1
|
Wang S, Ju C, Chen M, Zhai Q, Cheng C, Zhou W, Xue L, Xu C, Tan X, Dai R. Combining untargeted and targeted metabolomics to reveal the mechanisms of herb pair Anemarrhena asphodeloides Bunge and Phellodendron chinense C. K. Schneid on benign prostatic hyperplasia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118539. [PMID: 38986754 DOI: 10.1016/j.jep.2024.118539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/26/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anemarrhena asphodeloides Bunge (Ane) and Phellodendron chinense C. K. Schneid (Phe) is classical herb pair in traditional Chinese medicine, commonly used to ameliorate the symptoms of Benign Prostatic Hyperplasia (BPH). However, the mechanisms underlying this effect are remained indistinct. AIM OF THE STUDY This study aimed to clarify potential therapeutic mechanisms of herb pair on BPH from a metabolic perspective. MATERIALS AND METHODS Testosterone propionate-induced BPH rat model was established, prostatic parameters, histopathology and the levels of serum dihydrotestosterone (DHT) and testosterone (T) were used to evaluate the pharmacological effect of the herb pair on BPH. Subsequently, untargeted metabolomics of prostate tissues samples was performed by UHPLC-Q-Exactive-Orbitrap-MS, followed by multivariate statistical analysis. Targeted metabolomics by UHPLC-QQQ-MS was further utilized to verify and supplement the results of lipids and amino acids found by untargeted metabolomics, clarifying the relationship between disease, herbal pair and metabolism pathway. RESULTS The study found that Ane-Phe could relieve the progression of BPH and regulate metabolic imbalances. The levels of 13 metabolites decreased and 11 increased in prostatic tissues including glycerolphospholipid, arachidonic acid, citric acid and so on, these altered metabolites were primarily associated with TCA cycle, arachidonic acid metabolism, lipid metabolism and amino acid metabolism. Furthermore, targeted metabolomics was fulfilled to further analyze the lipid metabolism disorders, the levels of 5 lipids in serum and 21 in prostatic tissues were changed in the herb pair group compared to the model group, which closely related to glycerophospholipid, sphingolipid and glycerolipid metabolism. Besides, amino acid metabolism may be regulated by activating arginine metabolism pathway. CONCLUSIONS In this study, the combination of untargeted metabolomics and targeted metabolomics was applied to explore therapeutic mechanisms of Ane-Phe on BPH. In summary, Ane-Phe could improve the levels of endogenous metabolites by regulating multiple metabolic pathways and plays a role in energy supply, anti-inflammation and oxidative stress in BPH treatment.
Collapse
Affiliation(s)
- Shuxuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Caier Ju
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Meige Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Qirui Zhai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Cheng Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Wei Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Lijuan Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Chenglong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xiaojie Tan
- Yujing Technology Shanghai Co., Ltd, Shanghai, 200131, PR China.
| | - Ronghua Dai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
2
|
Liu R, Sun Z, Wang S, Liu X, Man Y, Chen M, Liu Q, Wang C. Wenshenqianlie capsule improves benign prostatic hyperplasia via its anti-inflammatory and antioxidant effects. Aging (Albany NY) 2024; 16:12574-12592. [PMID: 39237304 PMCID: PMC11466478 DOI: 10.18632/aging.206103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Anti-inflammatory and antioxidant effects play crucial roles in the recovery of benign prostatic hyperplasia (BPH). Wenshenqianlie (WSQL) capsule, a typical traditional Chinese medicine formulation combining 14 Chinese herbs, has been reported to exert tonic effects on the kidneys and improve clinical symptoms of BPH. However, its potential antioxidative and anti-inflammatory properties and effects on the improvement of hormone levels have not been reported in depth. In this study, mice were subcutaneously injected with TP (5 mg/kg·d-1) to induce BPH. Forty-eight adult BALB/c male mice were randomly allocated to six groups based on the type of drug administered by gavage: control, BPH, BPH+WSQL (40 and 80 mg/kg·d-1), BPH+finasteride (1 mg/kg·d-1), and WSQL-only treated (80 mg/kg·d-1). We investigated the anti-inflammatory and antioxidant effect and mechanism of WSQL on BPH via histopathological examination, immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting combined with in vivo serum metabolomics, gut microbiomics analysis. WSQL alleviated prostate hyperplasia and reduced prostate-specific antigen, dihydrotestosterone, testosterone, and inflammation levels. Gut microbiomics and serum non-targeted metabolomics determined that the protective effect of WSQL against BPH may be related to the improvement of inflammation and testosterone-related gut microbiota and serum metabolites. Further studies showed that WSQL ameliorated nuclear factor-kappa B, its downstream inflammatory factors, and nuclear factor E2-related factor 2 pathway.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuhong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Choi YJ, Wedamulla NE, Kim SH, Oh M, Seo KS, Han JS, Lee EJ, Park YH, Park YJ, Kim EK. Salvia miltiorrhiza Bunge Ameliorates Benign Prostatic Hyperplasia through Regulation of Oxidative Stress via Nrf-2/HO-1 Activation. J Microbiol Biotechnol 2024; 34:1059-1072. [PMID: 37994101 PMCID: PMC11180924 DOI: 10.4014/jmb.2308.08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Oxidative stress is a key factor in the pathogenesis of benign prostatic hyperplasia (BPH) that leads to inflammation. This study aimed to evaluate the ameliorative effects of Salvia miltiorrhiza Bunge extract (HLT-101) on BPH through the regulation of oxidative stress and inflammation. A testosterone propionate (TP)-induced BPH rat model was orally administered HLT-101 (20, 40, or 80 mg/kg), and its effects on oxidative stress- and inflammation-related gene expression were examined. Further, HLT-101 was assessed for its effect on reactive oxygen species (ROS) levels and Nrf-2/HO-1 signaling pathways in BPH-1 cells. HLT-101 decreased testosterone-induced excessive free radical production and inflammatory factor activation. Moreover, HLT-101 treatment significantly decreased the intracellular ROS level in the TNF-α and IFN-γ treated BPH-1 cells through the activation of Nrf-2. In addition, HLT-101 treatment inhibited the NF-κB pathway and androgen receptor (AR) signaling, which is highly linked to the pathogenesis of BPH. Therefore, HLT-101 has the potential to be an effective treatment reagent for BPH because of its ability to reduce inflammation and oxidative stress via Nrf-2/HO-1 signaling.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Technology, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Seok-Hee Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Mirae Oh
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Kang Sik Seo
- Curome Bioscience Co., Ltd., Suwon 16506, Republic of Korea
| | - Jeong Su Han
- Curome Bioscience Co., Ltd., Suwon 16506, Republic of Korea
| | - Eun Joo Lee
- Healthism Corporation, Cheongju 28160, Republic of Korea
| | - Young Ho Park
- Healthism Corporation, Cheongju 28160, Republic of Korea
| | - Young Jin Park
- Department of Family Medicine, Dong-A University College of Medicine, Busan 49315, Republic of Korea
| | - Eun-Kyung Kim
- Educational Major, Graduate School of Education, Dong-A University, Busan 49315, Republic of Korea
- Nutrinomics Lab. Co., Ltd., Busan 49315, Republic of Korea
| |
Collapse
|
4
|
Rasheed RA, Sadek AS, Khattab RT, Elkhamisy FAA, Abdelfattah HA, Elshaer MMA, Almutairi SM, Hussein DS, Embaby AS, Almoatasem MAM. Diacerein provokes apoptosis, improves redox balance, and downregulates PCNA and TNF-α in a rat model of testosterone-induced benign prostatic hyperplasia: A new non-invasive approach. PLoS One 2023; 18:e0293682. [PMID: 37943844 PMCID: PMC10635502 DOI: 10.1371/journal.pone.0293682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
One of the most prevalent chronic conditions affecting older men is benign prostatic hyperplasia (BPH), causing severe annoyance and embarrassment to patients. The pathogenesis of BPH has been connected to epithelial proliferation, inflammation, deranged redox balance, and apoptosis. Diacerein (DIA), the anthraquinone derivative, is a non-steroidal anti-inflammatory drug. This study intended to investigate the ameliorative effect of DIA on the prostatic histology in testosterone-induced BPH in rats. BPH was experimentally induced by daily subcutaneous injection of testosterone propionate for four weeks. The treated group received DIA daily for a further two weeks after induction of BPH. Rats' body and prostate weights, serum-free testosterone, dihydrotestosterone, and PSA were evaluated. Prostatic tissue was processed for measuring redox balance and histopathological examination. The BPH group had increased body and prostate weights, serum testosterone, dihydrotestosterone, PSA, and oxidative stress. Histologically, there were marked acinar epithelial and stromal hyperplasia, inflammatory infiltrates, and increased collagen deposition. An immunohistochemical study showed an increase in the inflammatory TNF-α and the proliferative PCNA markers. Treatment with DIA markedly decreased the prostate weight and plasma hormones, improved tissue redox balance, repaired the histological changes, and increased the proapoptotic caspase 3 expression besides the substantial reduction in TNF-α and PCNA expression. In conclusion, our study underscored DIA's potential to alleviate the prostatic hyperplastic and inflammatory changes in BPH through its antioxidant, anti-inflammatory, antiproliferative, and apoptosis-inducing effects, rendering it an effective, innovative treatment for BPH.
Collapse
Affiliation(s)
- Rabab Ahmed Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - A. S. Sadek
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - R. T. Khattab
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohamed M. A. Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dina S. Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, United States of America
| | - Azza Saleh Embaby
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai A. M. Almoatasem
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Eid BG, Neamatallah T, Binmahfouz LS, Bagher AM, Alamoudi AJ, Aldawsari HM, Hanafy A, Hasan A, El-Bassossy HM, Abdel-Naim AB, Vemuri K, Makriyannis A. Effects of the CB1 receptor antagonists AM6545 and AM4113 on metabolic syndrome-induced prostatic hyperplasia in rats. BIOMOLECULES & BIOMEDICINE 2023; 23:1069-1078. [PMID: 37212036 PMCID: PMC10655885 DOI: 10.17305/bb.2023.9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer Hanafy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Song G, Tong J, Wang Y, Li Y, Liao Z, Fan D, Fan X. Nrf2-mediated macrophage function in benign prostatic hyperplasia: Novel molecular insights and implications. Biomed Pharmacother 2023; 167:115566. [PMID: 37778273 DOI: 10.1016/j.biopha.2023.115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
One of the most common urological diseases is benign prostatic hyperplasia (BPH), with a high prevalence in the middle-aged and elderly male population. Patient's mental and physical health is affected significantly by this condition, causing them considerable discomfort. During the development of BPH, a synergistic effect occurs in response to inflammation, oxidative stress, and apoptosis induced by the activation of macrophages. The nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway can mediate macrophage activation and inhibit prostate hyperplasia by suppressing pro-inflammatory factors, anti-oxidative stress disorder, and initiating apoptosis. The purpose of this study was to review the mechanism of action of Nrf2 signaling pathway-mediated macrophage activation on the immune microenvironment of BPH and to summarize the Chinese medicine based on Nrf2 to provide an overview of BPH treatment options.
Collapse
Affiliation(s)
- Guanhui Song
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Jinlin Tong
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhe Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zeqi Liao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Danping Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xinrong Fan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Elbaz EM, Darwish A, Gad AM, Abdel Rahman AAS, Safwat MH. Canagliflozin alleviates experimentally induced benign prostate hyperplasia in a rat model: exploring potential mechanisms involving mir-128b/EGFR/EGF and JAK2/STAT3 signaling pathways through in silico and in vivo investigations. Eur J Pharmacol 2023; 957:175993. [PMID: 37598927 DOI: 10.1016/j.ejphar.2023.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Benign prostatic hyperplasia (BPH) poses a significant health concern amongst elderly males. Canagliflozin (Cana), a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has a powerful anti-inflammatory influence. Nevertheless, its role in treating BPH has not been clarified. Therefore, the study aimed to investigate the potential ameliorative effect of Cana on experimentally induced BPH in rats and explore the underlying mechanisms compared to the standard finasteride (Fin). The study employed histological analysis, biochemical assays using ELISA, and western blotting. Animals were categorized into four groups: Control (2.5 ml/kg CMC, orally + 3 ml/kg olive oil, subcutaneous), BPH (3 mg/kg testosterone, subcutaneous + CMC orally), Fin-treated BPH (5 mg/kg, orally), and Cana-treated BPH (5 mg/kg, orally), for 28 days. The BPH group showed obvious BPH manifestations including an increase in prostate weight (PW), prostate index (PI), dihydrotestosterone (DHT) level, and histological aberrations compared to control. Fin and Cana therapy had a comparable impact. Cana treatment significantly reduced PW and PI, besides it improved prostatic biochemical, and histopathological features compared to BPH, consistent with in silico study findings. Cana was associated with downregulation of the androgen axis, increased miR-128b expression, with a lowered expression of epidermal growth factor (EGF) and its receptor. Phosphorylation of STAT3 and its downstream proliferative markers were significantly reduced suggesting apoptotic activity. Cana markedly rescued the BPH-induced upregulation of IL-1β, and iNOS levels. Altogether, the current study demonstrates that Cana could impede BPH progression, possibly by modulating miR-128b/EGFR/EGF and JAK2/STAT3 pathways and downregulating AR, cyclin D1, and PCNA immunoreactivity.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) -Formerly NODCAR, Giza 12654, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
| | - Amina A S Abdel Rahman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Abo-El Fetoh ME, Abdel-Fattah MM, Mohamed WR, Ramadan LAA, Afify H. Cyclooxygenase-2 activates EGFR-ERK1/2 pathway via PGE2-mediated ADAM-17 signaling in testosterone-induced benign prostatic hyperplasia. Inflammopharmacology 2023; 31:499-516. [PMID: 36586043 PMCID: PMC9958186 DOI: 10.1007/s10787-022-01123-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/25/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE AND DESIGN Prostatic inflammation is the driving force in benign prostatic hyperplasia (BPH). This work investigated the potential modulatory effect of COX-2 inhibition on ADAM-17/EGFR/ERK1/2 axis. MATERIALS OR SUBJECTS Adult male Wistar rats were used. TREATMENT Celecoxib (10 and 20 mg/kg; i.p.) was injected i.p. daily for three weeks. Testosterone (TST) (3 mg/kg; s.c.) was used to induce BPH. METHODS Prostatic inflammation and hyperplasia were assessed by organ weight and histopathology. Inflammatory mediators were measured using ELISA technique. Protein analysis was performed using western blotting and immunohistochemistry. Gene expression analysis was performed using qRT-PCR. Statistical analyses included one-way ANOVA and Tukey's multiple comparison test. RESULTS Testosterone-treated rats had a marked increase in COX-2, prostate weight, and index. Moreover, TST-induced COX-2 was inferred from cytoskeletal changes and was attributable to the overexpression of PGE2, NF-κB (p65), and IL-6. COX-2-derived PGE2 increased the activity of ADAM-17, TGF-α, and TNF-α. Consequently, EGFR-ERK1/2 pathway was over-activated, disrupting anti-apoptotic Bcl-2, cyclin D1, and pro-apoptotic Bax. Celecoxib reversed these effects. CONCLUSION COX-2 stimulates the ERK1/2 pathway via PGE2-ADAM-17-catalyzed shedding of TGF-α in testosterone-induced BPH. The results indicate a functional correlation between inflammation and hyperplasia in BPH.
Collapse
Affiliation(s)
- Mohammed E. Abo-El Fetoh
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Maha M. Abdel-Fattah
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Wafaa R. Mohamed
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Laila A. A. Ramadan
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
9
|
Alamoudi AJ, Alessi SA, Rizg WY, Jali AM, Safhi AY, Sabei FY, Alshehri S, Hosny KM, Abdel-Naim AB. Cordycepin Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats via Modulation of AMPK and AKT Activation. Pharmaceutics 2022; 14:pharmaceutics14081652. [PMID: 36015278 PMCID: PMC9415290 DOI: 10.3390/pharmaceutics14081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a disease that commonly affects elderly men. Cordycepin is an adenosine analog with a wide range of pharmacological activities including antiproliferative and prostatic smooth muscle relaxant effects. This study was designed to assess the actions of cordycepin in testosterone-induced BPH in rats. Animals were divided into six treatment groups: control, cordycepin-alone (10 mg/kg), testosterone-alone (3 mg/kg), cordycepin (5 mg/kg) + testosterone, cordycepin (10 mg/kg) + testosterone, and finasteride (0.5 mg/kg) + testosterone. Treatments were continued daily, 5 days a week, for 4 weeks. Cordycepin significantly prevented the increase in prostate weight and prostate index induced by testosterone. This was confirmed by histopathological examinations. Cordycepin antiproliferative activity was further defined by its ability to inhibit cyclin-D1 and proliferating cell nuclear antigen (PCNA) expression. In addition, cordycepin exhibited significant antioxidant properties as proven by the prevention of lipid peroxidation, reduced glutathione diminution, and superoxide dismutase exhaustion. This was paralleled by anti-inflammatory activity as shown by the inhibition of interleukin-6, tumor necrosis factor-α, and nuclear factor-κB expression in prostatic tissues. It also enhanced apoptosis as demonstrated by its ability to enhance and inhibit mRNA expression of Bax and Bcl2, respectively. Western blot analysis indicated that cordycepin augmented phospho-AMP-activated protein kinase (p-AMPK) and inhibited p-AKT expression. Collectively, cordycepin has the ability to prevent testosterone-induced BPH in rats. This is mediated, at least partially, by its antiproliferative, antioxidant, anti-inflammatory, and pro-apoptotic actions in addition to its modulation of AMPK and AKT activation.
Collapse
Affiliation(s)
- Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-551624044
| | - Sami A. Alessi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Care, King Abdulaziz Hospital, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Fu W, Chen S, Zhang Z, Chen Y, You X, Li Q. Quercetin in Tonglong Qibi decoction ameliorates testosterone-induced benign prostatic hyperplasia in rats by regulating Nrf2 signalling pathways and oxidative stress. Andrologia 2022; 54:e14502. [PMID: 35725022 DOI: 10.1111/and.14502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common urological disease in older males. Existing pharmacotherapy shows several side effects, and the exploration of new therapeutic strategies is of high significance. Tonglong Qibi (TQ) decoction was proved to ameliorate BPH, while the underlying mechanisms are still unclear. In the current study, we explored the anti-BPH effects of TQ in vivo and identified its main therapeutic component and the underlying mechanisms in vitro. We demonstrated that TQ mitigated BPH in rats and showed no toxicity to the liver and reproductive system. Network pharmacology identified quercetin as the main component in TQ treating BPH. Quercetin reduced proliferation, oxidative stress, and increased Nrf2 expression in hyperplastic prostate epithelial cells. These findings indicate that quercetin in TQ alleviates BPH via inhibiting oxidative stress and activating the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Wei Fu
- Xiamen Hospital (The Eighth Clinical Medical College), Beijing University of Chinese Medicine, Xiamen, China.,Department of Andrology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China.,Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuchao Chen
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zezheng Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingwen Chen
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xujun You
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Origanum majorana L. Extract Attenuated Benign Prostatic Hyperplasia in Rat Model: Effect on Oxidative Stress, Apoptosis, and Proliferation. Antioxidants (Basel) 2022; 11:antiox11061149. [PMID: 35740046 PMCID: PMC9219805 DOI: 10.3390/antiox11061149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a widespread androgenic illness influencing elderly men. It is distinguished by prostatic epithelial and stromal muscle cell proliferation. Inflammation, oxidative stress, and apoptosis have all been interrelated to the development of BPH. Marjoram (Origanum majorana L.) is a herb with reported antiproliferative, proapoptotic, and antioxidative properties, which have not yet been studied in relation to BPH. Consequently, in this work, an ethanolic extract of O. majorana was prepared in two doses (250 and 500 mg/kg/day) to be injected into castrated rats after induction of a testosterone-BPH model. Testosterone propionate (TP) was subcutaneously injected (0.5 mg/kg/day) for one week after castration to induce BPH. Forty adult Wistar male rats were randomly allocated into five groups: control, BPH model, high and low O. majorana doses (250, 500 mg/kg/day), and finasteride (FN) (0.8 mg/kg/day) as a positive control. Treatment was continued with drugs/normal saline for 28 days. Rat’s body and prostate were weighed, prostate index (PI) and % of prostate growth inhibition were calculated, serum dihydrotestosterone (DHT), prostatic content of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and malondialdehyde (MDA), DN damage, histopathological changes, immune expression of proliferating cell nuclear antigen (PCNA), caspase-3, α-SMA, and TGF-β1 were assessed. In addition, molecular quantitative PCR and ELISA analyses were performed to identify the expression of mRNAs and related proteins of both caspase-3 and TGF-β1 in prostate tissue from O. majorana-treated and untreated groups. Rats with BPH had significantly higher prostate weights and PI, higher DHT, DNA damage (8-hydroxyguanine, 8-OH-dG), and MDA levels with prominent PCNA, α-SMA, and TGF-β expression, but lower SOD, CAT, and TAC activity and caspase-3 expression. O. majorana (250 and 500 mg/kg/day)-treated groups revealed a decrease in prostate weights and PI, lower levels of DHT, suppressed oxidative stress, reduced tissue proliferation and fibrosis, and restored antioxidant and proapoptotic activity. Additionally, quantitative PCR and ELISA analysis showed that treatment with O. majorana significantly upregulated the expression of caspase-3 and downregulated the expression of TGF-β in prostate tissues of BPH rats. The data were confirmed by the immunohistological reactivity of these targeted markers in the prostate tissues. These effects were more significant with O. majorana 500 mg/mL/rat. In conclusion, the current study indicates the efficient use of O. majorana in the treatment of testosterone-induced BPH through its antiproliferative, proapoptotic, and antioxidative mechanisms.
Collapse
|
12
|
Alghamdi SA, Mugri MH, Elamin NMH, Kamil MA, Osman H, Eid BG, Shaik RA, Shaker SS, Alrafiah A. A Possible Novel Protective Effect of Piceatannol against Isoproterenol (ISO)-Induced Histopathological, Histochemical, and Immunohistochemical Changes in Male Wistar Rats. Curr Issues Mol Biol 2022; 44:2505-2528. [PMID: 35735612 PMCID: PMC9221942 DOI: 10.3390/cimb44060171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Dry mouth is characterized by lower saliva production and changes in saliva composition. In patients with some salivary gland function remaining, pharmaceutical treatments are not recommended; therefore, new, more effective methods of promoting saliva production are needed. Hence, this study aimed to provide an overview of the histological changes in the salivary gland in the model of isoproterenol (ISO)-induced degenerative changes in male Wistar rats and to evaluate the protective effect of piceatannol. Thirty-two male Wistar rats were randomly divided into four groups: the control group, the ISO group, and the piceatannol (PIC)-1, and -2 groups. After the third day of the experiment, Iso (0.8 mg/100 g) was injected intraperitoneally (IP) twice daily into the animals. PIC was given IP in different daily doses (20 and 40 mg/kg) for three days before ISO and seven days with ISO injection. The salivary glands were rapidly dissected and processed for histological, histochemical, immunohistochemical (Ki-67), and morphometric analysis. Upon seven days of treatment with ISO, marked hypertrophy was observed, along with an increased number of positive Ki-67 cells. Proliferation was increased in some endothelial cells as well as in ducts themselves. Despite the significant decrease in proliferation activity, the control group did not return to the usual activity level after treatment with low-dose PIC. Treatment with a high dose of PIC reduced proliferative activity to the point where it was substantially identical to the results seen in the control group. An ISO-driven xerostomia model showed a novel protective effect of piceatannol. A new era of regenerative medicine is dawning around PIC’s promising role.
Collapse
Affiliation(s)
- Samar A. Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King AbdulAziz University, Jeddah 22254, Saudi Arabia;
| | - Maryam H. Mugri
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.H.M.); (N.M.H.E.)
| | - Nahid M. H. Elamin
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.H.M.); (N.M.H.E.)
| | - Mona Awad Kamil
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.A.K.); (H.O.)
| | - Hind Osman
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.A.K.); (H.O.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah 22254, Saudi Arabia; (B.G.E.); (R.A.S.)
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah 22254, Saudi Arabia; (B.G.E.); (R.A.S.)
| | - Soad S. Shaker
- Department of Histology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Aziza Alrafiah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 22254, Saudi Arabia
- Correspondence: ; Tel.: +966-0126401000 (ext. 23495); Fax: +966-0126401000 (ext. 21686)
| |
Collapse
|
13
|
Binmahfouz LS, Eid BG, Bagher AM, Shaik RA, Binmahfouz NS, Abdel-Naim AB. Piceatannol SNEDDS Attenuates Estradiol-Induced Endometrial Hyperplasia in Rats by Modulation of NF-κB and Nrf2/HO-1 Axes. Nutrients 2022; 14:nu14091891. [PMID: 35565857 PMCID: PMC9102083 DOI: 10.3390/nu14091891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Endometrial hyperplasia (EH) is the most common risk factor for endometrial malignancy in females. The pathogenesis of EH has been directly linked to uterine inflammation, which can result in abnormal cell division and decreased apoptosis. Piceatannol (PIC), a natural polyphenolic stilbene, is known to exert anti-inflammatory, antioxidant and anti-proliferative activities. The aim of the present study was to examine the potential preventive role of PIC in estradiol benzoate (EB)-induced EH in rats. A self-nanoemulsifying drug delivery system (SNEDDS) was prepared to improve the solubility of the PIC. Therefore, thirty female Wistar rats were divided into five groups: (1) control, (2) PIC SNEDDS (10 mg/kg), (3) EB (0.6 mg/kg), (4) EB + PIC SNEDDS (5 mg/kg) and (5) EB + PIC SNEDDS (10 mg/kg). The administration of PIC SNEDDS prevented EB-induced increases in uterine weights and histopathological changes. Additionally, it displayed pro-apoptotic and antioxidant activity in the endometrium. Immunohistochemical staining of uterine sections co-treated with PIC SNEDDS showed significantly decreased expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nuclear transcription factor-kappa B (NF-κB). This anti-inflammatory effect was further confirmed by a significant increase in Nrf2 and heme oxygenase-1 (HO-1) expression. These results indicate that SNEDDS nanoformulation of PIC possesses protective effects against experimentally induced EH.
Collapse
Affiliation(s)
- Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.M.B.); (R.A.S.); (A.B.A.-N.)
- Correspondence:
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.M.B.); (R.A.S.); (A.B.A.-N.)
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.M.B.); (R.A.S.); (A.B.A.-N.)
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.M.B.); (R.A.S.); (A.B.A.-N.)
| | - Najlaa S. Binmahfouz
- Department of Anatomical Histopathology, East Jeddah General Hospital, Jeddah 22253, Saudi Arabia;
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.M.B.); (R.A.S.); (A.B.A.-N.)
| |
Collapse
|
14
|
Almukadi H, Eid BG, Shaik RA, Abdel-Naim AB, Esmat A. Auraptene nanoparticles ameliorate testosterone-induced benign prostatic hyperplasia in rats: Emphasis on antioxidant, anti-inflammatory, proapoptotic and PPARs activation effects. Biomed Pharmacother 2021; 143:112199. [PMID: 34649341 DOI: 10.1016/j.biopha.2021.112199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a disease that commonly strikes the majority of aged men. Developing new therapies to manage BPH with improved efficacy and safety is strongly needed. In this regard, auraptene is a natural compound with multiple pharmacological effects, but with poor oral bioavailability. This investigation aimed to assess the possible protection offered by auraptene-nanostructured lipid carrier (auraptene-NLC) in a BPH model induced by testosterone in rats. Auraptene-NLC had optimum particle size and drug release profile compared to raw auraptene. At doses (5 and 10 mg/kg), it hampered the rise in prostatic weights & indices relative to rats challenged with testosterone. Moreover, auraptene-NLC alleviated histopathological abnormalities in prostate architecture and decreased the glandular epithelial height. Additionally, testosterone-induced oxidative stress was alleviated by auraptene-NLC and inhibited raised lipid peroxidation, catalase and superoxide dismutase exhaustion as well as enhanced glutathione content. Moreover, it significantly reduced the prostate content of nuclear factor κB, Interleukins1β & 6, as well as transforming growth factor β, compared to testosterone group. The proapoptotic activity of auraptene-NLC (10 mg/kg) was confirmed by a significant increase of prostate cleaved caspase-3, boosted Bax/Bcl2 mRNA ratio that was further confirmed by assessing their protein expressions. Furthermore, the beneficial effects of auraptene-NLC against BPH were substantiated by ameliorating testosterone-induced decline of nuclear PPARα & PPARγ and inhibiting the increased expression of cyclin D1 protein. In conclusion, auraptene-NLC offers a protective effect in rats whereby BPH was induced by testosterone, via its anti-inflammatory, antioxidant and proapoptotic activities, and PPAR family activation.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
15
|
El-Sherbiny M, El-Shafey M, El-Din El-Agawy MS, Mohamed AS, Eisa NH, Elsherbiny NM. Diacerein ameliorates testosterone-induced benign prostatic hyperplasia in rats: Effect on oxidative stress, inflammation and apoptosis. Int Immunopharmacol 2021; 100:108082. [PMID: 34450401 DOI: 10.1016/j.intimp.2021.108082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Benign prostatic hypertrophy (BPH) is a serious medical condition among elderly male population. BPH pathogenesis has been linked to inflammation, cellular proliferation, oxidative stress and apoptosis. Diacerein (DIA) is a FDA approved anthraquinone drug that is used to treat joint diseases such as osteoarthritis. DIA has been studied for its potent anti-inflammatory and antioxidant effects, yet its role in managing BPH has not been investigated. In this study, DIA administration for two weeks at 50 mg/kg in testosterone-induced BPH rats significantly reduced prostate weight and index. Moreover, prostatic biochemical and structural features in BPH rats were significantly improved upon DIA treatment. Mechanistically, DIA treatment associated prostatic anti-hyperplastic effects were linked to downregulation of Nrf-2/HO-1 axis, downregulation of inflammatory TNF-a, IL-1β, IL-6, downregulation of the cell proliferative marker PCNA and upregulation of caspase-3 levels. In addition, DIA treatment upregulated prostatic antioxidant GSH, the enzymatic SOD and CAT activities and reduced prostatic lipid peroxidation levels. Altogether, the present study provides evidence that DIA treatment might limit BPH progression via its potent anti-oxidant, anti-inflammatory, anti-proliferative and apoptosis inducing effects.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | | | - Abdelaty Shawky Mohamed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nada H Eisa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Nehal M Elsherbiny
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
16
|
Baseggio AM, Kido LA, Viganó J, Carneiro MJ, Lamas CDA, Martínez J, Sawaya ACHF, Cagnon VHA, Maróstica Júnior MR. Systemic antioxidant and anti-inflammatory effects of yellow passion fruit bagasse extract during prostate cancer progression. J Food Biochem 2021; 46:e13885. [PMID: 34338308 DOI: 10.1111/jfbc.13885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023]
Abstract
We evaluated the impact of yellow passion fruit (Passiflora edulis sp.) bagasse extract (PFBE) administration in systemic oxidative and inflammatory parameters in vivo, considering prostate cancer progression in transgenic mice (TRAMP). Piceatannol, scirpusin-B, dicaffeoylquinic acid, citric acid, and (+)-catechin were identified in PFBE, and the extract showed high in vitro antioxidant capacity. Some alterations in systemic parameters were verified during prostate cancer progression, as the increase in ALT and MDA levels, and SOD and GPx activities in the plasma. In the liver, higher MDA, TNF-α, and NF-κB levels, and GR and GPx activities were verified. Compared to their respective controls, the short- and long-term PFBE administration reduced MDA levels in the liver and plasma. The long-term treatment increased the catalase activity in the plasma, while the short-term treatment increased the hepatic SOD and catalase activities. Still, a reduction in hepatic TNF-α and NF-κB levels was verified after long-term treatment. PRACTICAL APPLICATIONS: Prostate cancer progression is associated with changes in systemic redox status and inflammation markers. Moreover, the intake of polyphenols with antioxidant properties, besides delaying prostate carcinogenesis, may improve the systemic antioxidant defenses and inflammatory response. In vitro studies pointed to a promising antioxidant and anti-inflammatory potential of yellow passion fruit bagasse. However, in vivo studies are scarce. Our results provided information about in vivo impacts of PFBE oral consumption on antioxidant defense and inflammation, indicating its potential as an adjuvant during the initial steps of prostate cancer.
Collapse
Affiliation(s)
- Andressa Mara Baseggio
- Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas (UNICAMP), Campinas, Brazil
| | - Larissa Akemi Kido
- Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas (UNICAMP), Campinas, Brazil.,Institute of Biology, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliane Viganó
- Faculty of Food Engineering, Department of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mara Junqueira Carneiro
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Celina de Almeida Lamas
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Julian Martínez
- Faculty of Food Engineering, Department of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Valéria Helena Alves Cagnon
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
17
|
D’Amico R, Genovese T, Cordaro M, Siracusa R, Gugliandolo E, Peritore AF, Interdonato L, Crupi R, Cuzzocrea S, Di Paola R, Fusco R, Impellizzeri D. Palmitoylethanolamide/Baicalein Regulates the Androgen Receptor Signaling and NF-κB/Nrf2 Pathways in Benign Prostatic Hyperplasia. Antioxidants (Basel) 2021; 10:antiox10071014. [PMID: 34202665 PMCID: PMC8300753 DOI: 10.3390/antiox10071014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the most common benign tumor in males. Androgen/androgen receptor (AR) signaling plays a key role in the development of BPH; its alterations cause an imbalance between prostate cell growth and apoptosis. Furthermore, chronic inflammation and oxidative stress, which are common conditions in BPH, contribute to disrupting the homeostasis between cell proliferation and cell death. With this background in mind, we investigated the effect of ultramicronized palmitoylethanolamide (um-PEA), baicalein (Baic) and co-ultramicronized um-PEA/Baic in a fixed ratio of 10:1 in an experimental model of BPH. BPH was induced in rats by daily administration of testosterone propionate (3 mg/kg) for 14 days. Baic (1 mg/kg), um-PEA (9 mg/kg) and um-PEA/Baic (10 mg/kg) were administered orally every day for 14 days. This protocol led to alterations in prostate morphology and increased levels of dihydrotestosterone (DHT) and of androgen receptor and 5α-reductase expression. Moreover, testosterone injections induced a significant increase in markers of inflammation, apoptosis and oxidative stress. Our results show that um-PEA/Baic is capable of decreasing prostate weight and DHT production in BPH-induced rats, as well as being able to modulate apoptotic and inflammatory pathways and oxidative stress. These effects were most likely related to the synergy between the anti-inflammatory properties of um-PEA and the antioxidant effects of Baic. These results support the view that um-PEA/Baic should be further studied as a potent candidate for the management of BPH.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
- Correspondence: (S.C.); (R.D.P.); Tel.: +39-090-676-5208 (S.C. & R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (R.D.); (T.G.); (R.S.); (A.F.P.); (L.I.); (R.F.); (D.I.)
| |
Collapse
|
18
|
THE REACTION OF IMMUNOCOMPETENT LIVER CELLS DURING CHEMICAL CASTRATION OF MALE RATS CAUSED BY THE INTRODUCTION OF TRIPTORELIN ACETATE. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-2-76-238-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
INFLUENCE OF PROLONGED TRIPTERELIN-INDUCED CENTRAL DEPRIVATION OF TESTOSTERONE SYNTHESIS ON MORPHOLOGICAL STRUCTURE OF RAT’S LIVER. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-1-75-205-209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|