1
|
Quintero JM, Diaz LE, Galve-Roperh I, Bustos RH, Leon MX, Beltran S, Dodd S. The endocannabinoid system as a therapeutic target in neuropathic pain: a review. Expert Opin Ther Targets 2024; 28:739-755. [PMID: 39317147 DOI: 10.1080/14728222.2024.2407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION This review highlights the critical role of the endocannabinoid system (ECS) in regulating neuropathic pain and explores the therapeutic potential of cannabinoids. Understanding the mechanisms of the ECS, including its receptors, endogenous ligands, and enzymatic routes, can lead to innovative treatments for chronic pain, offering more effective therapies for neuropathic conditions. This review bridges the gap between preclinical studies and clinical applications by emphasizing ECS modulation for better pain management outcomes. AREAS COVERED A review mapped the existing literature on neuropathic pain and the effects of modulating the ECS using natural and synthetic cannabinoids. This analysis examined ECS components and their alterations in neuropathic pain, highlighting the peripheral, spinal, and supraspinal mechanisms. This review aimed to provide a thorough understanding of the therapeutic potential of cannabinoids in the management of neuropathic pain. EXPERT OPINION Advances in cannabinoid research have shown significant potential for the management of chronic neuropathic pain. The study emphasizes the need for high-quality clinical trials and collaborative efforts among researchers, clinicians, and regulatory bodies to ensure safe and effective integration of cannabinoids into pain management protocols. Understanding the mechanisms and optimizing cannabinoid formulations and delivery methods are crucial for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Jose-Manuel Quintero
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía, Colombia
| | | | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology, School of Chemistry and Instituto de Investigación en Neuroquímica, Complutense University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Marta-Ximena Leon
- Grupo Dolor y Cuidados Paliativos, Universidad de La Sabana, Chía, Colombia
| | | | - Seetal Dodd
- Faculty of Medicine, Universidad de La Sabana, Chía, Colombia
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Cunha M, Tavares I, Costa-Pereira JT. Centralizing the Knowledge and Interpretation of Pain in Chemotherapy-Induced Peripheral Neuropathy: A Paradigm Shift towards Brain-Centric Approaches. Brain Sci 2024; 14:659. [PMID: 39061400 PMCID: PMC11274822 DOI: 10.3390/brainsci14070659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of cancer treatment, often linked with pain complaints. Patients report mechanical and thermal hypersensitivity that may emerge during chemotherapy treatment and may persist after cancer remission. Whereas the latter situation disturbs the quality of life, life itself may be endangered by the appearance of CIPN during cancer treatment. The causes of CIPN have almost entirely been ascribed to the neurotoxicity of chemotherapeutic drugs in the peripheral nervous system. However, the central consequences of peripheral neuropathy are starting to be unraveled, namely in the supraspinal pain modulatory system. Based on our interests and experience in the field, we undertook a review of the brain-centered alterations that may underpin pain in CIPN. The changes in the descending pain modulation in CIPN models along with the functional and connectivity abnormalities in the brain of CIPN patients are analyzed. A translational analysis of preclinical findings about descending pain regulation during CIPN is reviewed considering the main neurochemical systems (serotoninergic and noradrenergic) targeted in CIPN management in patients, namely by antidepressants. In conclusion, this review highlights the importance of studying supraspinal areas involved in descending pain modulation to understand the pathophysiology of CIPN, which will probably allow a more personalized and effective CIPN treatment in the future.
Collapse
Affiliation(s)
- Mário Cunha
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
3
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
4
|
Bockmann EC, Brito R, Madeira LF, da Silva Sampaio L, de Melo Reis RA, França GR, Calaza KDC. The Role of Cannabinoids in CNS Development: Focus on Proliferation and Cell Death. Cell Mol Neurobiol 2022; 43:1469-1485. [PMID: 35925507 DOI: 10.1007/s10571-022-01263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
The active principles of Cannabis sativa are potential treatments for several diseases, such as pain, seizures and anorexia. With the increase in the use of cannabis for medicinal purposes, a more careful assessment of the possible impacts on embryonic development becomes necessary. Surveys indicate that approximately 3.9% of pregnant women use cannabis in a recreational and/or medicinal manner. However, although the literature has already described the presence of endocannabinoid system components since the early stages of CNS development, many of their physiological effects during this stage have not yet been established. Moreover, it is still uncertain how the endocannabinoid system can be altered in terms of cell proliferation and cell fate, neural migration, neural differentiation, synaptogenesis and particularly cell death. In relation to cell death in the CNS, knowledge about the effects of cannabinoids is scarce. Thus, the present work aims to review the role of the endocannabinoid system in different aspects of CNS development and discuss possible side effects or even opportunities for treating some conditions in the development of this tissue.
Collapse
Affiliation(s)
- Eduardo Cosendey Bockmann
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rafael Brito
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucianne Fragel Madeira
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Luzia da Silva Sampaio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Rapozeiro França
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Karin da Costa Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Kupczyk P, Rykala M, Serek P, Pawlak A, Slowikowski B, Holysz M, Chodaczek G, Madej JP, Ziolkowski P, Niedzwiedz A. The cannabinoid receptors system in horses: Tissue distribution and cellular identification in skin. J Vet Intern Med 2022; 36:1508-1524. [PMID: 35801813 PMCID: PMC9308437 DOI: 10.1111/jvim.16467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is composed of cannabinoid receptors type 1 (CBR1) and type 2 (CBR2), cannabinoid-based ligands (endogenous chemically synthesized phytocannabinoids), and endogenous enzymes controlling their concentrations. Cannabinoid receptors (CBRs) have been identified in invertebrates and in almost all vertebrate species in the central and peripheral nervous system as well as in immune cells, where they control neuroimmune homeostasis. In humans, rodents, dogs, and cats, CBRs expression has been confirmed in the skin, and their expression and tissue distribution become disordered in pathological conditions. Cannabinoid receptors may be a possible therapeutic target in skin diseases. OBJECTIVES To characterize the distribution and cellular expression of CBRs in the skin of horses under normal conditions. ANIMALS Fifteen healthy horses. METHODS Using full-thickness skin punch biopsy samples, skin-derived primary epidermal keratinocytes and dermal-derived cells, we performed analysis of Cnr1 and Cnr2 genes using real-time PCR and CBR1 and CBR2 protein expression by confocal microscopy and Western blotting. RESULTS Normal equine skin, including equine epidermal keratinocytes and dermal fibroblast-like cells, all exhibited constant gene and protein expression of CBRs. CONCLUSIONS AND CLINICAL IMPORTANCE Our results represent a starting point for developing and translating new veterinary medicine-based pharmacotherapies using ECS as a possible target.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Rykala
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Pawel Serek
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Bartosz Slowikowski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Holysz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Karol Marcinkowski Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Ziolkowski
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Niedzwiedz
- Department of Internal Medicine and Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
6
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
Scienza-Martin K, Lotz FN, Zanona QK, Santana-Kragelund F, Crestani AP, Boos FZ, Calcagnotto ME, Quillfeldt JA. Memory consolidation depends on endogenous hippocampal levels of anandamide: CB1 and M4, but possibly not TRPV1 receptors mediate AM404 effects. Neuroscience 2022; 497:53-72. [DOI: 10.1016/j.neuroscience.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/14/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022]
|
8
|
Gender Differences in Dual Diagnoses Associated with Cannabis Use: A Review. Brain Sci 2022; 12:brainsci12030388. [PMID: 35326345 PMCID: PMC8946108 DOI: 10.3390/brainsci12030388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Gender differences in psychiatric disorders and drug use are well known. Cannabis is the most widely used illegal drug among young people. In recent years, its use has been related to the development of psychiatric pathologies; however, few studies have incorporated the gender perspective as of yet. The present work analyses the literature to determine the existence of gender differences in the development of psychotic, depressive and anxious symptoms associated with cannabis use. First, we describe cannabis misuse and its consequences, paying special attention to adolescent subjects. Second, the main gender differences in psychiatric disorders, such as psychosis, depression, anxiety and cannabis use disorders, are enumerated. Subsequently, we discuss the studies that have evaluated gender differences in the association between cannabis use and the appearance of psychotic, depressive and anxious symptoms; moreover, we consider the possible explanations for the identified gender differences. In conclusion, the studies referred to in this review reveal the existence of gender differences in psychiatric symptoms associated with cannabis use, although the direction of such differences is not always clear. Future research is necessary to discern the causal relationship between cannabis use and the development of psychiatric symptoms, as well as the gender differences found.
Collapse
|
9
|
Cavaletti G, Marmiroli P, Renn CL, Dorsey SG, Serra MP, Quartu M, Meregalli C. Cannabinoids: an Effective Treatment for Chemotherapy-Induced Peripheral Neurotoxicity? Neurotherapeutics 2021; 18:2324-2336. [PMID: 34668147 PMCID: PMC8804126 DOI: 10.1007/s13311-021-01127-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most frequent side effects of antineoplastic treatment, particularly of lung, breast, prostate, gastrointestinal, and germinal cancers, as well as of different forms of leukemia, lymphoma, and multiple myeloma. Currently, no effective therapies are available for CIPN prevention, and symptomatic treatment is frequently ineffective; thus, several clinical trials are addressing this unmet clinical need. Among possible pharmacological treatments of CIPN, modulation of the endocannabinoid system might be particularly promising, especially in those CIPN types where analgesia and neuroinflammation modulation might be beneficial. In fact, several clinical trials are ongoing with the specific aim to better investigate the changes in endocannabinoid levels induced by systemic chemotherapy and the possible role of endocannabinoid system modulation to provide relief from CIPN symptoms, a hypothesis supported by preclinical evidence but never consistently demonstrated in patients. Interestingly, endocannabinoid system modulation might be one of the mechanisms at the basis of the reported efficacy of exercise and physical therapy in CIPN patients. This possible virtuous interplay will be discussed in this review.
Collapse
Affiliation(s)
- Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, Monza, Italy.
- Milan Center for Neuroscience, University of Milano Bicocca, Piazza Ateneo Nuovo 1, Milano, Italy.
| | - Paola Marmiroli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, Milano, Italy
- Milan Center for Neuroscience, University of Milano Bicocca, Piazza Ateneo Nuovo 1, Milano, Italy
| | - Cynthia L Renn
- Department of Pain and Translational Science, School of Nursing, University of Maryland, 655 West Lombard Street, Baltimore, MD, 21201, USA
| | - Susan G Dorsey
- Department of Pain and Translational Science, School of Nursing, University of Maryland, 655 West Lombard Street, Baltimore, MD, 21201, USA
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, Monza, Italy
- Milan Center for Neuroscience, University of Milano Bicocca, Piazza Ateneo Nuovo 1, Milano, Italy
| |
Collapse
|
10
|
Díaz-Rúa A, Chivite M, Comesaña S, Velasco C, Soengas JL, Conde-Sieira M. Central administration of endocannabinoids exerts bimodal effects in food intake of rainbow trout. Horm Behav 2021; 134:105021. [PMID: 34242873 DOI: 10.1016/j.yhbeh.2021.105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The endocannabinoid system (ECs) is known to participate in several processes in mammals related to synaptic signaling including regulation of food intake, appetite and energy balance. In fish, the relationship of ECs with food intake regulation is poorly understood. In the present study, we assessed in rainbow trout Oncorhynchus mykiss the effect of intracerebroventricular administration (ICV) of low and high doses of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake. We assessed endocannabinoid levels in hypothalamus, telencephalon and plasma as well as the effect of AEA and 2-AG administration at central level on gene expression of receptors involved in ECs (cnr1, gpr55 and trpv1) and markers of neural activity (fos, ntrk2 and GABA-related genes). The results obtained indicate that whereas high doses of endocannabinoids did not elicit changes in food intake levels, low doses of the endocannabinoids produce an orexigenic effect that could be due to a possible inhibition of gabaergic neurotransmission and the modulation of neural plasticity in brain areas related to appetite control, such as hypothalamus and telencephalon.
Collapse
Affiliation(s)
- Adrián Díaz-Rúa
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Cristina Velasco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av.General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|