1
|
Sri Snehaa CP, Issac PK, Rajaguru P, Pugalenthi V. Pharmacokinetic predictions of ROS-mediated targets and genotoxin combinations via multiple ligand simultaneous docking and ROS evaluation in vitro using HepG2 cell lines. 3 Biotech 2024; 14:266. [PMID: 39411103 PMCID: PMC11471743 DOI: 10.1007/s13205-024-04109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Although combination therapy is known for its high efficacy, reduced side effects and drug resistance, toxicity remains a major drawback. Some of the genes are likely to induce hepatotoxicity through ROS-mediated mechanisms when a drug is metabolized alone or in combination in the liver. To address this, we have developed a scientific approach to predict the toxicity of different genotoxin combinations and validate their interactions with various targets. The current study is an extensive study of our previous set of in vivo rat liver microarray data processed using R studio for their functional analysis. About five combinations of genotoxins such as CPT/ETP, CPT/CPL, ETP/CPL, CP/CPT and EES/CP along with their differential gene expression targeting Chemical carcinogenesis-ROS are chosen for this study. We aim to examine the binding affinity of different genotoxin combinations using in silico multiple ligand simultaneous docking (MLSD) and are then bio-evaluated for cytotoxicity in vitro using human hepatocellular carcinoma cell lines (HepG2) with the MTT assay. As a result, dose-response cytotoxicity with its strength of interactions and a significant variance in ROS levels in the treated cells is observed compared to their IC50 values. Out of 5 combinations such as CPT/CPL, ETP/CPL and EES/CP are found not only to be significantly cytotoxic but also induce oxidative stress specifically above their IC50 values with good and moderate binding interactions ensuring their toxicity. On the contrary, the safe combinations are found to be CTP/ETP and CP/CPT possibly with no and tolerable adverse effects standing as preliminary information for researchers in drug design and development.
Collapse
Affiliation(s)
- C. P. Sri Snehaa
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024 India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| | - Palanisamy Rajaguru
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024 India
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur, Tamil Nadu 610003 India
| | - Velan Pugalenthi
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024 India
| |
Collapse
|
2
|
Shibata M, Yoshida K, Yokoi A, Suzuki H, Yamamoto Y, Kitagawa M, Asano-Inami E, Yasui Y, Nishiko Y, Yoshihara M, Tamauchi S, Yoshikawa N, Nishino K, Yamamoto E, Niimi K, Kajiyama H. Elucidation of the role of XBP1 in the progression of complete hydatidiform mole to invasive mole through RNA-seq. Gynecol Oncol 2024; 190:189-199. [PMID: 39216132 DOI: 10.1016/j.ygyno.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE A complete hydatidiform mole (CHM) is a common disease and is known to develop post-molar gestational trophoblast neoplasia (GTN). However, the molecular mechanisms underlying the progression of CHM to post-molar GTN remain largely unknown. In this study, we investigated the molecular factors associated with the progression using RNA-seq. METHODS We included 13 patients with CHM and performed RNA-seq using freshly frozen samples. We identified differentially expressed genes between patients who developed GTN (GTN group) and those who achieved spontaneous remission after uterine evacuation (SR group), and performed pathway analysis. Then, functional analyses were performed on choriocarcinoma (JAR and JEG-3) and CHM (Hmol1-3B and Hmol1-2C) cells. Moreover, we evaluated the in vivo tumorigenicity of XBP1-overexpressed Hmol1-3B cells. RESULTS The gene expression profiles were separated into two groups, and an upstream regulator analysis was performed using 281 differentially expressed genes. We focused on transcription factors and identified that 33 transcription factors were activated in the GTN group. Then, excluding those with low expression levels in clinical samples and cell lines, XBP1 was selected for further analysis. Additionally, XBP1 downregulation significantly decreased the migration and invasive abilities of choriocarcinoma cells, whereas XBP1 overexpression significantly increased the migration and invasive abilities of CHM cells. Furthermore, animal experiments showed that tumor weight and blood human chorionic gonadotropin (hCG) levels were significantly higher in the XBP1-overexpressing Hmol1-3B-bearing mice than those in the control mice. CONCLUSION RNA-seq identified XBP1 as a key factor in post-molar GTN, suggesting it contributes to the development of post-molar GTN.
Collapse
Affiliation(s)
- Mayu Shibata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hironori Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masami Kitagawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Yasui
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Nishiko
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Zhou N, Cao Y, Luo Y, Wang L, Li R, Di H, Gu T, Cao Y, Zeng T, Zhu J, Chen L, An D, Ma Y, Xu W, Tian Y, Lu L. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H 2O 2. Antioxidants (Basel) 2024; 13:611. [PMID: 38790716 PMCID: PMC11117746 DOI: 10.3390/antiox13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Youwen Luo
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Lihua Wang
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Heshuang Di
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yun Cao
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Jianping Zhu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Dong An
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Yue Ma
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Lizhi Lu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| |
Collapse
|
4
|
Oyovwi OM, Ben-Azu B, Tesi EP, Emojevwe V, Rotu RA, Moke GE, Umukoro E, Asiwe JN, Nwangwa KE. Possible mechanisms involved in the protective effect of lutein against cyclosporine-induced testicular damage in rats. Heliyon 2024; 10:e24989. [PMID: 38314281 PMCID: PMC10837563 DOI: 10.1016/j.heliyon.2024.e24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Oxidative stress and aberrant inflammatory response have important implications in cyclosporin-induced reproductive functions. Previous studies have shown that agents with antioxidant and anti-inflammatory activities might be beneficial in reversing cyclosporin-induced reproductive impairment. Lutein is a naturally occurring compound with antioxidant and anti-inflammatory properties. However, the effect of lutein against cyclosporin-induced reproductive impairment remains in complete. Hence, we investigated the protective effect of lutein, specifically focusing on the role of nuclear factor erythroid 2 related factor-2 (Nrf2)/heme-oxygenase-1 (HO-1)/connexin-43 (Cx-43) upregulation system against cyclosporine-induced reproductive impairment. Six male Wistar rats were allotted into 5 groups and given daily gavage of cyclosporine (40 mg/kg) and/or lutein (30 mg/kg) for four (4) weeks or in combination, respectively. The testicular antioxidant scaffolds: superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), add to sulfhydryl (T-SH), non-protein sulfhydryl (NP-SH), glutathione reductase (GR), glutathione-S -transferase (GST), glutathione peroxidase (GSH-Px), thiobarbituric acid reactive substances (TBARS), myeloperoxidase (MPO), testicular proinflammatory cytokines, apoptotic related protein, nucleic acids, sialic acid, testicular proton pump ATPase, stress responsive protein, BTB-related protein and total protein levels in the testes were assayed thereafter. Cyclosporin significantly increased NOX-1, TNF-α, IL-1β, MPO, caspase-3 and -9 levels, which were reversed by lutein. Lutein reversed cyclosporin-induced decreases in Nrf2, HO-1, BCL-2, cytochrome C, with corresponding increase in CAT, SOD, GSH, T-SH, NP-SH, GST, GR, GSH-Px, and Cx-43 levels compared to cyclosporin groups. Lutein also abates cyclosporin-induced alterations Na + -K + -ATPase activities. Our findings showed that lutein's protective effect against cyclosporin-induced reproductive impairment might be associated with mechanisms linked to its antioxidant, anti-apoptotic, and anti-inflammatory properties, notably through up-regulation of Nrf2/HO-1/Cx-43 signaling and down-regulation of NOX-1 signaling.
Collapse
Affiliation(s)
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Science, Delta State University, Abraka, Delta State, Nigeria
| | - Edesiri Prince Tesi
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
| | - Victor Emojevwe
- Department of Human Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Rume Arientare Rotu
- Department of Human Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Goodies Emuesiri Moke
- Department of Pharmacology, Faculty of Basic Medical Science, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Umukoro
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Science, Delta State University, Abraka, Delta State, Nigeria
| | - Jerome Ndudi Asiwe
- Department of Human Physiology, Faculty of Basic Medical Science, Delta State University, Abraka, Delta State, Nigeria
| | - Kingsley Eze Nwangwa
- Department of Human Physiology, Faculty of Basic Medical Science, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
5
|
Martins-Gomes C, Nunes FM, Silva AM. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants (Basel) 2024; 13:65. [PMID: 38247489 PMCID: PMC10812469 DOI: 10.3390/antiox13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Bello II, Omigbodun A, Morhason-Bello I. Common salt aggravated pathology of testosterone-induced benign prostatic hyperplasia in adult male Wistar rat. BMC Urol 2023; 23:207. [PMID: 38082261 PMCID: PMC10712029 DOI: 10.1186/s12894-023-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a major health concern associated with lower urinary tract symptoms and sexual dysfunction in men. Recurrent inflammation, decreased apoptotic rate and oxidative stress are some of the theories that explain the pathophysiology of BPH. Common salt, a food additive, is known to cause systemic inflammation and redox imbalance, and may serve as a potential risk factor for BPH development or progression. This study examined the effect of common salt intake on the pathology of testosterone-induced BPH. METHODS Forty male Wistar rats were randomly divided into four equal groups of 10: a control and three salt diet groups-low-salt diet (LSD), standard-salt diet (SSD) and high-salt diet (HSD). The rats were castrated, allowed to recuperate and placed on salt-free diet (control), 0.25% salt diet (LSD), 0.5% salt diet (SSD) and 1.25% salt diet (HSD) for 60 days ad libitum. On day 33, BPH was induced in all the rats with daily injections of testosterone propionate-Testost® (3 mg/kg body weight) for 28 days. The rats had overnight fast (12 h) on day 60 and were euthanized the following day in order to collect blood and prostate samples for biochemical, molecular and immunohistochemistry (IHC) analyses. Mean ± SD values were calculated for each group and compared for significant difference with ANOVA followed by post hoc test (Tukey HSD) at p < 0.05. RESULTS This study recorded a substantially higher level of IL-6, IL-8 and COX-2 in salt diet groups and moderate IHC staining of COX-2 in HSD group. The prostatic level of IL-17, IL-1β, PGE2, relative prostate weight and serum PSA levels were not statistically different. The concentrations of IGF-1, TGF-β were similar in all the groups but there were multiple fold increase in Bcl-2 expression in salt diet groups-LSD (13.2), SSD (9.5) and HSD (7.9) and multiple fold decrease in VEGF expression in LSD (-6.3), SSD (-5.1) and HSD (-14.1) compared to control. Activity of superoxide dismutase (SOD) and concentration of nitric oxide rose in LSD and SSD groups, and SSD and HSD groups respectively. Activities of glutathione peroxidase and catalase, and concentration of NADPH and hydrogen peroxide were not significantly different. IHC showed positive immunostaining for iNOS expression in all the groups while histopathology revealed moderate to severe prostatic hyperplasia in salt diet groups. CONCLUSIONS These findings suggest that low, standard and high salt diets aggravated the pathology of testosterone-induced BPH in Wistar rats by promoting inflammation, oxidative stress, while suppressing apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Idris Idowu Bello
- Department of Reproductive Health Sciences, Pan African University Life and Earth Sciences Institute (including Health and Agriculture), PAULESI, University of Ibadan, Ibadan, Nigeria.
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora, Oyo State, Nigeria.
| | - Akinyinka Omigbodun
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Imran Morhason-Bello
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Zhou Y, Zhang A, Fang C, Yuan L, Shao A, Xu Y, Zhou D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci Ther 2023; 29:2744-2759. [PMID: 37341156 PMCID: PMC10493678 DOI: 10.1111/cns.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Pituitary adenomas (PAs), or pituitary neuroendocrine tumors (PitNETs), are commonly found in the anterior pituitary gland. Although the majority of PitNETs are benign and stable, several tumors have malignant characteristics. The tumor microenvironment (TME) plays an important role in the process of tumorigenesis and is composed of several types of cells. Various cells in the TME are significantly affected by oxidative stress. It has been reported that immunotherapeutic strategies have good effects in several cancers. However, the clinical potential of immunotherapies in PitNETs has not yet been fully discussed. Oxidative stress can regulate PitNET cells and immune cells in the TME, thus affecting the immune status of the TME of PitNETs. Therefore, modulation of oxidative stress-regulated immune cells using a combination of several agents and the immune system to suppress PitNETs is a promising therapeutic direction. In this review, we systematically analyzed the oxidative stress process within PitNET cells and various immune cells to elucidate the potential value of immunotherapy.
Collapse
Affiliation(s)
- Yuhang Zhou
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yuan
- School of Public Health, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Danyang Zhou
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
8
|
Muhie S, Gautam A, Misganaw B, Yang R, Mellon SH, Hoke A, Flory J, Daigle B, Swift K, Hood L, Doyle FJ, Wolkowitz OM, Marmar CR, Ressler K, Yehuda R, Hammamieh R, Jett M. Integrated analysis of proteomics, epigenomics and metabolomics data revealed divergent pathway activation patterns in the recent versus chronic post-traumatic stress disorder. Brain Behav Immun 2023; 113:303-316. [PMID: 37516387 DOI: 10.1016/j.bbi.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.
Collapse
Affiliation(s)
- Seid Muhie
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; The Geneva Foundation, Silver Spring, MD 20910, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Vysnova Inc. Landover, MD 20785, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Janine Flory
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Bernie Daigle
- Departments of Biological Sciences and Computer Science, The University of Memphis, Memphis, TN 38152, USA
| | - Kevin Swift
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kerry Ressler
- McLean Hospital, Belmont, MA 02478, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10468, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Marti Jett
- US Army Medical Research and Development Command, HQ, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
9
|
Xie B, Zeng D, Yang M, Tang Z, He L, Chen T. Translational Selenium Nanoparticles to Attenuate Allergic Dermatitis through Nrf2-Keap1-Driven Activation of Selenoproteins. ACS NANO 2023. [PMID: 37428976 DOI: 10.1021/acsnano.3c04344] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Easy recurrence and strong treatment side effects significantly limit the clinical treatment of allergic dermatitis. The human trace element selenium (Se) plays essential roles in redox regulation through incorporation into selenoproteins in the form of 21st necessary amino acid selenocysteine, to participates in the pathogenesis and intervention of chronic inflammatory diseases. Therefore, based on the safe and elemental properties of Se, we construct a facile-synthesis strategy for antiallergic selenium nanoparticles (LET-SeNPs), and scale up the production by employing a spray drying method with lactose (Lac-LET-SeNPs) or maltodextrin (Mal-LET-SeNPs) as encapsulation agents realizing larger scale production and a longer storage time. As expected, these as-prepared LET-SeNPs could effectively activate the Nrf2-Keap1 signaling pathway to enhance the expression of antioxidative selenoprotein at mRNA and protein levels, then inhibit mast cell activation to achieve efficient antiallergic activity. Interestingly, LET-SeNPs undergo metabolism to seleno-amino acids to promote biosynthesis of selenoproteins, which could suppress ROS-induced cyclooxygenase-2 (COX-2) and MAPKs activation to suppress the release of histamine and inflammatory cytokines. Allergic mouse and Macaca fascicularis models further confirm that LET-SeNPs could increase the Se content and selenoprotein expression in the skin, decrease mast cells activation and inflammatory cells infiltration, and finally exhibit the high therapeutic effects on allergic dermatitis. Taken together, this study not only constructs facile large-scale synthesis of translational Se nanomedicine to break through the bottleneck problem of nanomaterials but also sheds light on its application in the intervention and treatment of allergies.
Collapse
Affiliation(s)
- Bin Xie
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Delong Zeng
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Meijin Yang
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhiying Tang
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Xu W, Yang Y, Tian J, Du X, Ye Y, Liu Z, Li Y, Zhao Y. Integrated physiological and transcriptome analysis reveals potential toxicity mechanism of haloxyfop-P-methyl to Chiromantes dehaani. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121879. [PMID: 37230172 DOI: 10.1016/j.envpol.2023.121879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Haloxyfop-P-methyl is widely used in controlling gramineous weeds, including the invasive plant Spartina alterniflora. However, the mechanism of its toxicity to crustaceans is unclear. In this study, we adopted transcriptome analysis combined with physiologic changes to investigate the response of estuarine crab (Chiromantes dehaani) to haloxyfop-P-methyl. The results showed that the median lethal concentration (LC50) of C. dehaani to haloxyfop-P-methyl at 96 h was 12.886 mg/L. Antioxidant system analysis indicated that MDA, CAT, GR, T-GSH, and GSSG might be sensitive biomarkers that characterize the oxidative defense response of the crab. In total, 782 differentially expressed genes were identified, including 489 up-regulated and 293 down-regulated genes. Glutathione metabolism, detoxification response and energy metabolism were significantly enriched, revealing the potential toxic mechanism of haloxyfop-P-methyl to C. dehaani. These results provide a theoretical foundation for further research on haloxyfop-P-methyl toxicity to crustaceans.
Collapse
Affiliation(s)
- Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Yiming Li
- Fishery Machinery and Instrument, Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
11
|
Mega OO, Oghenetega OB, Victor E, Faith FY, Uchechukwu JG. Quercetin Protects against Levetiracetam induced gonadotoxicity in rats. Toxicology 2023; 491:153518. [PMID: 37098359 DOI: 10.1016/j.tox.2023.153518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this study was to determine whether quercetin may counteract the negative effects of levetiracetam on rat reproductive capabilities by examining its influence on a few reproductive parameters following levetiracetam administration. Twenty (20) experimental rats were employed, with five (n = 5) animals per treatment group. Rats in group 1 received saline (10mL/kg, p.o.) which served as control. Quercetin (20mg/kg, p.o./day) was given to groups 2 and 4 for 28 days starting from 29 to 56 days, respectively. However, animals in groups 3-4 received LEV (300mg/kg) once daily for 56 days with a 30-minute break in between treatments. All rats had their serum sex hormone levels, sperm characteristics, testicular antioxidant capability, and levels of oxido-inflammatory/apoptotic mediators evaluated. Additionally, the expression of proteins associated to BTB, autophagy, stress response was examined in rat testes. LEV increased sperm morphological defects and decreased sperm motility, sperm viability, sperm count body weight and testes weight, MDA and 8OHdG levels in the testis of LEV-treated rats were elevated, while antioxidant enzyme expression was concurrently decreased. Additionally, it reduced the levels of serum gonadotropins, testosterone, mitochondrial membrane potential, and cytochrome C liberation into the cytosol from the mitochondria. Caspase-3 and Caspase-9 activity increased. While Bcl-2, Cx-43, Nrf2, HO-1, mTOR, and Atg-7 levels were lowered, NOX-1, TNF-α, NF-kß, IL-1ß, and tDFI levels increased. Histopathological scoring provided further support for the decreased spermatogenesis. In contrast to all of these gonadotoxic effects of LEV, improvements in LEV-induced gonadal damage were seen through upregulation of Nrf2/ HO-1, Cx-43/NOX-1, mTOR/Atg-7 expression and attenuation of hypogonadism, poor sperm quality, mitochondria-mediated apoptosis, and oxidative inflammation due to quercetin post-treatment. The modulation of Nrf2/HO-1, /mTOR/Atg-7 and Cx-43/NOX-1 levels and the inhibition of mitochondria-mediated apoptosis and oxido-inflammation in LEV-induced gonadotoxicity in rats suggest that quercetin may hold promise as a possible therapeutic treatment.
Collapse
Affiliation(s)
- Oyovwi O Mega
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria; Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria.
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock University, Illisan- Ogun State; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Falajiki Y Faith
- Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Joseph Gregory Uchechukwu
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
12
|
Guan F, Zhang S, Fan L, Sun Y, Ma Y, Cao C, Zhang Y, He M, Du H. Kunling Wan improves oocyte quality by regulating the PKC/Keap1/Nrf2 pathway to inhibit oxidative damage caused by repeated controlled ovarian hyperstimulation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115777. [PMID: 36191663 DOI: 10.1016/j.jep.2022.115777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kunling Wan (KW) is a traditional Chinese medicine that is principally used for kidney deficiency, qi stagnation, and blood stasis, which are basic syndromes of infertility in China. KW can improve ovarian follicular development, ovarian function, and endometrial receptivity, which lead to improving pregnancy outcomes. Repeated controlled ovarian hyperstimulation (COH) reduces oocyte quality and results in a lower pregnancy rate. Whether KW has the potential to improve oocyte quality reduced by repeated COH has yet to be determined. AIMS OF THE STUDY The aim of this study wwas to evaluate the effect of KW on oocyte quality after damage due to repeated COH, and to investigate the mechanism(s) underlying the antioxidative protection of oocytes by mitochondria. MATERIALS AND METHODS Female Kunming mice were randomly divided into four groups: normal group, model (repeated COH) group, KW group, and N-acetylcysteine (NAC) group. We observed the morphology and quality of mitochondria, level of reactive oxygen species (ROS), and antioxidant enzymes activity of each group. Oocytes were treated with H2O2 and KW-containing serum, and we determined the antioxidant effects of KW on H2O2-treated oocytes and the mechanism involved in the regulation of Nrf2 in reducing oxidative damage. RESULTS Our results revealed that repeated COH caused oxidative damage and impaired oocyte mitochondrial function and structure, resulting in poor oocyte quality. KW pretreatment reduced oxidative damage by inhibiting ROS production and improving mitochondrial structure and function, thereby enhancing overall oocyte quality. In response to H2O2, KW activated the PKC/Keap1/Nrf2-signaling pathway and promoted the translocation of Nrf2 from the cytoplasm to the nucleus, which activated the expression of SOD and GSH-Px, and removed the excess ROS that caused the initial mitochondrial damage. CONCLUSIONS KW improved oocyte quality perturbed by repeated COH via reducing oxidative effects and improving mitochondrial function. The mechanism may be related to regulation of the PKC/Keap1/Nrf2 pathway in removing excess ROS.
Collapse
Affiliation(s)
- Fengli Guan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Shuancheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Lijie Fan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ying Sun
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Can Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yu Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| | - Hulan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| |
Collapse
|
13
|
Wei Z, pinfang K, jing Z, zhuoya Y, Shaohuan Q, Chao S. Curcumin Improves Diabetic Cardiomyopathy by Inhibiting Pyroptosis through AKT/Nrf2/ARE Pathway. Mediators Inflamm 2023; 2023:3906043. [PMID: 37101595 PMCID: PMC10125772 DOI: 10.1155/2023/3906043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 04/28/2023] Open
Abstract
This study is aimed at exploring whether curcumin can regulate the AKT pathway, promote the transfer of Nrf2 into the nucleus, and inhibit cell pyroptosis in diabetic cardiomyopathy. Diabetic rats and cardiomyocytes were treated with curcumin to study its effect on myocardial pyroptosis. Whether curcumin can promote the transfer of Nrf2 into the nucleus through AKT pathway regulation was assessed by western blotting and immunofluorescence. The Nrf2 knockout vector and ml385 were used to block the Nrf2 pathway, and the differences between the different groups in the expression of pyroptosis protein, cell activity, and incidence of apoptosis were evaluated to verify the relationship between the effect of curcumin on pyroptosis inhibition and the Nrf2 pathway. Curcumin promoted the transfer of Nrf2 into the nucleus through the AKT pathway and increased the expression of the antioxidant factors HO-1 and GCLC. These effects reduced reactive oxygen species accumulation and mitochondrial damage in diabetic myocardium and inhibited diabetes-induced pyroptosis. However, in cardiomyocytes with a blocked Nrf2 pathway, the ability of curcumin to inhibit pyroptosis was significantly reduced, and the protective effect on the cells was lost. Curcumin can reduce the accumulation of superoxide in the myocardium through AKT/Nrf2/ARE pathway activation and inhibit pyroptosis. It also has a role in diabetic cardiomyopathy treatment. This study provides new directions for evaluating the mechanism of diabetic cardiomyopathy and treating diabetic myocardium.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Kang pinfang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Zhou jing
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Yao zhuoya
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Qian Shaohuan
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Shi Chao
- Department of Cardiac Surgery of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| |
Collapse
|
14
|
Balzamino BO, Esposito G, Marino R, Calissano P, Latina V, Amadoro G, Keller F, Cacciamani A, Micera A. Morphological and biomolecular targets in retina and vitreous from Reelin-deficient mice (Reeler): Potential implications for age-related macular degeneration in Alzheimer’s dementia. Front Aging Neurosci 2022; 14:1015359. [DOI: 10.3389/fnagi.2022.1015359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
The neurosensory retina is an outgrowth of the Central Nervous System (CNS), and the eye is considered “a window to the brain.” Reelin glycoprotein is directly involved in neurodevelopment, in synaptic plasticity, learning and memory. Consequently, abnormal Reelin signaling has been associated with brain neurodegeneration but its contributing role in ocular degeneration is still poorly explored. To this aim, experimental procedures were assayed on vitreous or retinas obtained from Reeler mice (knockout for Reelin protein) at different postnatal days (p) p14, p21 and p28. At p28, a significant increase in the expression of Amyloid Precursor Protein (APP) and its amyloidogenic peptide (Aβ1-42 along with truncated tau fragment (i.e., NH2htau)- three pathological hallmarks of Alzheimer’s disease (AD)-were found in Reeler mice when compared to their age-matched wild-type controls. Likewise, several inflammatory mediators, such as Interleukins, or crucial biomarkers of oxidative stress were also found to be upregulated in Reeler mice by using different techniques such as ELLA assay, microchip array or real-time PCR. Taken together, these findings suggest that a dysfunctional Reelin signaling enables the expression of key pathological features which are classically associated with AD neurodegenerative processes. Thus, this work suggests that Reeler mouse might be a suitable animal model to study not only the pathophysiology of developmental processes but also several neurodegenerative diseases, such as AD and Age-related Macular Degeneration (AMD), characterized by accumulation of APP and/or Aβ1-42, NH2htau and inflammatory markers.
Collapse
|
15
|
Li N, Desiderio DM, Zhan X. The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas. MASS SPECTROMETRY REVIEWS 2022; 41:964-1013. [PMID: 34109661 DOI: 10.1002/mas.21710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
A pituitary adenoma (PA) is a common intracranial neoplasm, and is a complex, chronic, and whole-body disease with multicausing factors, multiprocesses, and multiconsequences. It is very difficult to clarify molecular mechanism and treat PAs from the single-factor strategy model. The rapid development of multiomics and systems biology changed the paradigms from a traditional single-factor strategy to a multiparameter systematic strategy for effective management of PAs. A series of molecular alterations at the genome, transcriptome, proteome, peptidome, metabolome, and radiome levels are involved in pituitary tumorigenesis, and mutually associate into a complex molecular network system. Also, the center of multiomics is moving from structural genomics to phenomics, including proteomics and metabolomics in the medical sciences. Mass spectrometry (MS) has been extensively used in phenomics studies of human PAs to clarify molecular mechanisms, and to discover biomarkers and therapeutic targets/drugs. MS-based proteomics and proteoform studies play central roles in the multiomics strategy of PAs. This article reviews the status of multiomics, multiomics-based molecular pathway networks, molecular pathway network-based pattern biomarkers and therapeutic targets/drugs, and future perspectives for personalized, predeictive, and preventive (3P) medicine in PAs.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
16
|
Liu C, Boeren S, Miro Estruch I, Rietjens IMCM. The Gut Microbial Metabolite Pyrogallol Is a More Potent Inducer of Nrf2-Associated Gene Expression Than Its Parent Compound Green Tea (-)-Epigallocatechin Gallate. Nutrients 2022; 14:nu14163392. [PMID: 36014899 PMCID: PMC9414524 DOI: 10.3390/nu14163392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) has been associated with multiple beneficial effects. However, EGCG is known to be degraded by the gut microbiota. The present study investigated the hypothesis that microbial metabolism would create major catechol-moiety-containing microbial metabolites with different ability from EGCG to induce nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated gene expression. A reporter gene bioassay, label-free quantitative proteomics and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) were combined to investigate the regulation of Nrf2-related gene expression after exposure of U2OS reporter gene or Hepa1c1c7 cells in vitro to EGCG or to its major microbial catechol-moiety-containing metabolites: (-)-epigallocatechin (EGC), gallic acid (GA) and pyrogallol (PG). Results show that PG was a more potent inducer of Nrf2-mediated gene expression than EGCG, with a 5% benchmark dose (BMD5) of 0.35 µM as compared to 2.45 µM for EGCG in the reporter gene assay. EGC and GA were unable to induce Nrf2-mediated gene expression up to the highest concentration tested (75 µM). Bioinformatical analysis of the proteomics data indicated that Nrf2 induction by PG relates to glutathione metabolism, drug and/or xenobiotics metabolism and the pentose phosphate pathway. Taken together, our findings demonstrate that the microbial metabolite PG is a more potent inducer of Nrf2-associated gene expression than its parent compound EGCG.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
- Correspondence:
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|
17
|
Okagu IU, Ezeorba TPC, Aham EC, Aguchem RN, Nechi RN. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100078. [PMID: 35415696 PMCID: PMC8991738 DOI: 10.1016/j.fochms.2022.100078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Hypertension has remained a silent-killer. Novel peptides recently isolated from food proteins. Molecular mechanism of blood pressure-lowering: renin and ACE-inhibition, and beyond. Proposed molecular mechanisms for future research. Novel peptides are excellent candidates for nutraceutical development.
Hypertension impacts negatively on the quality of life of sufferers, and complications associated with uncontrolled hypertension are life-threatening. Hence, many research efforts are exploring the antihypertensive properties of bioactive peptides derived from food proteins using in vitro ACE-inhibitory assay, experimentally-induced and spontaneous hypertensive rats, normotensive and hypertensive human models. In this study, the cellular and molecular mechanisms of blood pressure-lowering properties of novel peptides reported in recent studies (2015-July 30, 2021) were discussed. In addition to common mechanisms such as the inhibition of angiotensin I-converting enzyme (ACE) and renin activities, recently recognized mechanisms through which bioactive peptides exert their antihypertensive properties including the induction of vasodilation via upregulation of cyclo-oxygenase (COX) and prostaglandin receptor and endothelial nitric oxide synthase expression and L-type Ca2+ channel blockade were presented. Similarly, emerging mechanisms of blood pressure-lowering by bioactive peptides such as modulation of inflammation (TNF-α, and other cytokines signaling), oxidative stress (Keap-1/Nrf2/ARE/HO-1 and related signaling pathways), PPAR-γ/caspase3/MAPK signaling pathways and inhibition of lipid accumulation were discussed. The review also highlighted factors that influence the antihypertensive properties of peptides such as method of hydrolysis (type and number of enzymes, and chemical used for hydrolysis, and microbial fermentation), and amino acid sequence and chain length of peptides.
Collapse
Affiliation(s)
- Innocent U Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | | | - Emmanuel C Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Rita N Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Regina N Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
18
|
Wen S, Li C, Zhan X. Muti-omics integration analysis revealed molecular network alterations in human nonfunctional pituitary neuroendocrine tumors in the framework of 3P medicine. EPMA J 2022; 13:9-37. [PMID: 35273657 PMCID: PMC8897533 DOI: 10.1007/s13167-022-00274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Nonfuctional pituitary neuroendocrine tumor (NF-PitNET) is highly heterogeneous and generally considered a common intracranial tumor. A series of molecules are involved in NF-PitNET pathogenesis that alter in multiple levels of genome, transcriptome, proteome, and metabolome, and those molecules mutually interact to form dynamically associated molecular-network systems. This article reviewed signaling pathway alterations in NF-PitNET based on the analyses of the genome, transcriptome, proteome, and metabolome, and emphasized signaling pathway network alterations based on the integrative omics, including calcium signaling pathway, cGMP-PKG signaling pathway, mTOR signaling pathway, PI3K/AKT signaling pathway, MAPK (mitogen-activated protein kinase) signaling pathway, oxidative stress response, mitochondrial dysfunction, and cell cycle dysregulation, and those signaling pathway networks are important for NF-PitNET formation and progression. Especially, this review article emphasized the altered signaling pathways and their key molecules related to NF-PitNET invasiveness and aggressiveness that are challenging clinical problems. Furthermore, the currently used medication and potential therapeutic agents that target these important signaling pathway networks are also summarized. These signaling pathway network changes offer important resources for insights into molecular mechanisms, discovery of effective biomarkers, and therapeutic targets for patient stratification, predictive diagnosis, prognostic assessment, and targeted therapy of NF-PitNET.
Collapse
Affiliation(s)
- Siqi Wen
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China ,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China ,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China ,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China ,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| |
Collapse
|
19
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
20
|
Huang L, Shao M, Zhu Y. Gastrodin inhibits high glucose‑induced inflammation, oxidative stress and apoptosis in podocytes by activating the AMPK/Nrf2 signaling pathway. Exp Ther Med 2021; 23:168. [PMID: 35069849 PMCID: PMC8753962 DOI: 10.3892/etm.2021.11091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious and common complication of type 1 and 2 diabetes. Gastrodin has been reported to suppress high glucose (HG)-induced inflammation and oxidative stress in vivo and in vitro. However, the effect of gastrodin on DN has not been fully elucidated. The present study aimed to investigate the underlying mechanism involved in the effect of gastrodin on podocyte injury caused by DN. Cell viability was evaluated using Cell Counting Kit-8 assay and secretion levels of TNF-α, IL-1β and IL-6 were measured using ELISA. The levels of malondialdehyde, activities of lactate dehydrogenase and superoxide dismutase were quantified using corresponding assay kits. Additionally, cell apoptosis was analyzed by TUNEL assay, whilst protein expressions related to inflammation, apoptosis and the 5'-AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway were measured by western blot analysis. The results showed that gastrodin increased the viability of MPC5 cells following HG stimulation. Gastrodin also alleviated HG-induced inflammation, oxidative stress and apoptosis in MPC5 cells. Furthermore, gastrodin promoted activation of the AMPK/Nrf2 pathway in MPC5 cells. Treatment with the AMPK inhibitor, compound C, reversed the inhibitory effects of gastrodin on inflammation, oxidative stress and cell apoptosis. To conclude, treatment of MPC5 cells with gastrodin can attenuate HG-induced inflammation, oxidative stress and cell apoptosis by activating the AMPK/Nrf2 signaling pathway. Results from the current study suggest that gastrodin can be used as an effective therapeutic agent against HG-induced podocyte injury in DN.
Collapse
Affiliation(s)
- Luyan Huang
- Department of Traditional Chinese Medicine, Zhongshan Hospital (Minhang Branch), Fudan University, Shanghai 201199, P.R. China
| | - Minghai Shao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Yan Zhu
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, P.R. China
| |
Collapse
|
21
|
Okagu IU, Ndefo JC, Aham EC, Obeme-Nmom JI, Agboinghale PE, Aguchem RN, Nechi RN, Lammi C. Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients 2021; 13:nu13093266. [PMID: 34579144 PMCID: PMC8469740 DOI: 10.3390/nu13093266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joseph C. Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka 410001, Nigeria
- Correspondence: (J.C.N.); (C.L.)
| | - Emmanuel C. Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joy I. Obeme-Nmom
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria;
| | | | - Rita N. Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Regina N. Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
- Correspondence: (J.C.N.); (C.L.)
| |
Collapse
|