1
|
Adriana Gutiérrez-Pérez I, Pérez-Rubio G, Rafael Villafan-Bernal J, Buendía-Roldán I, Zaragoza-García O, Chávez-Galán L, Rosendo-Chalma P, Fricke-Galindo I, Falfán-Valencia R, Paola Guzmán-Guzmán I. Circulating levels of PADs and citrullinated histone H3 in SARS-CoV-2 infection: Influence of genetic polymorphisms. Clin Chim Acta 2025; 569:120180. [PMID: 39904454 DOI: 10.1016/j.cca.2025.120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Peptidyl arginine deiminases (PADs) and citrullinated H3 histone (H3Cit) play a crucial role in the inflammatory response. These components determine various clinical situations in COVID-2019 associated pneumonia. Single nucleotide polymorphisms (SNPs) in the genes PADI2 and PADI4 may influence the outcome of poorer patient outcomes. We analyze the association of circulating levels NETs biomarkers (PAD2, PAD4, and H3Cit) and the SNPs on PADI2 (rs1005753 and rs2235926) and PADI4 (rs11203366, rs11203367, and rs874881) in hospitalized patients with severe acute respiratory distress syndrome (ARDs) by SARS-CoV-2 pneumonia. METHODS A cross-sectional study in 160 hospitalized patients with ARDs by SARS-CoV-2 pneumonia. The plasma levels of PAD2, PAD4, and H3Cit were determined by ELISA method. The SNPs were determined by qPCR using TaqMan probes. Logistic regression models and receiver operating characteristics (ROC) curve were used to assess the association and predictive value of PAD2, PAD4, and H3Cit plasma levels in outcome by ARDs by SARS-CoV-2 pneumonia. RESULTS PAD2, PAD4, and H3Cit concentrations were predictors of invasive mechanical ventilation (IMV) requirement and non-survival. PAD2 were associated with non-survival, while PAD4 and H3Cit were associated with requirement IMV. In addition, PAD2 and PAD4 concentrations were related with inflammation markers such as NLR, MLR, dNLR, SII, SIRI, AISI, and NHL. In the carriers of TT genotype of rs1005753 of PADI2 were associated with increased of H3Cit, while, the carriers of GTG/GTG haplotype of PADI4 was related to the presence of increased of PAD4 circulating levels. CONCLUSION SNPs in PADI2 and PADI4 have a significant influence on concentrations of PAD2, PAD4, and H3Cit, which are predictor markers of requirement IMV and non-survival in severe ARDS by SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Ilse Adriana Gutiérrez-Pérez
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Faculty of Chemical-Biological Sciences. Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - José Rafael Villafan-Bernal
- Investigador por Mexico, Laboratory of Immunogenomics and Metabolic Disease, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Oscar Zaragoza-García
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Faculty of Chemical-Biological Sciences. Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ingrid Fricke-Galindo
- Investigador por Mexico, Laboratory of Immunogenomics and Metabolic Disease, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.
| | - Iris Paola Guzmán-Guzmán
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Faculty of Chemical-Biological Sciences. Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
2
|
Li L, Zhang X, Yan H, Dai M, Gao H, Wang Y, Jiang P, Dai E. Different immunological characteristics of asymptomatic and symptomatic COVID-19 patients without vaccination in the acute and convalescence stages. PeerJ 2025; 13:e18451. [PMID: 39897496 PMCID: PMC11786710 DOI: 10.7717/peerj.18451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/14/2024] [Indexed: 02/04/2025] Open
Abstract
The immune status of Coronavirus disease 2019 (COVID-19) patients in different stages of infection remains difficult to determine. In this study, we performed high-throughput single-cell mass cytometry on peripheral blood samples from 10 COVID-19 patients and four healthy donors to analyze their immune status at acute and convalescence phases. During the acute stage, the proportion of neutrophils increased significantly while natural killer (NK) cells decreased. In contrast, during the convalescence phase, the proportion of plasma cells decreased from the acute stage of disease onset and was lower than normal. The proportions of B, mast and plasma cell subsets decreased significantly with the process of disease recovery. Further analysis of the subsets of major immune cell types in COVID-19 patients with different clinical presentations in different stages showed that in the acute stages of disease progression, the T helper cell 1 (Th1), IgD+ B and neutrophil subsets increased in COVID-19 patients, especially in symptomatic patients, while the central memory CD4+T cells (CD4 TCM), mucosa-associated invariant T (MAIT) and NK cell subsets decreased significantly, especially in symptomatic patients. Then CD4 TCM and MAIT returned to normal levels at the recovery phase. Dynamic assessment displayed that the immune imbalance at the onset of COVID-19 could be corrected during recovery. Our study provides additional information on the immune status of COVID-19 patients with different clinical manifestations in different stages. These findings may provide new insights into COVID-19 immunotherapy and immune intervention.
Collapse
Affiliation(s)
- Li Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Intensive Care Unit, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xin Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Huimin Yan
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Clinical Research Center, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Muwei Dai
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University and Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Huixia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yuling Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Erhei Dai
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Xin H, He P, Xi B, Wang Z, Wang H, Wang F, Ma Z, Xue J, Jia Y, Cai H, Chen B, Chen J. Neutrophil-to-lymphocyte ratio and short-term mortality in patients having anti-MDA5-positive dermatomyositis with interstitial lung disease: a retrospective study. BMC Pulm Med 2025; 25:40. [PMID: 39863893 PMCID: PMC11762128 DOI: 10.1186/s12890-025-03512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In this study, we aimed to explore the association between baseline and early changes in the neutrophil-to-lymphocyte ratio (NLR) and the 30-day mortality rate in patients having anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis with interstitial lung disease (DM-ILD). METHODS Overall, 263 patients with anti-MDA5 DM-ILD from four centers in China were analyzed. Multivariate logistic regression analysis was used to evaluate the impact of baseline NLR on the 30-day mortality rate in patients with anti-MDA5-positive DM-ILD. Furthermore, a generalized additive mixed model (GAMM) was applied to compare the NLR variations over time between 30-day survival group and non-survival group. RESULTS Two hundred sixty-three patients with anti-MDA5-positive DM-ILD were divided into different groups based on their NLR and whether they survived or not within 30 days. The multivariate logistic regression analysis, accounting for confounding factors, identified an elevated baseline NLR as a prognostic indicator for 30-day mortality in patients with anti-MDA5-positive DM-ILD (hazard ratio 2.68, 95% confidence interval [CI] 1.18,6.00, P = 0.019). Furthermore, the GAMM results indicated that the NLR gradually increased more in the non-survival group compared with the survival group within 14 days of admission, with a daily average increase of 1.03 (β = 1.03; 95% CI, 0.75-1.31; P < 0.001). CONCLUSIONS We found that an elevated baseline NLR and its progressive increase are associated with 30-day mortality in patients with anti-MDA5-positive DM-ILD.
Collapse
Affiliation(s)
- Hongxia Xin
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Department of Geriatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750000, China
| | - Ping He
- Department of Respiratory and Critical Care Medicine, the Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Bin Xi
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhaojun Wang
- Department of Intensive Care Unit, General Hospital of Ningxia Medical University, Yinchuan , Ningxia, 750004, China
| | - Han Wang
- School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, 130024, China
| | - Faxuan Wang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Zhanbing Ma
- Department of Medical Genetics and Cell Biology, College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Xue
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Yuanyuan Jia
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hourong Cai
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Nanjing, 210008, China.
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221000, China.
| | - Juan Chen
- Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
4
|
Gong HH, Worley MJ, Carver KA, Godin CJ, Deng JC. Deficient neutrophil responses early in influenza infection promote viral replication and pulmonary inflammation. PLoS Pathog 2025; 21:e1012449. [PMID: 39823516 DOI: 10.1371/journal.ppat.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1. A self-resolving dose in B6 mice was lethal in A/J mice, which had increased viral load throughout infection accompanied by prominent bronchoalveolar neutrophilia and pulmonary vascular leakage preceding mortality. Notably, the B6 mice heavily recruited neutrophils to lungs early in infection while A/J mice failed to do so. Neutrophils from A/J mice additionally displayed reduced neutrophil extracellular trap (NET) release and reactive oxygen species (ROS) generation compared to B6 mice early in infection, suggesting the failure to control virus in A/J mice was a product of deficient neutrophil response. To determine if variation in neutrophils between strains governed viral control and inflammation, we adoptively transferred bone marrow neutrophils from B6 or A/J donors to A/J recipients early in infection and found that the transfer of B6 neutrophils enhanced viral clearance and abrogated the dissemination of CXCL1 and IL-6. The transfer of A/J neutrophils, however, failed to achieve either. Furthermore, B6 neutrophils were capable of greater levels of viral killing in vitro than their A/J counterparts. These results suggest that a key moderator of inflammation in influenza infection is the control of virus by neutrophils early in infection. Thus, host-specific differences in both the recruitment of these cells as well as interindividual variation in neutrophil ability to support viral clearance may in part dictate differing susceptibility to respiratory viral infections.
Collapse
Affiliation(s)
- Henry H Gong
- Graduate Program in Immunology, Ann Arbor, Michigan, United States of America
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew J Worley
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kyle A Carver
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caleb J Godin
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jane C Deng
- Graduate Program in Immunology, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Medicine Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Li SY, Kumar S, Gu X, DeFalco T. Testicular immunity. Mol Aspects Med 2024; 100:101323. [PMID: 39591799 PMCID: PMC11624985 DOI: 10.1016/j.mam.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sudeep Kumar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
6
|
Abdel-Halim M, El-Gamil DS, Hammam MA, El-Shazly M, Wang YH, Kung PH, Chen YC, Korinek M, Abadi AH, Engel M, Hwang TL. Discovery of 1,3-disubstituted prop-2-en-1-one derivatives as inhibitors of neutrophilic inflammation via modulation of MAPK and Akt pathways. J Enzyme Inhib Med Chem 2024; 39:2402988. [PMID: 39297697 PMCID: PMC11413964 DOI: 10.1080/14756366.2024.2402988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Targeting neutrophil function has gained attention as a propitious therapeutic strategy for diverse inflammatory diseases. Accordingly, a series of enone-based derivatives were developed to inhibit neutrophil-mediated inflammation, showing promise for treating inflammatory diseases. These compounds fall into two clusters with distinct effects: one inhibits neutrophilic superoxide (SO) anion production and elastase release triggered by N-formyl-Met-Leu-Phe (fMLF), with compound 6a being most effective (IC50 values of 1.23 and 1.37 μM, respectively), affecting c-Jun N-terminal kinase (JNK) and Akt phosphorylation. The second cluster suppresses formation of SO anion without affecting elastase levels, surpassed by compound 26a (IC50 of 1.56 μM), which attenuates various mitogen-activated protein kinases (MAPKs) with minimal Akt impact. Notably, none of the tested compounds showed cytotoxicity in human neutrophils, underscoring their potential as therapeutic agents against inflammatory diseases.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S. El-Gamil
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Mennatallah A. Hammam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiung Kung
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yu-Cheng Chen
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Healthy Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
7
|
Xie J, Yuan C, Yang S, Ma Z, Li W, Mao L, Jiao P, Liu W. The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection-induced cell death. Cell Mol Biol Lett 2024; 29:138. [PMID: 39516736 PMCID: PMC11549821 DOI: 10.1186/s11658-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents the novel respiratory infectious disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by rapid spread throughout the world. Reactive oxygen species (ROS) account for cellular metabolic by-products, and excessive ROS accumulation can induce oxidative stress due to insufficient endogenous antioxidant ability. In the case of oxidative stress, ROS production exceeds the cellular antioxidant capacity, thus leading to cell death. SARS-CoV-2 can activate different cell death pathways in the context of infection in host cells, such as neutrophil extracellular trap (NET)osis, ferroptosis, apoptosis, pyroptosis, necroptosis and autophagy, which are closely related to ROS signalling and control. In this review, we comprehensively elucidated the relationship between ROS generation and the death of host cells after SARS-CoV-2 infection, which leads to the development of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lin Mao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Gerayeli FV, Park HY, Milne S, Li X, Yang CX, Tuong J, Eddy RL, Vahedi SM, Guinto E, Cheung CY, Yang JSW, Gilchrist C, Yehia D, Stach T, Dang H, Leung C, Shaipanich T, Leipsic J, Koelwyn GJ, Leung JM, Sin DD. Single-cell sequencing reveals cellular landscape alterations in the airway mucosa of patients with pulmonary long COVID. Eur Respir J 2024; 64:2301947. [PMID: 39326914 PMCID: PMC11602667 DOI: 10.1183/13993003.01947-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
AIM To elucidate the important cellular and molecular drivers of pulmonary long COVID, we generated a single-cell transcriptomic map of the airway mucosa using bronchial brushings from patients with long COVID who reported persistent pulmonary symptoms. METHOD Adults with and without long COVID were recruited from the general community in Greater Vancouver, Canada. The cohort was divided into those with pulmonary long COVID, which was defined as persons with new or worsening respiratory symptoms following ≥12 weeks from their initial acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (n=9); and control subjects defined as SARS-CoV-2 infected persons whose acute respiratory symptoms had fully resolved or individuals who had no history of acute coronavirus disease 2019 (COVID-19) (n=9). These participants underwent bronchoscopy from which a single cell suspension was created from bronchial brush samples and then sequenced. RESULTS A total of 56 906 cells were recovered for the downstream analysis, with 34 840 cells belonging to the pulmonary long COVID group, which strikingly showed a unique cluster of neutrophils in the pulmonary long COVID group (p<0.05). Ingenuity Pathway Analysis revealed that the neutrophil degranulation pathway was enriched across epithelial cell clusters. Differential gene expression analysis between the pulmonary long COVID and control groups demonstrated upregulation of inflammatory chemokines and epithelial barrier dysfunction across epithelial cell clusters, as well as over-expression of mucin genes across secretory cell clusters. CONCLUSION A single-cell transcriptomic landscape of the small airways suggest that neutrophils may play a significant role in mediating the chronic small airway inflammation driving pulmonary symptoms of long COVID.
Collapse
Affiliation(s)
- Firoozeh V Gerayeli
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- F.V. Gerayeli and H.Y. Park contributed equally as co-first authors
| | - Hye Yun Park
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- F.V. Gerayeli and H.Y. Park contributed equally as co-first authors
| | - Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Josie Tuong
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel L Eddy
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Seyed Milad Vahedi
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Elizabeth Guinto
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Chung Y Cheung
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Julia S W Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Cassie Gilchrist
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | | | - Tara Stach
- Biomedical Research Centre, School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Hong Dang
- University of North Carolina Chapel Hill, Cystic Fibrosis and Pulmonary Disease Research and Treatment Center, Chapel Hill, NC, USA
| | - Clarus Leung
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tawimas Shaipanich
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Graeme J Koelwyn
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Mazzuca C, Vitiello L, Travaglini S, Maurizi F, Finamore P, Santangelo S, Rigon A, Vadacca M, Angeletti S, Scarlata S. Immunological and homeostatic pathways of alpha -1 antitrypsin: a new therapeutic potential. Front Immunol 2024; 15:1443297. [PMID: 39224588 PMCID: PMC11366583 DOI: 10.3389/fimmu.2024.1443297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
α -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by hepatocytes and to a lesser extent by monocytes, macrophages, intestinal epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1 locus, also known as PI locus, highly polymorphic with at least 100 allelic variants described and responsible for different A1AT serum levels and function. A1AT inhibits a variety of serine proteinases, but its main target is represented by Neutrophil Elastase (NE). However, recent attention has been directed towards its immune-regulatory and homeostatic activities. A1AT exerts immune-regulatory effects on different cell types involved in innate and adaptive immunity. Additionally, it plays a role in metal and lipid metabolism, contributing to homeostasis. An adequate comprehension of these mechanisms could support the use of A1AT augmentation therapy in many disorders characterized by a chronic immune response. The aim of this review is to provide an up-to-date understanding of the molecular mechanisms and regulatory pathways responsible for immune-regulatory and homeostatic activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic applications. Furthermore, the review summarizes the current state of knowledge regarding the application of A1AT in clinical and laboratory settings human and animal models.
Collapse
Affiliation(s)
- Carmen Mazzuca
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
- Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| | - Silvia Travaglini
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Fatima Maurizi
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Panaiotis Finamore
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Simona Santangelo
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marta Vadacca
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Simone Scarlata
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| |
Collapse
|
10
|
Chen PJ, Chen SH, Chen YL, Wang YH, Lin CY, Chen CH, Tsai YF, Hwang TL. Ribociclib leverages phosphodiesterase 4 inhibition in the treatment of neutrophilic inflammation and acute respiratory distress syndrome. J Adv Res 2024; 62:229-243. [PMID: 38548264 PMCID: PMC11331181 DOI: 10.1016/j.jare.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.
Collapse
Affiliation(s)
- Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Shun-Hua Chen
- Departmentof Nursing, Fooyin University, Kaohsiung 831301, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan
| | - Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
11
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
12
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
13
|
Starshinova A, Borozinets A, Kulpina A, Sereda V, Rubinstein A, Kudryavtsev I, Kudlay D. Bronchial Asthma and COVID-19: Etiology, Pathological Triggers, and Therapeutic Considerations. PATHOPHYSIOLOGY 2024; 31:269-287. [PMID: 38921725 PMCID: PMC11206645 DOI: 10.3390/pathophysiology31020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Bronchial asthma (BA) continues to be a difficult disease to diagnose. Various factors have been described in the development of BA, but to date, there is no clear evidence for the etiology of this chronic disease. The emergence of COVID-19 has contributed to the pandemic course of asthma and immunologic features. However, there are no unambiguous data on asthma on the background and after COVID-19. There is correlation between various trigger factors that provoke the development of bronchial asthma. It is now obvious that the SARS-CoV-2 virus is one of the provoking factors. COVID-19 has affected the course of asthma. Currently, there is no clear understanding of whether asthma progresses during or after COVID-19 infection. According to the results of some studies, a significant difference was identified between the development of asthma in people after COVID-19. Mild asthma and moderate asthma do not increase the severity of COVID-19 infection. Nevertheless, oral steroid treatment and hospitalization for severe BA were associated with higher COVID-19 severity. The influence of SARS-CoV-2 infection is one of the protective factors. It causes the development of severe bronchial asthma. The accumulated experience with omalizumab in patients with severe asthma during COVID-19, who received omalizumab during the pandemic, has strongly suggested that continued treatment with omalizumab is safe and may help prevent the severe course of COVID-19. Targeted therapy for asthma with the use of omalizumab may also help to reduce severe asthma associated with COVID-19. However, further studies are needed to prove the effect of omalizumab. Data analysis should persist, based on the results of the course of asthma after COVID-19 with varying degrees of severity.
Collapse
Affiliation(s)
- Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Anastasia Borozinets
- Medical Department, I.M. Sechenov First Moscow State Medical University, 197022 Moscow, Russia
| | - Anastasia Kulpina
- Medical Department, Saint Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia;
| | - Vitaliy Sereda
- Medical Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Artem Rubinstein
- Department of immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia;
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
- Department of immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia;
| | - Dmitry Kudlay
- Institute of Immunology FMBA of Russia, 115478 Moscow, Russia;
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Oliveira VLS, Queiroz-Junior CM, Hoorelbeke D, Santos FRDS, Chaves IDM, Teixeira MM, Russo RDC, Proost P, Costa VV, Struyf S, Amaral FA. The glycosaminoglycan-binding chemokine fragment CXCL9(74-103) reduces inflammation and tissue damage in mouse models of coronavirus infection. Front Immunol 2024; 15:1378591. [PMID: 38686377 PMCID: PMC11056509 DOI: 10.3389/fimmu.2024.1378591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.
Collapse
Affiliation(s)
- Vivian Louise Soares Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Delphine Hoorelbeke
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Felipe Rocha da Silva Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sofie Struyf
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Zhou Z, Zeng X, Liao J, Dong X, Deng Y, Wang Y, Zhou M. Immune Characteristic Genes and Neutrophil Immune Transformation Studies in Severe COVID-19. Microorganisms 2024; 12:737. [PMID: 38674681 PMCID: PMC11052247 DOI: 10.3390/microorganisms12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
As a disease causing a global pandemic, the progression of symptoms to severe disease in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found to be located at the end of cellular differentiation and tended to release neutrophil extracellular traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils through intercellular ligand-receptor pairs to promote neutrophil extracellular trap release. This study provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19 severe disease, explores intracellular immune transitions of critical immune cells and pit-induced intercellular communication of immune transitions, and provides new biomarkers and potential drug targets for the treatment of patients with COVID-19 severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.Z.); (X.Z.); (J.L.); (X.D.); (Y.D.)
| |
Collapse
|
16
|
Lim S, Khalmuratova R, Lee YY, Kim YS, Lee M, Lee NK, Kim SN, Choy YB, Park CG, Kim DW, Shin HW. Neutrophil extracellular traps promote ΔNp63+ basal cell hyperplasia in chronic rhinosinusitis. J Allergy Clin Immunol 2024; 153:705-717.e11. [PMID: 38000697 DOI: 10.1016/j.jaci.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.
Collapse
Affiliation(s)
- Suha Lim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Roza Khalmuratova
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yi Sook Kim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mingyu Lee
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Se-Na Kim
- Department of Research and Development Center, MediArk Inc, Cheongju, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Dae Woo Kim
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
17
|
Gour N, Yong HM, Magesh A, Atakkatan A, Andrade F, Lajoie S, Dong X. A GPCR-neuropeptide axis dampens hyperactive neutrophils by promoting an alternative-like polarization during bacterial infection. Immunity 2024; 57:333-348.e6. [PMID: 38295799 PMCID: PMC10940224 DOI: 10.1016/j.immuni.2024.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Magesh
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Atakkatan
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Stephane Lajoie
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Al-Horani RA, Aliter KF. Triple Action of Lignosulfonic Acid Sodium: Anti-protease, Antioxidant, and Anti-inflammatory Effects of a Polymeric Heparin Mimetic. Med Chem 2024; 20:414-421. [PMID: 38192144 PMCID: PMC11228124 DOI: 10.2174/0115734064275120231222111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Heparins are sulfated glycosaminoglycans that are used as anticoagulants to treat thrombosis. Heparins exhibit other potential therapeutic effects, such as anti-inflammatory, anti-viral, and anti-malarial effects. However, the strong anticoagulant activity of heparins poses a risk of life-threatening bleeding, limiting their therapeutic use for other diseases beyond thrombosis. To exploit the other effects of heparins and eliminate the bleeding risk, we explored an alternative polymer called lignosulfonic acid sodium (LSAS), which acts as a sulfonated heparin mimetic. LSAS targets factor XIa to exert an anticoagulant effect, and thus, unlike heparins, it is unlikely to cause bleeding. METHODS This study investigated the multiple effects of LSAS to identify potential leads for complex pathologies treatment. A series of chromogenic substrate hydrolysis assays were used to evaluate the inhibition of three inflammation-related proteases by LSAS. Its chemical antioxidant activity against the system of ABTS/hydrogen peroxide/metmyoglobin was also determined. Lastly, the effect of LSAS on TNFα-induced activation of the NF-κB pathway in HEK-293 cells was also tested to determine its cellular anti-inflammatory activity. RESULTS The results showed that LSAS effectively inhibited human neutrophil elastase, cathepsin G, and plasmin, with IC50 values ranging from 0.73 to 212.5 μg/mL. Additionally, LSAS demonstrated a significant chemical antioxidant effect, with an IC50 value of 44.1 μg/mL. Furthermore, at a concentration of approximately 530 μg/mL, LSAS inhibited the TNFα-induced activation of the NF-κB pathway in HEK-293 cells, indicating a substantial anti-inflammatory effect. An essential advantage of LSAS is its high water solubility and virtual non-toxicity, making it a safe and readily available polymer. CONCLUSION Based on these findings, LSAS is put forward as a polymeric heparin mimetic with multiple functions, serving as a potential platform for developing novel therapeutics to treat complex pathologies.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Kholoud F Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans, LA, 70122, USA
| |
Collapse
|
20
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Stadnichuk VI, Baratova LA, Sud'ina GF. Effect of Dexamethasone on Adhesion of Human Neutrophils and Concomitant Secretion. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2094-2106. [PMID: 38462453 DOI: 10.1134/s000629792312012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 03/12/2024]
Abstract
Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.
Collapse
Affiliation(s)
- Svetlana I Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Ekaterina A Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Ludmila A Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina F Sud'ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Hakim AD, Awili M, O’Neal HR, Siddiqi O, Jaffrani N, Lee R, Overcash JS, Chauffe A, Hammond TC, Patel B, Waters M, Criner GJ, Pachori A, Junge G, Levitch R, Watts J, Koo P, Sengupta T, Yu L, Kiffe M, Pinck A, Stein RR, Bendrick-Peart J, Jenkins J, Rowlands M, Waldron-Lynch F, Matthews J. Efficacy and safety of MAS825 (anti-IL-1β/IL-18) in COVID-19 patients with pneumonia and impaired respiratory function. Clin Exp Immunol 2023; 213:265-275. [PMID: 37338154 PMCID: PMC10570997 DOI: 10.1093/cei/uxad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/02/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
MAS825, a bispecific IL-1β/IL-18 monoclonal antibody, could improve clinical outcomes in COVID-19 pneumonia by reducing inflammasome-mediated inflammation. Hospitalized non-ventilated patients with COVID-19 pneumonia (n = 138) were randomized (1:1) to receive MAS825 (10 mg/kg single i.v.) or placebo in addition to standard of care (SoC). The primary endpoint was the composite Acute Physiology and Chronic Health Evaluation II (APACHE II) score on Day 15 or on the day of discharge (whichever was earlier) with worst-case imputation for death. Other study endpoints included safety, C-reactive protein (CRP), SARS-CoV-2 presence, and inflammatory markers. On Day 15, the APACHE II score was 14.5 ± 1.87 and 13.5 ± 1.8 in the MAS825 and placebo groups, respectively (P = 0.33). MAS825 + SoC led to 33% relative reduction in intensive care unit (ICU) admissions, ~1 day reduction in ICU stay, reduction in mean duration of oxygen support (13.5 versus 14.3 days), and earlier clearance of virus on Day 15 versus placebo + SoC group. On Day 15, compared with placebo group, patients treated with MAS825 + SoC showed a 51% decrease in CRP levels, 42% lower IL-6 levels, 19% decrease in neutrophil levels, and 16% lower interferon-γ levels, indicative of IL-1β and IL-18 pathway engagement. MAS825 + SoC did not improve APACHE II score in hospitalized patients with severe COVID-19 pneumonia; however, it inhibited relevant clinical and inflammatory pathway biomarkers and resulted in faster virus clearance versus placebo + SoC. MAS825 used in conjunction with SoC was well tolerated. None of the adverse events (AEs) or serious AEs were treatment-related.
Collapse
Affiliation(s)
- Alex D Hakim
- Providence Little Company of Mary Medical Center, Torrance, CA, USA
| | | | - Hollis R O’Neal
- Louisiana State University Health Sciences Center and Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, USA
| | | | | | | | | | - Ann Chauffe
- Louisiana State University Health Sciences Center, Lafayette, LA, USA
| | | | - Bela Patel
- University of Texas McGovern Medical School, Houston, TX, US
| | | | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | | | | | | | - Philip Koo
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Lili Yu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael Kiffe
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anne Pinck
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Richard R Stein
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Janet Jenkins
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | - Jesse Matthews
- Hospital Medicine, St Charles Health System, Bend, OR, USA
| |
Collapse
|
22
|
Niroomand A, Hirdman G, Pierre L, Ghaidan H, Kjellström S, Stenlo M, Hyllén S, Olm F, Lindstedt S. Proteomic changes to immune and inflammatory processes underlie lung preservation using ex vivo cytokine adsorption. Front Cardiovasc Med 2023; 10:1274444. [PMID: 37849943 PMCID: PMC10577429 DOI: 10.3389/fcvm.2023.1274444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction In recent years, the field of graft preservation has made considerable strides in improving outcomes related to solid organ restoration and regeneration. Ex vivo lung perfusion (EVLP) in line with the related devices and treatments has yielded promising results within preclinical and clinical studies, with the potential to improve graft quality. Its main benefit is to render marginal and declined donor lungs suitable for transplantation, ultimately increasing the donor pool available for transplantation. In addition, using such therapies in machine perfusion could also increase preservation time, facilitating logistical planning. Cytokine adsorption has been demonstrated as a potentially safe and effective therapy when applied to the EVLP circuit and post-transplantation. However, the mechanism by which this therapy improves the donor lung on a molecular basis is not yet fully understood. Methods We hypothesized that there were characteristic inflammatory and immunomodulatory differences between the lungs treated with and without cytokine adsorption, reflecting proteomic changes in the gene ontology pathways and across inflammation-related proteins. In this study, we investigate the molecular mechanisms and signaling pathways of how cytokine adsorption impacts lung function when used during EVLP and post-transplantation as hemoperfusion in a porcine model. Lung tissues during EVLP and post-lung transplantation were analyzed for their proteomic profiles using mass spectrometry. Results We found through gene set enrichment analysis that the inflammatory and immune processes and coagulation pathways were significantly affected by the cytokine treatment after EVLP and transplantation. Conclusion In conclusion, we showed that the molecular mechanisms are using a proteomic approach behind the previously reported effects of cytokine adsorption when compared to the non-treated transplant recipients undergoing EVLP.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- School of Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ, United States
| | - Gabriel Hirdman
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Leif Pierre
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Haider Ghaidan
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Martin Stenlo
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
23
|
Ragel EJ, Harris LK, Campbell RA. Acute respiratory distress syndrome: potential of therapeutic interventions effective in treating progression from COVID-19 to treat progression from other illnesses-a systematic review. BMJ Open Respir Res 2023; 10:e001525. [PMID: 37657844 PMCID: PMC10476125 DOI: 10.1136/bmjresp-2022-001525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is the most severe form of lung injury, rendering gaseous exchange insufficient, leading to respiratory failure. Despite over 50 years of research on the treatment of ARDS when developed from illnesses such as sepsis and pneumonia, mortality remains high, and no robust pharmacological treatments exist. The progression of SARS-CoV-2 infections to ARDS during the recent global pandemic led to a surge in the number of clinical trials on the condition. Understandably, this explosion in new research focused on COVID-19 ARDS (CARDS) rather than ARDS when developed from other illnesses, yet differences in pathology between the two conditions mean that optimal treatment for them may be distinct. AIM The aim of the present work is to assess whether new therapeutic interventions that have been developed for the treatment of CARDS may also hold strong potential in the treatment of ARDS when developed from other illnesses. The study objectives are achieved through a systematic review of clinical trials. RESULTS The COVID-19 pandemic led to the identification of various therapeutic interventions for CARDS, some but not all of which are optimal for the management of ARDS. Interventions more suited to CARDS pathology include antithrombotics and biologic agents, such as cytokine inhibitors. Cell-based therapies, on the other hand, show promise in the treatment of both conditions, attributed to their broad mechanisms of action and the overlap in the clinical manifestations of the conditions. A shift towards personalised treatments for both CARDS and ARDS, as reflected through the increasing use of biologics, is also evident. CONCLUSIONS As ongoing CARDS clinical trials progress, their findings are likely to have important implications that alter the management of ARDS in patients that develop the condition from illnesses other than COVID-19 in the future.
Collapse
Affiliation(s)
- Emma J Ragel
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Lynda K Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
- 3St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Mykhailenko O, Hsieh CF, El-Shazly M, Nikishin A, Kovalyov V, Shynkarenko P, Ivanauskas L, Chen BH, Horng JT, Hwang TL, Georgiyants V, Korinek M. Anti-viral and Anti-inflammatory Isoflavonoids from Ukrainian Iris aphylla Rhizomes: Structure-Activity Relationship Coupled with ChemGPS-NP Analysis. PLANTA MEDICA 2023; 89:1063-1073. [PMID: 36977489 DOI: 10.1055/a-2063-5265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dried Iris rhizomes have been used in Chinese and European traditional medicine for the treatment of various diseases such as bacterial infections, cancer, and inflammation, as well as for being astringent, laxative, and diuretic agents. Eighteen phenolic compounds including some rare secondary metabolites, such as irisolidone, kikkalidone, irigenin, irisolone, germanaism B, kaempferol, and xanthone mangiferin, were isolated for the first time from Iris aphylla rhizomes. The hydroethanolic Iris aphylla extract and some of its isolated constituents showed protective effects against influenza H1N1 and enterovirus D68 and anti-inflammatory activity in human neutrophils. The promising anti-influenza effect of apigenin (13: , almost 100% inhibition at 50 µM), kaempferol (14: , 92%), and quercetin (15: , 48%) were further confirmed by neuraminidase inhibitory assay. Irisolidone (1: , almost 100% inhibition at 50 µM), kikkalidone (5: , 93%), and kaempferol (14: , 83%) showed promising anti-enterovirus D68 activity in vitro. The identified compounds were plotted using ChemGPS-NP to correlate the observed activity of the isolated phenolic compounds with the in-house database of anti-influenza and anti-enterovirus agents. Our results indicated that the hydroethanolic Iris aphylla extract and Iris phenolics hold the potential to be developed for the management of seasonal pandemics of influenza and enterovirus infections.
Collapse
Grants
- ZRRPF3L0091 Chang Gung University of Science and Technology, Taiwan
- CMRPF1L0071 Chang Gung Memorial Hospital, Linkou
- CMRPF1M0101-2 Chang Gung Memorial Hospital, Linkou
- CMRPF1M0131-2 Chang Gung Memorial Hospital, Linkou
- CORPF1L0011 Chang Gung Memorial Hospital, Linkou
- KMU-Q112006 Kaohsiung Medical University
- 109-2320-B-037-004-MY3 Ministry of Science and Technology, Taiwan
- 109-2320-B-650-001-MY3 Ministry of Science and Technology, Taiwan
- 109-2327-B-182-002 Ministry of Science and Technology, Taiwan
- 109-2327-B-255-001 Ministry of Science and Technology, Taiwan
- 111-2320-B-037-007 Ministry of Science and Technology, Taiwan
- 111-2321-B-182-001 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, London, United Kingdom
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Alexander Nikishin
- V. N. Karazin Kharkiv National University, Organic Chemistry Department, Kharkiv, Ukraine
| | - Vladimir Kovalyov
- Department of Pharmacognosy, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
| | | | - Liudas Ivanauskas
- Lithuanian University of Health Sciences, Department of Analytical and Toxicological Chemistry, Kaunas, Lithuania
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung, Taiwan
- The Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kweishan, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
| | - Michal Korinek
- Department of Biotechnology, College of Life Science, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
de Brabander J, Boers LS, Kullberg RFJ, Zhang S, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, Schultz MJ, van der Poll T, Duitman J, Bos LDJ. Persistent alveolar inflammatory response in critically ill patients with COVID-19 is associated with mortality. Thorax 2023; 78:912-921. [PMID: 37142421 DOI: 10.1136/thorax-2023-219989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.
Collapse
Affiliation(s)
- Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Shiqi Zhang
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Nossent
- Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo M A Heunks
- Intensive Care Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander P J Vlaar
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Nguyen NBA, El-Shazly M, Chen PJ, Peng BR, Chen LY, Hwang TL, Lai KH. Unlocking the Potential of Octocoral-Derived Secondary Metabolites against Neutrophilic Inflammatory Response. Mar Drugs 2023; 21:456. [PMID: 37623737 PMCID: PMC10455653 DOI: 10.3390/md21080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Inflammation is a critical defense mechanism that is utilized by the body to protect itself against pathogens and other noxious invaders. However, if the inflammatory response becomes exaggerated or uncontrollable, its original protective role is not only demolished but it also becomes detrimental to the affected tissues or even to the entire body. Thus, regulating the inflammatory process is crucial to ensure that it is resolved promptly to prevent any subsequent damage. The role of neutrophils in inflammation has been highlighted in recent decades by a plethora of studies focusing on neutrophilic inflammatory diseases as well as the mechanisms to regulate the activity of neutrophils during the overwhelmed inflammatory process. As natural products have demonstrated promising effects in a wide range of pharmacological activities, they have been investigated for the discovery of new anti-inflammatory therapeutics to overcome the drawbacks of current synthetic agents. Octocorals have attracted scientists as a plentiful source of novel and intriguing marine scaffolds that exhibit many pharmacological activities, including anti-inflammatory effects. In this review, we aim to provide a summary of the neutrophilic anti-inflammatory properties of these marine organisms that were demonstrated in 46 studies from 1995 to the present (April 2023). We hope the present work offers a comprehensive overview of the anti-inflammatory potential of octocorals and encourages researchers to identify promising leads among numerous compounds isolated from octocorals over the past few decades to be further developed into anti-inflammatory therapeutic agents.
Collapse
Affiliation(s)
- Ngoc Bao An Nguyen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
27
|
Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: recent insights and advances. Virol J 2023; 20:169. [PMID: 37533131 PMCID: PMC10398943 DOI: 10.1186/s12985-023-02116-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can lead to acute respiratory distress syndrome (ARDS), multi-organ failure and death, posing significant threat to human health. Studies have found that pathological mechanisms, such as cytokine storms caused by uncontrolled innate immune system activation, release of damage-associated molecular patterns during tissue injury and a high incidence of thrombotic events, are associated with the function and dysfunction of neutrophils. Specifically, the increased formation of low-density neutrophils (LDNs) and neutrophil extracellular traps (NETs) has been shown to be closely linked with the severity and poor prognosis in patients with COVID-19. Our work focuses on understanding the increased number, abnormal activation, lung tissue infiltration, and elevated neutrophil-to-lymphocyte ratio in the pathogenesis of COVID-19. We also explore the involvement of NETs and LDNs in disease progression and thrombosis formation, along with potential therapeutic strategies targeting neutrophil and NETs formation.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Kegong Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Ye Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Ziyang Gu
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Changxing Huang
- Department of Infectious Diseases, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
28
|
Malicki S, Książek M, Sochaj Gregorczyk A, Kamińska M, Golda A, Chruścicka B, Mizgalska D, Potempa J, Marti HP, Kozieł J, Wieczorek M, Pieczykolan J, Mydel P, Dubin G. Identification and characterization of aptameric inhibitors of human neutrophil elastase. J Biol Chem 2023; 299:104889. [PMID: 37286041 PMCID: PMC10359491 DOI: 10.1016/j.jbc.2023.104889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.
Collapse
Affiliation(s)
- Stanisław Malicki
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mirosław Książek
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Sochaj Gregorczyk
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Kamińska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Barbara Chruścicka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Wieczorek
- Innovative Drugs R&D Department, Celon Pharma Inc, Lomianki, Poland
| | | | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Grzegorz Dubin
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
29
|
Mohaghagh Zahed SF, Dabiri S, Javadi A, Movahednia S, Shamsi Meymandi Pharm M, Dabiri B, Khorasani Esmaili P, Rezaei MS, Faroukhnia M. Hematocytological Clues of Peripheral Blood in Different Clinical Presentations of COVID-19. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:270-278. [PMID: 37942192 PMCID: PMC10628379 DOI: 10.30699/ijp.2023.561331.2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 11/10/2023]
Abstract
Background To gain insight into the pathogenesis and clinical course of COVID-19 from a historical perspective, we reviewed paraclinical diagnostic tools of this disease and prioritized the patients with a more severe form of disease admitted to intensive care units (ICUs). The objective was to better predict the course and severity of the disease by collecting more paraclinical data, specifically by examining the relationship between hematological findings and cytological variation of blood neutrophils and monocytes. Methods This retrospective study was conducted on 112 patients with confirmed COVID-19 admitted to Imam Hossein Hospital (Tehran, Iran) from August to September 2020. Peripheral blood smears of these patients were differentiated according to several cytological variations of neutrophils and monocytes, and the correlation to the severity of the disease was specified. Results The mean percentages of degenerated monocytes, degenerated granulocytes, and spiky biky neutrophils were significantly different among critical and non-critical patients (P<0.05). Degenerated monocytes and granulocytes were higher in critical patients as opposed to spiky biky neutrophils, which were higher among non-critical ones. Comparing the peripheral blood smears of COVID-19 patients (regarding pulmonary involvement in chest computed tomography [CT] scans [subtle, mild, moderate, and severe groups]), the twisted form of neutrophils was significantly higher in the subtle group than in the mild and moderate groups (P=0.003). Conclusion Different cytological morphologies of neutrophils and monocytes, including degenerated monocytes, degenerated granulocytes, and spiky biky and twisted neutrophils, could help to predict the course and severity of the disease.
Collapse
Affiliation(s)
- Seyede Fakhri Mohaghagh Zahed
- Pathology and Stem Cells Research Centers, Pathology Department, Afzalipour Medical School, Kerman Medical Sciences University, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cells Research Centers, Pathology Department, Afzalipour Medical School, Kerman Medical Sciences University, Kerman, Iran
| | - Abdolreza Javadi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjadeh Movahednia
- Pathology and Stem Cells Research Centers, Pathology Department, Afzalipour Medical School, Kerman Medical Sciences University, Kerman, Iran
| | - Manzumeh Shamsi Meymandi Pharm
- Pathology and Stem Cells Research Centers, Pathology Department, Afzalipour Medical School, Kerman Medical Sciences University, Kerman, Iran
| | - Bahram Dabiri
- Department of Pathology, NYU Long Island School of Medicine, NYU Langone Hospital, New York, United States of America
| | | | - Mitra Sadat Rezaei
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Virology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faroukhnia
- Infectious Branch, Internal Medicine Department, Afzalipour Hospital, Kerman Medical Sciences University, Kerman, Iran
| |
Collapse
|
30
|
Ali YM, Lynch NJ, Shaaban AA, Rizk DE, Abdel-Rahman SH, Khatri P, Yabuki M, Yaseen S, Dudler T, Demopulos G, Schwaeble WJ. Inhibition of the lectin pathway of complement activation reduces LPS-induced acute respiratory distress syndrome in mice. Front Immunol 2023; 14:1192767. [PMID: 37325666 PMCID: PMC10262210 DOI: 10.3389/fimmu.2023.1192767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening disorder with a high rate of mortality. Complement activation in ARDS initiates a robust inflammatory reaction that can cause progressive endothelial injury in the lung. Here, we tested whether inhibition of the lectin pathway of complement could reduce the pathology and improve the outcomes in a murine model of LPS-induced lung injury that closely mimics ARDS in human. In vitro, LPS binds to murine and human collectin 11, human MBL and murine MBL-A, but not to C1q, the recognition subcomponent of the classical pathway. This binding initiates deposition of the complement activation products C3b, C4b and C5b-9 on LPS via the lectin pathway. HG-4, a monoclonal antibody that targets MASP-2, a key enzyme in the lectin pathway, inhibited lectin pathway functional activity in vitro, with an IC50 of circa 10nM. Administration of HG4 (5mg/kg) in mice led to almost complete inhibition of the lectin pathway activation for 48hrs, and 50% inhibition at 60hrs post administration. Inhibition of the lectin pathway in mice prior to LPS-induced lung injury improved all pathological markers tested. HG4 reduces the protein concentration in bronchoalveolar lavage fluid (p<0.0001) and levels of myeloid peroxide (p<0.0001), LDH (p<0.0001), TNFα and IL6 (both p<0.0001). Lung injury was significantly reduced (p<0.001) and the survival time of the mice increased (p<0.01). From the previous findings we concluded that inhibition of the lectin pathway has the potential to prevent ARDS pathology.
Collapse
Affiliation(s)
- Youssif M. Ali
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nicholas J. Lynch
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ahmed A. Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dina E. Rizk
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Shaymaa H. Abdel-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Priyanka Khatri
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Wilhelm J. Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Dutta A, Bhagat S, Paul S, Katz JP, Sengupta D, Bhargava D. Neutrophils in Cancer and Potential Therapeutic Strategies Using Neutrophil-Derived Exosomes. Vaccines (Basel) 2023; 11:1028. [PMID: 37376417 PMCID: PMC10301170 DOI: 10.3390/vaccines11061028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are the most abundant immune cells and make up about 70% of white blood cells in human blood and play a critical role as the first line of defense in the innate immune response. They also help regulate the inflammatory environment to promote tissue repair. However, in cancer, neutrophils can be manipulated by tumors to either promote or hinder tumor growth depending on the cytokine pool. Studies have shown that tumor-bearing mice have increased levels of neutrophils in peripheral circulation and that neutrophil-derived exosomes can deliver various cargos, including lncRNA and miRNA, which contribute to tumor growth and degradation of extracellular matrix. Exosomes derived from immune cells generally possess anti-tumor activities and induce tumor-cell apoptosis by delivering cytotoxic proteins, ROS generation, H2O2 or activation of Fas-mediated apoptosis in target cells. Engineered exosome-like nanovesicles have been developed to deliver chemotherapeutic drugs precisely to tumor cells. However, tumor-derived exosomes can aggravate cancer-associated thrombosis through the formation of neutrophil extracellular traps. Despite the advancements in neutrophil-related research, a detailed understanding of tumor-neutrophil crosstalk is still lacking and remains a major barrier in developing neutrophil-based or targeted therapy. This review will focus on the communication pathways between tumors and neutrophils, and the role of neutrophil-derived exosomes (NDEs) in tumor growth. Additionally, potential strategies to manipulate NDEs for therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Abhishek Dutta
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Shrikrishna Bhagat
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Swastika Paul
- Exsure, Kalinga Institute of Industrial Technology, KIIT Rd, Patia, Bhubaneswar 751024, Odisha, India
| | - Jonathan P. Katz
- Department of Gastroenterology, 928 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute (under Ministry of Health and Family Welfare, Government of India Regional Cancer Centre), 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Dharmendra Bhargava
- Department of Gastroenterology, 928 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Zhang M, Pang M. Early prediction of acute respiratory distress syndrome complicated by acute pancreatitis based on four machine learning models. Clinics (Sao Paulo) 2023; 78:100215. [PMID: 37196588 DOI: 10.1016/j.clinsp.2023.100215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Acute Respiratory Distress syndrome (ARDS) is a common complication of Acute Pancreatitis (AP) and is associated with high mortality. This study used Machine Learning (ML) to predict ARDS in patients with AP at admission. METHODS The authors retrospectively analyzed the data from patients with AP from January 2017 to August 2022. Clinical and laboratory parameters with significant differences between patients with and without ARDS were screened by univariate analysis. Then, Support Vector Machine (SVM), Ensembles of Decision Trees (EDTs), Bayesian Classifier (BC), and nomogram models were constructed and optimized after feature screening based on these parameters. Five-fold cross-validation was used to train each model. A test set was used to evaluate the predictive performance of the four models. RESULTS A total of 83 (18.04%) of 460 patients with AP developed ARDS. Thirty-one features with significant differences between the groups with and without ARDS in the training set were used for modeling. The Partial Pressure of Oxygen (PaO2), C-reactive protein, procalcitonin, lactic acid, Ca2+, the neutrophil:lymphocyte ratio, white blood cell count, and amylase were identified as the optimal subset of features. The BC algorithm had the best predictive performance with the highest AUC value (0.891) than SVM (0.870), EDTs (0.813), and the nomogram (0.874) in the test set. The EDT algorithm achieved the highest accuracy (0.891), precision (0.800), and F1 score (0.615), but the lowest FDR (0.200) and the second-highest NPV (0.902). CONCLUSIONS A predictive model of ARDS complicated by AP was successfully developed based on ML. Predictive performance was evaluated by a test set, for which BC showed superior predictive performance and EDTs could be a more promising prediction tool for larger samples.
Collapse
Affiliation(s)
- Mengran Zhang
- Gastroenterology Department, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Mingge Pang
- Internal Medicine Department, Beijing Puren Hospital, Beijing, China.
| |
Collapse
|
33
|
Nesterova IV, Atazhakhova MG, Teterin YV, Matushkina VA, Chudilova GA, Mitropanova MN. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS)
IN THE IMMUNOPATHOGENESIS OF SEVERE COVID-19: POTENTIAL IMMUNOTHERAPEUTIC STRATEGIES REGULATING NET FORMATION AND ACTIVITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-tro-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the recruitment of NG into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a fairly large volume of scientific literature devoted to the peculiarities of the formation of NETs, their role in the pathogenesis of COVID-19, participation in the occurrence of immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, multi-organ lesions. Convincing data are presented that clearly indicate the significant involvement of NETs in the immunopathogenesis of COVID-19 and the associated severe complications resulting from the intensification of the inflammation process, which is key for the course of infection caused by the SARS-CoV-2 virus. The presented role of NG and NETs, along with the role of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding the development of an overactive immune response in severe COVID-19. The obtained scientific results, available today, allow identifying the possibilities of regulatory effects on hyperactivated NG, on the formation of NETs at various stages and on limiting the negative impact of already formed NETs on various tissues and organs. All of the above should help in the creation of new, specialized immunotherapy strategies designed to increase the chances of survival, reduce the severity of clinical manifestations in patients with COVID-19, as well as significantly reduce mortality rates. Currently, it is possible to use existing drugs and a number of new drugs are being developed, the action of which can regulate the amount of NG, positively affect the functions of NG and limit the intensity of NETs formation. Continuing research on the role of hyperactive NG and netosis, as well as understanding the mechanisms of regulation of the phenomenon of formation and restriction of NETs activity in severe COVID-19, apparently, are a priority, since in the future the new data obtained could become the basis for the development of targeted approaches not only to immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also to immunotherapy, which could be used in the complex treatment of other netopathies, first of all, autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Collapse
|
34
|
Anti-inflammatory and antiviral activities of flavone C-glycosides of Lophatherum gracile for COVID-19. J Funct Foods 2023; 101:105407. [PMID: 36627926 PMCID: PMC9812844 DOI: 10.1016/j.jff.2023.105407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CB, cytochalasin B
- COVID-19
- COVID-19, coronavirus disease 2019
- DMSO, dimethyl sulfoxide
- Flavone C-glycosides
- HBSS, Hank’s balanced salt solution
- HPLC, high-performance liquid chromatography
- IC50, half-maximal inhibitory concentration
- LDH, lactate dehydrogenase
- LG, Lophatherum gracile
- Lophatherum gracile
- MRM, multiple reaction monitoring
- NETs, neutrophil extracellular traps
- Neutrophils
- O2•−, superoxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- UPLC, ultra-performance liquid chromatography
- fMLF, N-formyl-methionyl-leucyl-phenylalanine
Collapse
|
35
|
Michel-Flutot P, Bourcier CH, Emam L, Gasser A, Glatigny S, Vinit S, Mansart A. Extracellular traps formation following cervical spinal cord injury. Eur J Neurosci 2023; 57:692-704. [PMID: 36537022 DOI: 10.1111/ejn.15902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injuries involve a primary injury that can lead to permanent loss of function and a secondary injury associated with pathologic and inflammatory processes. Extracellular traps are extracellular structures expressed by immune cells that are primarily composed of chromatin, granular enzymes and histones. Extracellular traps are known to induce tissue damage when overexpressed and could be associated in the occurrence of secondary damage. In the present study, we used flow cytometry to demonstrate that at 1 day following a C2 spinal cord lateral hemisection in male Swiss mice, resident microglia form vital microglia extracellular traps, and infiltrating neutrophils form vital neutrophil extracellular traps. We also used immunolabelling to show that microglia near the lesion area are most likely to form these microglia extracellular traps. As expected, infiltrating neutrophils are located at the site of injury, though only some of them engage in post-injury extracellular trap formation. We also observed the formation of microglia and neutrophil extracellular traps in our sham animal models of durotomy, but formation was less frequent than following the C2 hemisection. Our results demonstrate for the first time that microglia form extracellular traps in the spinal cord following injury and durotomy. It remains however to determine the exact mechanisms and kinetics of neutrophil and microglia extracellular traps formation following spinal cord injury. This information would allow to better mitigate this inflammatory process that may contribute to secondary injury and to effectively target extracellular traps to improve functional outcomes following spinal cord injury.
Collapse
Affiliation(s)
| | - Camille H Bourcier
- Université Paris-Saclay, UVSQ, Inserm U1179, END-ICAP, Versailles, France.,Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), France
| | - Laila Emam
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), France
| | - Adeline Gasser
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), France
| | - Simon Glatigny
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), France
| | - Stéphane Vinit
- Université Paris-Saclay, UVSQ, Inserm U1179, END-ICAP, Versailles, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), France
| |
Collapse
|
36
|
Jing R, He S, Liao XT, Xie XL, Mo JL, Hu ZK, Dai HJ, Pan LH. Transforming growth factor-β1 attenuates inflammation and lung injury with regulating immune function in ventilator-induced lung injury mice. Int Immunopharmacol 2023; 114:109462. [PMID: 36476487 DOI: 10.1016/j.intimp.2022.109462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
Ventilator-induced lung injury (VILI) is a lung injury induced or aggravated by mechanical ventilation. Transforming growth factor (TGF)-β1 is a cytokine that mediates immune function, enabling inflammatory attenuation and tissue repair. Here, we hypothesized that it plays an important role in the attenuation of VILI and inflammation. Ventilation with high tidal volume was performed on C57BL/6 mice to establish a VILI model. After 4 h of ventilation, mice were sacrificed (end of ventilation [EOV]) or extubated for resuscitation at 4 h (post-ventilation 4 h [PV4h]), 8 h (PV8h) and 24 h post-ventilation (PV1d). Recombinant mouse TGF-β1 (rTGF-β1) and the neutralization antibody of TGF-β1 (nTAb) were used in vivo to examine the effect of TGF-β1 on immune function and inflammatory attenuation in VILI mice. Lung injury was exacerbated at the same trend as the interleukin (IL)-1β level, peaking at PV1d, whereas IL-6 and tumor necrosis factor (TNF)-α levels gradually reduced. Most active phagosomes, swollen round mitochondria, and cavitating lamellar bodies were observed at PV4h. The CD4+ T cells were significantly increased from PV4h to PV1d, and the CD8a + T cells were higher in the PV4h and PV1d groups; furthermore, the mice in the PV8h group showed highest proportion of CD4+CD8a+ T cells and CD4+/CD8a+ ratio. CD19 + and CD5 + CD19 + B cells in VILI mice began to increase at PV1d. The pulmonary expression of latent and monomer TGF-β1 increased at PV4h and PV8h. Treatment of rTGF-β1 only induced high expression of latent and monomer TGF-β1 at EOV to decrease pulmonary levels of IL-1β, IL-6, and TNF-α; however, lung injury attenuated from EOV to PV1d. TGF-β1 induced the delayed elevation of CD4+/CD8a+ T cells ratio and activation of pulmonary CD4+CD8a+ double-positive T cells under certain conditions. Elastic fibers and celluloses, although relatively less proteoglycan, were observed with the overexpression of TGF-β1 at PV4h and PV8h. In conclusion, TGF-β1 attenuates the inflammatory response and lung injury of VILI via immune function regulation.
Collapse
Affiliation(s)
- Ren Jing
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Sheng He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Xiao-Ting Liao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Xian-Long Xie
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China; Department of Intensive Care Unit, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jian-Lan Mo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Zhao-Kun Hu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Hui-Jun Dai
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Ling-Hui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China; Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
| |
Collapse
|
37
|
Tsai YF, Yang SC, Hsu YH, Chen CY, Chen PJ, Syu YT, Lin CH, Hwang TL. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci 2022; 321:121334. [PMID: 36587789 DOI: 10.1016/j.lfs.2022.121334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
AIMS Infiltration of activated neutrophils into the lungs is a hallmark of acute respiratory distress syndrome (ARDS). Neutrophilic inflammation, particularly neutrophil extracellular traps (NETs), is proposed as a useful target for treating ARDS. Carnosic acid (CA) is a food additive; however, its anti-neutrophilic activity in the treatment of ARDS has not been well established. The hypothesis of present study is to confirm that CA alleviates ARDS by suppressing neutrophilic inflammation and oxidative damage. MAIN METHODS Generation of superoxide anions and reactive oxygen species (ROS), induction of elastase degranulation, and formation of NETs by human neutrophils were assayed using spectrophotometry, flow cytometry, and immunofluorescent microscopy. Immunoblotting was performed to determine the cellular mechanisms involved. Cell-free radical systems were used to test antioxidant activities. The therapeutic effect of CA was evaluated in a lipopolysaccharide (LPS)-induced ARDS mouse model. KEY FINDINGS CA greatly reduced superoxide anion production, ROS production, elastase release, cluster of differentiation 11b expression, and cell adhesion in activated human neutrophils. Mechanistic studies have demonstrated that CA suppresses phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase in activated neutrophils. CA effectively scavenges reactive oxygen and nitrogen species, but not superoxide anions. This is consistent with the finding that CA is effective against ROS-dependent NET formation. CA treatment significantly improved pulmonary neutrophil infiltration, oxidative damage, NET formation, and alveolar damage in LPS-induced mice. SIGNIFICANCE Our data suggested the potential application of CA for neutrophil-associated ARDS therapy.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yun-Hsuan Hsu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
38
|
Ivermectin Affects Neutrophil-Induced Inflammation through Inhibition of Hydroxylysine but Stimulation of Cathepsin G and Phenylalanine Secretion. Biomedicines 2022; 10:biomedicines10123284. [PMID: 36552040 PMCID: PMC9775137 DOI: 10.3390/biomedicines10123284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.
Collapse
|
39
|
Kanapeckaitė A, Mažeikienė A, Geris L, Burokienė N, Cottrell GS, Widera D. Computational pharmacology: New avenues for COVID-19 therapeutics search and better preparedness for future pandemic crises. Biophys Chem 2022; 290:106891. [PMID: 36137310 PMCID: PMC9464258 DOI: 10.1016/j.bpc.2022.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug repositioning by employing computational pharmacology, data mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this information could be used to monitor disease progression or devise treatment strategies. Importantly, our work bridged the interactome with the chemical compound space to better understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeutically valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to establish robust practices for treating today's and future infectious diseases by preparing solid analytical frameworks.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- AK Consulting, Laisvės g. 7, LT 12007 Vilnius, Lithuania,Corresponding author
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 11 (B34), Liège 4000, Belgium,Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C (2419), Leuven 3001, Belgium,Skeletel Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Herestraat 49 (813), Leuven 3000, Belgium
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Graeme S. Cottrell
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| | - Darius Widera
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| |
Collapse
|
40
|
Latha K, Rao S, Sakamoto K, Watford WT. Tumor Progression Locus 2 Protects against Acute Respiratory Distress Syndrome in Influenza A Virus-Infected Mice. Microbiol Spectr 2022; 10:e0113622. [PMID: 35980186 PMCID: PMC9604045 DOI: 10.1128/spectrum.01136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sanjana Rao
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
41
|
Pishesha N, Harmand T, Carpenet C, Liu X, Bhan A, Islam A, van den Doel R, Pinney W, Ploegh HL. Targeted delivery of an anti-inflammatory corticosteroid to Ly6C/G-positive cells abates severity of influenza A symptoms. Proc Natl Acad Sci U S A 2022; 119:e2211065119. [PMID: 36252038 PMCID: PMC9618054 DOI: 10.1073/pnas.2211065119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
The distribution of Ly6C/G-positive cells in response to an infection of the mouse respiratory tract with influenza A virus was followed noninvasively over time by immuno-positron emission tomography. We converted nanobodies that recognize Ly6C and Ly6G, markers of neutrophils and other myeloid cells, as well as an influenza hemagglutinin-specific nanobody, into 89Zr-labeled PEGylated positron emission tomography (PET) imaging agents. The PET images showed strong accumulation of these imaging agents in the lungs of infected mice. Immunohistochemistry of influenza virus-infected mice and control mice, injected with a biotinylated and PEGylated version of the Ly6C/G-specific nanobody, showed the presence of abundant Ly6C/G-positive myeloid cells and positivity for Ly6C/G on bronchial epithelium in influenza virus-infected mice. This is consistent with focal inflammation in the lungs, a finding that correlated well with the immuno-PET results. No such signals were detected in control mice. Having shown by PET the accumulation of the Ly6C/G-specific nanobody in infected lungs, we synthesized conjugates of Ly6C/G-specific nanobodies with dexamethasone to enable targeted delivery of this immunosuppressive corticosteroid to sites of inflammation. Such conjugates reduced the weight loss that accompanies infection, while the equivalent amount of free dexamethasone was without effect. Nanobody-drug conjugates thus enable delivery of drugs to particular cell types at the appropriate anatomic site(s). By avoiding systemic exposure to free dexamethasone, this strategy minimizes its undesirable side effects because of the much lower effective dose of the nanobody-dexamethasone conjugate. The ability to selectively target inflammatory cells may find application in the treatment of other infections or other immune-mediated diseases.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Society of Fellows, Harvard University, Cambridge, MA 02138
| | - Thibault Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Claire Carpenet
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Xin Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Atul Bhan
- Massachusetts General Hospital, Boston, MA 02114
| | - Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Renate van den Doel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - William Pinney
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
42
|
Masso-Silva JA, Sakoulas G, Olay J, Groysberg V, Geriak M, Nizet V, Crotty Alexander LE, Meier A. Abrogation of neutrophil inflammatory pathways and potential reduction of neutrophil-related factors in COVID-19 by intravenous immunoglobulin. Front Immunol 2022; 13:993720. [PMID: 36341409 PMCID: PMC9632428 DOI: 10.3389/fimmu.2022.993720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
Pathogenesis of lung injury in COVID-19 is not completely understood, leaving gaps in understanding how current treatments modulate the course of COVID-19. Neutrophil numbers and activation state in circulation have been found to correlate with COVID-19 severity, and neutrophil extracellular traps (NETs) have been found in the lung parenchyma of patients with acute respiratory distress syndrome (ARDS) in COVID-19. Targeting the pro-inflammatory functions of neutrophils may diminish lung injury in COVID-19 and ARDS. Neutrophils were isolated from peripheral blood of healthy donors, treated ex vivo with dexamethasone, tocilizumab and intravenous immunoglobulin (IVIG) and NET formation, oxidative burst, and phagocytosis were assessed. Plasma from critically ill COVID-19 patients before and after clinical treatment with IVIG and from healthy donors was assessed for neutrophil activation-related proteins. While dexamethasone and tocilizumab did not affect PMA- and nigericin-induced NET production ex vivo, IVIG induced a dose-dependent abrogation of NET production in both activation models. IVIG also reduced PMA-elicited reactive oxygen species production, but did not alter phagocytosis. COVID-19 patients were found to have elevated levels of cell-free DNA, neutrophil elastase and IL-8 as compared to healthy controls. Levels of both cell-free DNA and neutrophil elastase were lower 5 days after 4 days of daily treatment with IVIG. The lack of impact of dexamethasone or tocilizumab on these neutrophil functions suggests that these therapeutic agents may not act through suppression of neutrophil functions, indicating that the door might still be open for the addition of a neutrophil modulator to the COVID-19 therapeutic repertoire.
Collapse
Affiliation(s)
- Jorge Adrian Masso-Silva
- Section of Pulmonary and Critical Care, Veterans Affairs (VA) San Diego, La Jolla, CA, United States
- Division of Pulmonary, Critical Care, Sleep and Physiology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - George Sakoulas
- Department of Infectious Disease, Sharp Rees-Stealy Medical Group, San Diego, CA, United States
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, CA, United States
| | - Jarod Olay
- Section of Pulmonary and Critical Care, Veterans Affairs (VA) San Diego, La Jolla, CA, United States
- Division of Pulmonary, Critical Care, Sleep and Physiology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Victoria Groysberg
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC) San Diego, La Jolla, CA, United States
| | - Matthew Geriak
- Department of Research, Sharp Healthcare, San Diego, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC) San Diego, La Jolla, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California (UC) San Diego, La Jolla, CA, United States
| | - Laura E. Crotty Alexander
- Section of Pulmonary and Critical Care, Veterans Affairs (VA) San Diego, La Jolla, CA, United States
- Division of Pulmonary, Critical Care, Sleep and Physiology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, UCSD, La Jolla, CA, United States
| |
Collapse
|
43
|
Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:antiox11102061. [PMID: 36290783 PMCID: PMC9598460 DOI: 10.3390/antiox11102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Over hundreds of years, humans have faced multiple pandemics and have overcome many of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a general sense of uncertainty among everyone. Although several risk profiles, such as the severity of the disease, infection rate, and treatment strategy, have been investigated, new variants from different parts of the world put humans at risk and require multiple strategies simultaneously to control the spread. Understanding the entire system with respect to the commonly involved or essential mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any treatment for COVID-19 may alter the redox profile, which can be an effective complementary method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication. Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities. However, access to these components as support elements against COVID-19 is limited. Therefore, understanding redox-derived species and their nodes as a common interactome in the system will facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire system during COVID-19 infection, including how redox-based molecules impact the accessibility of SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable approach, we discuss the current challenges in redox-based treatment options for COVID-19.
Collapse
|
44
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
45
|
Hebert JF, Burfeind KG, Malinoski D, Hutchens MP. Molecular Mechanisms of Rhabdomyolysis-Induced Kidney Injury: From Bench to Bedside. Kidney Int Rep 2022; 8:17-29. [PMID: 36644345 PMCID: PMC9831947 DOI: 10.1016/j.ekir.2022.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Rhabdomyolysis-induced acute kidney injury (RIAKI) occurs following damage to the muscular sarcolemma sheath, resulting in the leakage of myoglobin and other metabolites that cause kidney damage. Currently, the sole recommended clinical treatment for RIAKI is aggressive fluid resuscitation, but other potential therapies, including pretreatments for those at risk for developing RIAKI, are under investigation. This review outlines the mechanisms and clinical significance of RIAKI, investigational treatments and their specific targets, and the status of ongoing research trials.
Collapse
Affiliation(s)
- Jessica F. Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA,Correspondence: Jessica F. Hebert, Oregon Health and Science University, Department of Anesthesiology and Perioperative Medicine, Portland, Oregon, USA.
| | - Kevin G. Burfeind
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Darren Malinoski
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA,Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| | - Michael P. Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA,Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| |
Collapse
|
46
|
Hu HC, Yu SY, Hung XS, Su CH, Yang YL, Wei CK, Cheng YB, Wu YC, Yen CH, Hwang TL, Chen SL, Szatmári I, Hunyadi A, Tsai YH, Chang FR. Composition decipherment of Ficus pumila var. awkeotsang and its potential on COVID-19 symptom amelioration and in silico prediction of SARS-CoV-2 interference ⋆. J Food Drug Anal 2022; 30:440-453. [PMID: 39666290 PMCID: PMC9635914 DOI: 10.38212/2224-6614.3419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2023] Open
Abstract
The jelly from achenes of Ficus pumila var. awkeotsang (FPAA) is a famous beverage ingredient in Taiwan. In this work, ficumarin (1), a new compound was obtained from its twigs (FPAT) and elucidated with comprehensive spectroscopic data. The biosynthetic origin was proposed from the p-coumaroyl-CoA pathway. Alloxanthoxyletin, betulinic acid, and catechin were identified as the major and active constituents responsible for relieving neutrophilic inflammation by FPAT. Among them, the most potent alloxanthoxyletin was found to interact with PRO350 and GLU377 of human INOSOX. Further, Nrf2 activating capacity of the FPAT fraction and its coumarins was confirmed. With the analysis of LC-MS/MS data and feature-based molecular networking, coumarins were found as the dominant and responsible components. Notably, alloxanthoxyletin increased Nrf2 expression by up to 816.8 ± 58% due to the interacting with the VAL561, THR560 and VAL420 residues of 5FNQ protein. COVID-19 Docking Server simulation indicated that pyranocoumarins would promisingly interfere with the life cycle of SARS-CoV-2. FPAT was proven to exert anti-inflammatory activity on neutrophils and to activate Nrf2, and may likely be developed as a complementary supplement in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
| | - Szu-Yin Yu
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged,
Hungary
| | - Xiao-Shan Hung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
| | - Chun-Han Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115,
Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333,
Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115,
Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711,
Taiwan
| | - Chien-Kei Wei
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804,
Taiwan
| | - Yang-Chang Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804,
Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40402,
Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402,
Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 33302,
Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303,
Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, 33305, Taoyuan,
Taiwan
| | - Shu-Li Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and ELKH-MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, University of Szeged, Szeged,
Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged,
Hungary
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741,
Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708,
Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804,
Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708,
Taiwan
| |
Collapse
|
47
|
Lai G, Liu H, Deng J, Li K, Xie B. A Novel 3-Gene Signature for Identifying COVID-19 Patients Based on Bioinformatics and Machine Learning. Genes (Basel) 2022; 13:genes13091602. [PMID: 36140771 PMCID: PMC9498787 DOI: 10.3390/genes13091602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022] Open
Abstract
Although many biomarkers associated with coronavirus disease 2019 (COVID-19) were found, a novel signature relevant to immune cells has not been developed. In this work, the “CIBERSORT” algorithm was used to assess the fraction of immune infiltrating cells in GSE152641 and GSE171110. Key modules associated with important immune cells were selected by the “WGCNA” package. The “GO” enrichment analysis was used to reveal the biological function associated with COVID-19. The “Boruta” algorithm was used to screen candidate genes, and the “LASSO” algorithm was used for collinearity reduction. A novel gene signature was developed based on multivariate logistic regression analysis. Subsequently, M0 macrophages (PRAUC = 0.948 in GSE152641 and PRAUC = 0.981 in GSE171110) and neutrophils (PRAUC = 0.892 in GSE152641 and PRAUC = 0.960 in GSE171110) were considered as important immune cells. Forty-three intersected genes from two modules were selected, which mainly participated in some immune-related activities. Finally, a three-gene signature comprising CLEC4D, DUSP13, and UNC5A that can accurately distinguish COVID-19 patients and healthy controls in three datasets was constructed. The ROCAUC was 0.974 in the training set, 0.946 in the internal test set, and 0.709 in the external test set. In conclusion, we constructed a three-gene signature to identify COVID-19, and CLEC4D, DUSP13, and UNC5A may be potential biomarkers for COVID-19 patients.
Collapse
|
48
|
Lu YC, Tseng LW, Huang YC, Yang CW, Chen YC, Chen HY. The Potential Complementary Role of Using Chinese Herbal Medicine with Western Medicine in Treating COVID-19 Patients: Pharmacology Network Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070794. [PMID: 35890093 PMCID: PMC9323801 DOI: 10.3390/ph15070794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in 2019—coronavirus disease (COVID-19). More and more Western medicine (WM) and Chinese herbal medicine (CHM) treatments have been used to treat COVID-19 patients, especially among Asian populations. However, the interactions between WM and CHM have not been studied. This study aims at using the network pharmacology approach to explore the potential complementary effects among commonly used CHM and WM in a clinical setting from a biomolecular perspective. Three well-published and widely used CHM formulas (National Research Institute of Chinese Medicine 101 (NRICM101), Qing-Fei-Pai-Du-Tang (QFPDT), Hua-Shi-Bai-Du-Formula (HSBDF)) and six categories of WM (Dexamethasone, Janus kinase inhibitors (JAKi), Anti-Interleukin-6 (Anti-IL6), anticoagulants, non-vitamin K antagonist oral anticoagulants (NOAC), and Aspirin) were included in the network pharmacology analysis. The target proteins on which these CHM and WM had direct effects were acquired from the STITCH database, and the potential molecular pathways were found in the REACTOME database. The COVID-19-related target proteins were obtained from the TTD database. For the three CHM formulas, QFPDT covered the most proteins (714), and 27 of them were COVID-19-related, while HSBDF and NRICM101 covered 624 (24 COVID-19-related) and 568 (25 COVID-19-related) proteins, respectively. On the other hand, WM covered COVID-19-related proteins more precisely and seemed different from CHM. The network pharmacology showed CHM formulas affected several inflammation-related proteins for COVID-19, including IL-10, TNF-α, IL-6, TLR3, and IL-8, in which Dexamethasone and Aspirin covered only IL-10 and TNF-α. JAK and IL-6 receptors were only inhibited by WM. The molecular pathways covered by CHM and WM also seemed mutually exclusive. WM had advantages in cytokine signaling, while CHM had an add-on effect on innate and adaptive immunity, including neutrophil regulation. WM and CHM could be used together to strengthen the anti-inflammation effects for COVID-19 from different pathways, and the combination of WM and CHM may achieve more promising results. These findings warrant further clinical studies about CHM and WM use for COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yi-Chin Lu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Liang-Wei Tseng
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Yu-Chieh Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Wei Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chun Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
49
|
Veenith T, Martin H, Le Breuilly M, Whitehouse T, Gao-Smith F, Duggal N, Lord JM, Mian R, Sarphie D, Moss P. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci Rep 2022; 12:10484. [PMID: 35729319 PMCID: PMC9212205 DOI: 10.1038/s41598-022-13825-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/27/2022] [Indexed: 12/25/2022] Open
Abstract
Neutrophilia and an elevated neutrophil:lymphocyte ratio are both characteristic features of severe COVID-19 infection. However, functional neutrophil responses have been poorly investigated in this setting. We utilised a novel PMA-based stimulation assay to determine neutrophil-derived reactive oxygen species (ROS) generation in patients with severe COVID-19 infection, non-COVID related sepsis and healthy study participants. ROS production was markedly elevated in COVID-19 patients with median values ninefold higher than in healthy controls and was particularly high in patients on mechanical ventilation. ROS generation correlated strongly with neutrophil count and elevated levels were also seen in patients with non-COVID related sepsis. Relative values, adjusted for neutrophil count, were high in both groups but extreme low or high values were seen in two patients who died shortly after testing, potentially indicating a predictive value for neutrophil function. Our results show that the high levels of neutrophils observed in patients with COVID-19 and sepsis exhibit functional capacity for ROS generation. This may contribute to the clinical features of acute disease and represents a potential novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Tonny Veenith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Helena Martin
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Martin Le Breuilly
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Tony Whitehouse
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Fang Gao-Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Acute Care Research, University of Birmingham, Birmingham, UK
| | - Niharika Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | | | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
50
|
Li J, Long X, Zhang Q, Fang X, Luo H, Fang F, Lv X, Zhang D, Sun Y, Li N, Hu S, Li J, Xiong N, Lin Z. Pearson's patterns correlational of clinical risks at admissions with hospitalization outcomes during initial COVID-19 outbreak. iScience 2022; 25:104415. [PMID: 35600840 PMCID: PMC9113760 DOI: 10.1016/j.isci.2022.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
COVID-19 outbreaks have crushed our healthcare systems, which requires clinical guidance for the healthcare following the outbreaks. We conducted retrospective cohort studies with Pearson's pattern-based analysis of clinical parameters of 248 hospitalized patients with COVID-19. We found that dysregulated neutrophil densities were correlated with hospitalization duration before death (p = 0.000066, r = -0.45 for % neutrophil; p = 0.0001, r = -0.47 for neutrophil count). As such, high neutrophil densities were associated with mortality (p = 4.23 × 10-31 for % neutrophil; p = 4.14 × 10-27 for neutrophil count). These findings were further illustrated by a representative "second week crash" pattern and validated by an independent cohort (p = 5.98 × 10-11 for % neutrophil; p = 1.65 × 10-7 for neutrophil count). By contrast, low aspartate aminotransferase (AST) or lactate dehydrogenase (LDH) levels were correlated with quick recovery (p ≤ 0.00005). Collectively, these correlational at-admission findings may provide healthcare guidance for patients with COVID-19 in the absence of targeted therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Long
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Zhang
- Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Xi Fang
- Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Huiling Luo
- Department of Anesthesiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Fang Fang
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Xuefei Lv
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Dandan Zhang
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Yu Sun
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Na Li
- Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Shaoping Hu
- Department of Radiology, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Jinghong Li
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nian Xiong
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Zhicheng Lin
- McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|