1
|
Wang J, Zang J, Yu Y, Liu Y, Cao H, Guo R, Zhang L, Liu M, Zhang Z, Li X, Kong L. Lingguizhugan oral solution alleviates MASLD by regulating bile acids metabolism and the gut microbiota through activating FXR/TGR5 signaling pathways. Front Pharmacol 2024; 15:1426049. [PMID: 39211777 PMCID: PMC11358101 DOI: 10.3389/fphar.2024.1426049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The preservation of the Lingguizhugan (LGZG) decoction and patient compliance issue often limit the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Hence, herein, an LGZG oral solution was developed for alleviating MASLD. Additionally, the potential mechanisms underlying LGZG-mediated MASLD mitigation were explored. Methods A MASLD mouse model was constructed using oleic and palmitic acid-induced LO2 cells and a high-fat diet. The apoptosis, lipid deposition, and mouse liver function were analyzed to assess the therapeutic effects of the LGZG oral solution on MASLD. Serum untargeted metabolomics, gut microbiota, bile acid (BA) metabolism, immunohistochemistry, and Western blotting analyses were performed to investigate the potential mechanism of action of LGZG oral solution on MASLD. Results The LGZG oral solution ameliorated lipid deposition, oxidative stress, inflammation, and pathological damage. Serum untargeted metabolomics results revealed the LGZG-mediated regulation of the primary BA biosynthetic pathway. The 16S ribosomal RNA sequencing of the fecal microbiota showed that LGZG oral solution increased the relative abundance of the BA metabolism-associated Bacteroides, Akkermansia, and decreased that of Lactobacillus. Additionally, the BA metabolism analysis results revealed a decrease in the total taurine-α/β-muricholic acid levels, whereas those of deoxycholic acid were increased, which activated specific receptors in the liver and ileum, including farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 (TGR5). Activation of FXR resulted in an increase in short heterodimer partner and subsequent inhibition of cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, and activation of FXR also results in the upregulation of fibroblast growth factor 15/19 expression, and consequently inhibition of cholesterol 7α-hydroxylase, which correlated with hepatic BA synthesis and lipogenesis, ultimately attenuating lipid deposition and bile acid stasis, thereby improving MASLD. Conclusion Altogether, the findings of this study suggest that modulating microbiota-BA-FXR/TGR5 signaling pathway may be a potential mechanism of action of LGZG oral solution for the treatment of MASLD.
Collapse
Affiliation(s)
- Jiahua Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Juan Zang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yang Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yang Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Huimin Cao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ruibo Guo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mo Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zixu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xuetao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
2
|
Jiang H, He Y, Lan X, Xie X. Identification and validation of potential common biomarkers for papillary thyroid carcinoma and Hashimoto's thyroiditis through bioinformatics analysis and machine learning. Sci Rep 2024; 14:15578. [PMID: 38971817 PMCID: PMC11227570 DOI: 10.1038/s41598-024-66162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
There is a growing body of evidence suggesting that Hashimoto's thyroiditis (HT) may contribute to an increased risk of papillary thyroid carcinoma (PTC). However, the exact relationship between HT and PTC is still not fully understood. The objective of this study was to identify potential common biomarkers that may be associated with both PTC and HT. Three microarray datasets from the GEO database and RNA-seq dataset from TCGA database were collected to identify shared differentially expressed genes (DEGs) between HT and PTC. A total of 101 genes was identified as common DEGs, primarily enriched inflammation- and immune-related pathways through GO and KEGG analysis. We performed protein-protein interaction analysis and identified six significant modules comprising a total of 29 genes. Subsequently, tree hub genes (CD53, FCER1G, TYROBP) were selected using random forest (RF) algorithms for the development of three diagnostic models. The artificial neural network (ANN) model demonstrates superior performance. Notably, CD53 exerted the greatest influence on the ANN model output. We analyzed the protein expressions of the three genes using the Human Protein Atlas database. Moreover, we observed various dysregulated immune cells that were significantly associated with the hub genes through immune infiltration analysis. Immunofluorescence staining confirmed the differential expression of CD53, FCER1G, and TYROBP, as well as the results of immune infiltration analysis. Lastly, we hypothesise that benzylpenicilloyl polylysine and aspirinmay be effective in the treatment of HT and PTC and may prevent HT carcinogenesis. This study indicates that CD53, FCER1G, and TYROBP play a role in the development of HT and PTC, and may contribute to the progression of HT to PTC. These hub genes could potentially serve as diagnostic markers and therapeutic targets for PTC and HT.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical Universty, Hefei, 230601, Anhui, China
| | - Yanbin He
- Dian Diagnostics Group Co., Ltd, Hangzhou, 310000, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, 310030, Zhejiang, China
| | - Xiaofeng Lan
- Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical Universty, Hefei, 230601, Anhui, China
| | - Xiang Xie
- Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical Universty, Hefei, 230601, Anhui, China.
- Department of Interventional Ultrasound, The Second Affiliated Hospital of Anhui Medical Universty, Hefei, 230601, Anhui, China.
| |
Collapse
|
3
|
Wang Y, Wang D, Wang K, Weng S, Zheng R, Liu X, Zhao L, Li C, Hu Z. Litchi pulp-derived gamma-aminobutyric acid (GABA) extract counteracts liver inflammation induced by litchi thaumatin-like protein. Food Funct 2024; 15:4818-4831. [PMID: 38606579 DOI: 10.1039/d3fo05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.
Collapse
Affiliation(s)
- Yao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shaoquan Weng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Rongbo Zheng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holding Limited, Guangzhou 510130, China.
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Gao Q, Lu Y, Zhou W. Specific knockout of notch-1 attenuates non-alcoholic fatty liver disease by promoting SHP2 phosphorylation. Aging (Albany NY) 2023; 15:14323-14332. [PMID: 38095642 PMCID: PMC10756087 DOI: 10.18632/aging.205305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE To investigate the effect of Notch-1 signaling on NAFLD and its molecular mechanism. METHODS The lipid deposition in liver tissues was detected by oil red O staining. Western blotting was performed to detect the expressions of SREBP1C, SREBP2, LXR, IL-1β, IL-18, NLRP3, Notch-1, NOX2, NOX4, p-PI3K and p-SHP2 in macrophages, and the expressions of ALIX, CD9, IL-1β and SREBP1C in exosomes. Macrophages in the Notch-1MAC-KO group and Notch-1WT group were treated with FFA, and those in the Notch-1WT+FFA group and Notch-1MAC-KO+FFA group were treated with SHP2 inhibitors PHPS1 and Relaxin. RESULTS It was observed by oil red O staining that lipid deposition in mice with NAFLD was reduced in the Notch-1MAC-KO group. The results of Western blotting showed that the expressions of ALIX, CD9, IL-1β and SREBP1C in macrophage exosomes were significantly lower in the Notch-1MAC-KO group than in the Notch-1WT group. In macrophages, the expressions of SREBP1C, SREBP2, LXR, IL-1β, IL-18, Notch-1, NOX2, NOX4 and p-PI3K significantly decreased, while the expression of p-SHP2 significantly increased in the Notch-1MAC-KO group compared with the Notch-1WT group. The Notch-1MAC-KO+FFA group had significantly decreased expressions of SREBP1C, NLRP3, IL-1β, IL-18, SREBP2, NOX2, NOX4 and p-PI3K and a significantly increased expression of p-SHP2 compared with the Notch-1WT+FFA group. However, the differences in the above proteins were all eliminated after PHPS1 and Relaxin were added. CONCLUSION Specific knockout of Notch-1 attenuates NAFLD, and reduces inflammation and lipid deposition in the liver by promoting SHP2 phosphorylation.
Collapse
Affiliation(s)
- Qian Gao
- Department of Endocrine and Metabolic Diseases, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yonggang Lu
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050000, China
| | - Weiling Zhou
- Department of Endocrine and Metabolic Diseases, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
5
|
Fan Y, Li Y, Fu X, Peng J, Chen Y, Chen T, Zhang D. Identification of potential ferroptosis key genes and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis. Heliyon 2023; 9:e21167. [PMID: 37920499 PMCID: PMC10618794 DOI: 10.1016/j.heliyon.2023.e21167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Objective Ferroptosis is of vital importance in the development of Rheumatoid arthritis (RA). The purpose of this project is to clarify the potential ferroptosis-related genes, pathways, and immune infiltration in RA by bioinformatics analysis. Methods We acquired ferroptosis-related genes (FRGs) from Ferroptosis database (FerrDb). We obtained the Gene dataset of RA (GSE55235) from the Gene Expression Omnibus (GEO) Database, screened the differentially expressed genes (DEGs) in RA and control samples, and then took the intersection of it and FRGs. Aiming to construct the protein-protein interaction (PPI) networks of the FRGs-DEGs, STRING database and Cytoscape software 3.7.0 would be used. Furthermore, hub genes were identified by CytoNCA, a Cytoscape plug-in. The gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of FRGs-DEGs were performed. Results We identified 34 FRGs-DEGs, including 7 upregulated and 27 downregulated genes by taking the intersection of the FRGs and DEGs. PPI analysis identified a total of 3 hub genes(VEGFA, PTGS2, and JUN). GO enrichment analyses and KEGG Pathway enrichment displayed that the FRGs-DEGs are involved in the response to oxidative stress and corticosteroid, heme binding, FoxO-signal pathway. Results of immune infiltration displayed that increased infiltration of T cells, while Macrophages M2 less may be related to the occurrence of RA. Conclusion The hub genes involved in ferroptosis in RA may be VEGFA, PTGS2, and JUN, which are mainly involved in FoxO-signal pathway. T cell, Mac, and plasma cells may be involved in the regulation of RA-joints-synovial-inflammation.
Collapse
Affiliation(s)
- Yihua Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xiaoyan Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jing Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuchi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Di Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong Province, China
| |
Collapse
|
6
|
Jia F, Ji R, Qiao G, Sun Z, Chen X, Zhang Z. Amarogentin inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia via AMPK activation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166667. [PMID: 36906074 DOI: 10.1016/j.bbadis.2023.166667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES Recent studies validated the expression of extraoral bitter taste receptors and established the importance of regulatory functions that are associated with various cellular biological processes of these receptors. However, the importance of bitter taste receptors' activity in neointimal hyperplasia has not yet been recognized. The bitter taste receptors activator amarogentin (AMA) is known to regulate a variety of cellular signals, including AMP-activated protein kinase (AMPK), STAT3, Akt, ERK, and p53, which are associated with neointimal hyperplasia. MATERIALS AND METHODS The present study assessed the effects of AMA on neointimal hyperplasia and explored the potential underlying mechanisms. RESULTS No cytotoxic concentration of AMA significantly inhibited the proliferation and migration of VSMCs induced by serum (15 % FBS) and PDGF-BB. In addition, AMA significantly inhibited neointimal hyperplasia of the cultured great saphenous vein in vitro and ligated mouse left carotid arteries in vivo, while the inhibitory effect of AMA on the proliferation and migration of VSMCs was mediated via the activation of AMPK-dependent signaling, which could be blocked via AMPK inhibition. CONCLUSION The present study revealed that AMA inhibited the proliferation and migration of VSMCs and attenuated neointimal hyperplasia, both in ligated mice carotid artery and cultured saphenous vein, which was mediated via a mechanism that involved AMPK activation. Importantly, the study highlighted the potential of AMA to be explored as a new drug candidate for neointimal hyperplasia.
Collapse
Affiliation(s)
- Fangyuan Jia
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Ji
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China; Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Qiao
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China
| | - Zhigang Sun
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China
| | - Xiaosan Chen
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China
| | - Zhidong Zhang
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan, China; Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Henan, China.
| |
Collapse
|
7
|
Zhang L, Ulriksen ES, Hoel H, Sandvik L, Malterud KE, Inngjerdingen KT, Inngjerdingen M, Wangensteen H. Phytochemical characterization and anti-inflammatory activity of a water extract of Gentiana purpurea roots. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115818. [PMID: 36220509 DOI: 10.1016/j.jep.2022.115818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana purpurea was one of the most important medicinal plants in Norway during the 18th and 19th centuries, and the roots were used against different types of gastrointestinal and airway diseases. AIM OF THE STUDY To explore the content of bioactive compounds in a water extract from the roots, a preparation commonly used in traditional medicine in Norway, to assess the anti-inflammatory potential, and furthermore to quantify the major bitter compounds in both roots and leaves. MATERIALS AND METHODS G. purpurea roots were boiled in water, the water extract applied on a Diaion HP20 column and further fractionated with Sephadex LH20, reverse phase C18 and normal phase silica gel to obtain the low molecular compounds. 1D NMR, 2D NMR, and ESI-MS were used for structure elucidation. HPLC-DAD analysis was used for quantification. The inhibition of TNF-α secretion in ConA stimulated peripheral blood mononuclear cells (PBMCs) was investigated. RESULTS Eleven compounds were isolated and identified from the hot water extract of G. purpurea roots. Gentiopicrin, amarogentin, erythrocentaurin and gentiogenal showed dose-dependent inhibition of TNF-α secretion. Gentiopicrin is the major secondary metabolite in the roots, while sweroside dominates in the leaves. CONCLUSIONS The present work gives a comprehensive overview of the major low-molecular weight compounds in the water extracts of G. purpurea, including metabolites produced during the decoction process, and show new anti-inflammatory activities for the native bitter compounds as well as the metabolites produced during preparation of the crude drug.
Collapse
Affiliation(s)
- Lin Zhang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | | | - Håvard Hoel
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Lene Sandvik
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Karl Egil Malterud
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | | | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Zhang ZH, Li J, Li J, Ma Z, Huang XJ. Veratrilla baillonii Franch Ameliorates Diabetic Liver Injury by Alleviating Insulin Resistance in Rats. Front Pharmacol 2021; 12:775563. [PMID: 34899339 PMCID: PMC8662784 DOI: 10.3389/fphar.2021.775563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and polygenic disorder with diverse complications. Veratrilla baillonii Franch (V. baillonii) has been applied in the intervention and treatment a diverse range of diseases, including diabetes. In this study, we revealed that water extracts of V. baillonii (WVBF) can ameliorate liver injury and insulin resistance in T2DM rat model. To elucidate the anti-diabetic mechanisms of WVBF, we performed liver transcriptome analysis that displayed WVBF treatment significantly suppressed many gene expressions involved in insulin resistance. Furthermore, functional experiments showed that WVBF treatment reduced the pathological damages of liver and pancreas, which may be regulated by Foxo1, Sirt1, G6pc, c-Met, Irs1, Akt1, Pik3r1. These results indicated that WVBF improves diabetic liver injury and insulin resistance in diabetic rats. Therefore, this study demonstrated WVBF could be used as a promising therapeutic agent for intervention and treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
9
|
Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model. Chin J Integr Med 2021; 28:975-982. [PMID: 34874519 DOI: 10.1007/s11655-021-3309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model. METHODS Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively. RESULTS Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05). CONCLUSION LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.
Collapse
|
10
|
Qian Y, Sun X, Wang X, Yang X, Fan M, Zhong J, Pei Z, Guo J. Mechanism of Cordyceps Cicadae in Treating Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking Analysis. J Diabetes Res 2021; 2021:5477941. [PMID: 34621904 PMCID: PMC8492289 DOI: 10.1155/2021/5477941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To systematically study the mechanism of cordyceps cicadae in the treatment of diabetic nephropathy (DN) with the method of network pharmacology and molecular docking analysis, so as to provide theoretical basis for the development of new drugs for the treatment of DN. METHODS TCMSP, Symmap, PubChem, PubMed, and CTD database were used to predict and screen the active components and therapeutic targets for DN. The network of active components and targets was drawn by Cytoscape 3.6.0, the protein-protein interaction (PPI) was analyzed by the STRING database, and the DAVID database was used for the enrichment analysis of intersection targets. Molecular docking studies were finished by Discovery Studio 3.5. RESULTS A total of 36 active compounds, including myriocin, guanosine, and inosine, and 378 potential targets of cordyceps cicadae were obtained. PPI network analysis showed that AKT1, MAPK8, and TP53 and other targets were related to both cordyceps cicadae and DN. GO and KEGG pathway analysis showed that these targets were mostly involved in R-HSA-450341, 157.14-3-3 cell cycle, and PDGF pathways. Docking studies suggested that myriocin can fit in the binding pocket of two target proteins (AKT1 and MAPK8). CONCLUSION Active ingredients of cordyceps cicadae such as myriocin may act on DN through different targets such as AKT1, MAPK8, and TP53 and other targets, which can help to develop innovative drugs for effective treatment of DN.
Collapse
Affiliation(s)
- Yi Qian
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xin Sun
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xin Wang
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xin Yang
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Mengyao Fan
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Jiao Zhong
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Zejun Pei
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Junping Guo
- Yixing People's Hospital, Yixing 214200, China
| |
Collapse
|
11
|
Yang J, Jia Z, Xiao Z, Zhao J, Lu Y, Chu L, Shao H, Pei L, Zhang S, Chen Y. Baicalin Rescues Cognitive Dysfunction, Mitigates Neurodegeneration, and Exerts Anti-Epileptic Effects Through Activating TLR4/MYD88/Caspase-3 Pathway in Rats. Drug Des Devel Ther 2021; 15:3163-3180. [PMID: 34321866 PMCID: PMC8312624 DOI: 10.2147/dddt.s314076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aims to evaluate the beneficial effects of anti-epileptic mechanisms of baicalin (BA) on cognitive dysfunction and neurodegeneration in pentylenetetrazol (PTZ)-induced epileptic rats. Methods First, PTZ-induced epileptic rats were administered intraperitoneally a sub-convulsive dose of PTZ (40 mg/kg) daily, and the seizure susceptibility (the degree of seizures and latency) was evaluated using Racine’s criterion. Then, classical behavioral experiments were performed to test whether BA ameliorated cognitive dysfunction. Neurodegeneration was assessed using Fluoro Jade-B (FJB), and NeuN staining was used to determine whether BA offered a neuroprotective role. After BA had been proven to possess anti-epileptic effects, its possible mechanisms were analyzed through network pharmacology. Finally, the key targets for predictive mechanisms were experimentally verified. Results The epileptic model was successfully established, and BA had anti-epileptic effects. Epileptic rats displayed significant cognitive dysfunction, and BA markedly ameliorated cognitive dysfunction. Further, we also discovered that BA treatment mitigated neurodegeneration of the hippocampus CA3 regions, thereby ameliorated cognitive dysfunction of epileptic rats. Subsequent network pharmacology analysis was implemented to reveal a possible mechanism of BA in the anti-epileptic process and the TLR4/MYD88/Caspase-3 pathway was predicted. Finally, experimental studies showed that BA exerted an anti-epileptic effect by activating the TLR4/MYD88/Caspase-3 pathway in PTZ-induced epileptic rats. Conclusion In conclusion, BA had a protective effect against PTZ-induced seizures. BA improved cognitive dysfunction and exerted a neuroprotective action. The anti-epileptic effects of BA may be potentially through activation of the TLR4/MYD88/Caspase-3 pathway.
Collapse
Affiliation(s)
- Jiali Yang
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Zhixia Jia
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Zhigang Xiao
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Hui Shao
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Lin Pei
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Shaodan Zhang
- Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yuan Chen
- Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|