STIM1/IP3R expression, thus reducing apoptosis in H9C2 cells and playing a protective role in cardiomyocytes.
Collapse
Affiliation(s)
- TianYu Liu
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, 261000, China
| | - Zhaodong Juan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, 261000, China
| | - Bin Xia
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China
| | - GuanHua Ren
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China
| | - Zhen Xi
- School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - JunWen Hao
- School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - ZhongDong Sun
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China.
| |
Collapse
|
32
|
Cheng X, Hu J, Liu X, Tibenda JJ, Wang X, Zhao Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front Pharmacol 2022; 13:934256. [PMID: 36060007 PMCID: PMC9437626 DOI: 10.3389/fphar.2022.934256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a significant role in treating and preventing human diseases. Ischemic heart and cerebrovascular injuries are two types of diseases with different clinical manifestations with high prevalence and incidence. In recent years, it has been reported that many TCM has beneficial effects on ischemic diseases through the inhibition of apoptosis, which is the key target to treat myocardial and cerebral ischemia. This review provides a comprehensive summary of the mechanisms of various TCMs in treating ischemic cardiovascular and cerebrovascular diseases through anti-apoptotic targets and pathways. However, clinical investigations into elucidating the pharmacodynamic ingredients of TCM are still lacking, which should be further demystified in the future. Overall, the inhibition of apoptosis by TCM may be an effective strategy for treating ischemic cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiuli Cheng
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Hu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Liu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| |
Collapse
|
33
|
Luan F, Rao Z, Peng L, Lei Z, Zeng J, Peng X, Yang R, Liu R, Zeng N. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154047. [PMID: 35320770 DOI: 10.1016/j.phymed.2022.154047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cinnamic acid (CA) is an active organic acid compound extracted from Cinnamomi ramulus that has various biological activities. There is growing studies have shown that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome significantly contributes to sterile inflammatory response and pyroptosis in myocardial ischemia/reperfusion injury (MI/RI). However, whether CA has any influence on NLRP3 inflammasome and pyroptosis during MI/RI are not fully elucidated. PURPOSE In the present study, we investigated whether NLRP3 inflammasome activation and pyroptosis were involved in the cardioprotective effect of CA against MI/RI. METHODS Male Sprague-Dawley rats were intragastrically administered either with CA (75 and 150 mg/kg, daily) or vehicle for 7 successive days prior to ligation of coronary artery, and then rats were subjected to ligation of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min to evoke MI/RI. RESULTS Our results demonstrated that CA could significantly improve cardiac diastolic function, decrease cardiac infarct size and myocardial injury enzymes, inhibit cardiomyocyte apoptosis, attenuate cardiac structure abnormality, and mitigate oxidative stress and inflammatory response. We also found that MI/RI activate NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, pro-caspase-1, caspase-1, and ASC proteins and mRNA. More importantly, MI/RI trigger pyroptosis as indicated by increased DNA fragmentation, membrane pore formation, and mitochondrial swelling as well as increased levels of pyroptosis-related proteins and mRNA, including GSDMD, N-GSDMD, IL-18, and IL-1β. As expected, all these deleterious alterations were prominently reversed by CA pretreatment. CONCLUSIONS These findings indicate that CA effectively protected cardiomyocytes against MI/RI by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway, and it is worthy of more investigations for its therapeutic potential for extenuating ischemic heart disease.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ziqin Lei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiuseng Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xi Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
34
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
35
|
Guo Y, Zhang BY, Peng YF, Chang LC, Li ZQ, Zhang XX, Zhang DJ. Mechanism of Action of Flavonoids of Oxytropis falcata on the Alleviation of Myocardial Ischemia–Reperfusion Injury. Molecules 2022; 27:molecules27051706. [PMID: 35268807 PMCID: PMC8911915 DOI: 10.3390/molecules27051706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Oxytropis falcata Bunge is a plant used in traditional Tibetan medicine, with reported anti-inflammatory and antioxidants effects and alleviation of myocardial ischemia reperfusion injury (MIRI). However, the underlying mechanism against MIRI and the phytochemical composition of O. falcata are vague. One fraction named OFF1 with anti-MIRI activity was obtained from O. falcata, and the chemical constituents were identified by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS). The potential targets and signaling pathways involved in the action of O. falcata against MIRI were predicted by network pharmacology analysis, and its molecular mechanism on MIRI was determined by in vitro assays. The results revealed that flavonoids are the dominant constituents of OFF1. A total of 92 flavonoids reported in O. falcata targeted 213 potential MIRI-associated factors, including tumor necrosis factor (TNF), prostaglandin-endoperoxide synthase 2 (PTGS2), and the NF-κB signaling pathway. The in vitro assay on H9c2 cardiomyocytes subjected to hypoxia/reoxygenation injury confirmed that the flavonoids in OFF1 reduced myocardial marker levels, apoptotic rate, and the inflammatory response triggered by oxidative stress. Moreover, OFF1 attenuated MIRI by downregulating the ROS-mediated JNK/p38MAPK/NF-κB pathway. Collectively, these findings provide novel insights into the molecular mechanism of O. falcata in alleviating MIRI, being a potential therapeutic candidate.
Collapse
Affiliation(s)
- Yang Guo
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; (Y.G.); (Z.-Q.L.)
| | - Ben-Yin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.-Y.Z.); (Y.-F.P.)
| | - Yan-Feng Peng
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.-Y.Z.); (Y.-F.P.)
| | - Leng Chee Chang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| | - Zhan-Qiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; (Y.G.); (Z.-Q.L.)
| | - Xin-Xin Zhang
- School of Pharmacy, Xi’an Jiaotong Univeristy, Xining 710061, China;
| | - De-Jun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; (Y.G.); (Z.-Q.L.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.-Y.Z.); (Y.-F.P.)
- Correspondence: ; Tel.: +86-0971-5310586
| |
Collapse
|
36
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
37
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
38
|
Ramli FF, Ali A, Ibrahim N'I. Molecular-Signaling Pathways of Ginsenosides Rb in Myocardial Ischemia-Reperfusion Injury: A Mini Review. Int J Med Sci 2022; 19:65-73. [PMID: 34975299 PMCID: PMC8692112 DOI: 10.7150/ijms.64984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Reperfusion injury following myocardial ischemia remained a challenge for optimal treatment of myocardial infarction. Ginsenosides Rb (G-Rb), the primary components of ginsenoside, have been reported to exert cardioprotective effects via numerous mechanisms. G-Rb1 mediate cardioprotective effects via various signaling pathways, including mitochondrial apoptotic pathway, PI3K/Akt/mTOR, HIF-1α and GRF91, RhoA, p38α MAPK, and eNOS. G-Rb2 activates the SIRT-1 pathway, while G-Rb3 promotes both JNK-mediated NF-κB and PERK/Nrf2/HMOX1. Generally, ginsenosides Rb1, 2, and 3 modulates oxidative stress, inflammation, and apoptosis, contributing to the improvement of structural, functional and biochemical parameters. In conclusion, G-Rb, particularly G-Rb1, have vast potential as a supplement in attenuating reperfusion injury. Translation into a clinical trial is warranted to confirm the beneficial effects of G-Rb.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Infection and Immunology Health and Advanced Medicine Cluster, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Chen Y, Wang L, Liu T, Qiu Z, Qiu Y, Liu D. Inhibitory effects of Panax ginseng glycoproteins in models of doxorubicin-induced cardiac toxicity in vivo and in vitro. Food Funct 2021; 12:10862-10874. [PMID: 34617939 DOI: 10.1039/d1fo01307f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective antineoplastic drug; however, its clinical application is limited owing to the side effect of fatal heart dysfunction on its use. Panax ginseng glycoproteins have antioxidant, antiapoptotic, and anti-inflammatory properties. Thus, the aim of this study was to investigate the effects and possible action mechanisms of P. ginseng glycoproteins against DOX-induced cardiotoxicity. To this end, we used an in vitro model of DOX-treated H9C2 cells and an in vivo model of DOX-treated rats. We found that P. ginseng glycoproteins markedly increased H9C2 cell viability, decreased creatine kinase and lactate dehydrogenase levels, and improved histopathological and electrocardiogram changes in rats, protecting them from DOX-induced cardiotoxicity. Furthermore, P. ginseng glycoproteins significantly inhibited myocardial oxidative insult through adjusting the intracellular ROS, MDA, SOD, and GSH levels in vitro and in vivo. In conclusion, our data suggest that P. ginseng glycoproteins alleviated DOX-induced myocardial oxidative stress-related cardiotoxicity. This natural product could be developed as a new candidate for alleviating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yajun Chen
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Lei Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tianjia Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
40
|
Li C, Liu Z, Shi R. A Bibliometric Analysis of 14,822 Researches on Myocardial Reperfusion Injury by Machine Learning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8231. [PMID: 34360526 PMCID: PMC8345983 DOI: 10.3390/ijerph18158231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Myocardial ischemia is the major cause of death worldwide, and reperfusion is the standard intervention for myocardial ischemia. However, reperfusion may cause additional damage, known as myocardial reperfusion injury, for which there is still no effective therapy. This study aims to analyze the landscape of researches concerning myocardial reperfusion injury over the past three decades by machine learning. PubMed was searched for publications from 1990 to 2020 indexed under the Medical Subject Headings (MeSH) term "myocardial reperfusion injury" on 13 April 2021. MeSH analysis and Latent Dirichlet allocation (LDA) analyses were applied to reveal research hotspots. In total, 14,822 publications were collected and analyzed in this study. MeSH analyses revealed that time factors and apoptosis were the leading terms of the pathogenesis and treatment of myocardial reperfusion injury, respectively. In LDA analyses, research topics were classified into three clusters. Complex correlations were observed between topics of different clusters, and the prognosis is the most concerned field of the researchers. In conclusion, the number of publications on myocardial reperfusion injury increases during the past three decades, which mainly focused on prognosis, mechanism, and treatment. Prognosis is the most concerned field, whereas studies on mechanism and treatment are relatively lacking.
Collapse
Affiliation(s)
- Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhaoya Liu
- Department of the Geriatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China;
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;
| |
Collapse
|