1
|
Doleski PH, Cabral FL, Jantsch MH, Ebone RS, Adefegha SA, Leal DBR, Schetinger MRC. Kinetic properties of E-NTPDase activity in lymphocytes isolated from bone marrow, thymus and mesenteric lymph nodes of Wistar rats. Mol Cell Biochem 2024; 479:2447-2458. [PMID: 37792238 DOI: 10.1007/s11010-023-04860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Plasma membrane anchored nucleotidases (E-ATPDases), as the E-NTPDase family, could hydrolyze and regulate the pericellular levels of nucleotides in lymphocytes. Each immune organ has a different microenvironment and display lymphocytes with different functions and phenotypes. Considering the different functions of each resident subpopulations of lymphocytes, the E-ATPDases activities in bone marrow (BML), thymus (TL) and mesenteric lymph node (MLL) lymphocytes of Wistar rats were characterized. The hydrolysis of extracellular nucleotides (eATP and eADP) showed linearity in time of reaction between 0 and 120 min, and concentration of lymphocytes expressed in proteins between 1 and 6 μg protein in the reaction medium. The optimal activity was attained at 37 °C in a pH value of 8.0. The necessity of the cofactors Ca2+ and Mg2+ for the enzymatic activity was confirmed through a curve of concentration of 0-1000 µM in the reaction medium, with both cofactors showing similar effects in the enzymatic activity. The Chevillard plot revealed that the hydrolysis of eATP and eADP occurred at the same active site of the enzyme. The analyses of E-ATPDases inhibitor and enzyme specificity showed possible involvement of E-NTPDase isoforms - 1 and - 2 in the isolated cells. Furthermore, different kinetic behavior of the nucleotide hydrolysis in each resident subpopulation lymphocyte was observed in this study, as MLL showed the higher Vmax with the lowest km values, while TL had the lowest Vmax and high km values. The kinetic values for E-NTPDase activity of each immune tissue lymphocytes can be an important therapeutic target for numeral immune-related diseases.
Collapse
Affiliation(s)
- Pedro Henrique Doleski
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Fernanda Licker Cabral
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Matheus Henrique Jantsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Renan Silva Ebone
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Stephen Adeniyi Adefegha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Daniela Bitencourt Rosa Leal
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
2
|
Zhou Q, Shao S, Minev T, Ma W. Unleashing the potential of CD39-targeted cancer therapy: Breaking new ground and future prospects. Biomed Pharmacother 2024; 178:117285. [PMID: 39128190 DOI: 10.1016/j.biopha.2024.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
The review article titled CD39 Transforming Cancer Therapy by Modulating Tumor Microenvironment published in June 2024 in Cancer Letters provides a comprehensive overview of CD39's multifaceted roles in cancer, particularly its influence on immunoregulation, angiogenesis, and metabolic reprogramming within the tumor microenvironment (TME). This commentary builds on that foundation by incorporating recent advancements in CD39 research, highlighting unresolved issues, and proposing future research directions. We delve into the therapeutic potential of targeting CD39, addressing clinical translation challenges, and exploring the integration of CD39-based strategies into precision oncology.
Collapse
Affiliation(s)
- Qiongyan Zhou
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, China
| | - Shengwen Shao
- Institute of Microbiology and Immunology, Huzhou University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Theia Minev
- Cure Science Institute, San Diego, CA 92121, USA
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Xu S, Ma Y, Jiang X, Wang Q, Ma W. CD39 transforming cancer therapy by modulating tumor microenvironment. Cancer Lett 2024; 597:217072. [PMID: 38885807 DOI: 10.1016/j.canlet.2024.217072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
CD39 is a pivotal enzyme in cancer, regulating immune response and tumor progression via extracellular ATP and adenosine in the tumor microenvironment (TME). Beyond its established immunoregulatory function, CD39 influences cancer cell angiogenesis and metabolism, opening new frontiers for therapeutic interventions. Current research faces gaps in understanding CD39's full impact across cancer types, with ongoing debates about its potential beyond modulating immune evasion. This review distills CD39's multifaceted roles, examining its dual actions and implications for cancer prognosis and treatment. We analyze the latest therapeutic strategies, highlighting the need for an integrated approach that combines molecular insights with TME dynamics to innovate cancer care. This synthesis underscores CD39's integral role, charting a course for precision oncology that seeks to unravel controversies and harness CD39's therapeutic promise for improved cancer outcomes.
Collapse
Affiliation(s)
- Suling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang, 315020, China.
| | - Yuhan Ma
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang, 315020, China.
| | - Xinyu Jiang
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang, 315020, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Kutryb-Zając B. Editorial for the Special Issue Titled "Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology". Pharmaceuticals (Basel) 2024; 17:751. [PMID: 38931418 PMCID: PMC11206363 DOI: 10.3390/ph17060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Adenine nucleotides and adenosine maintain cardiovascular homeostasis, producing diverse effects by intracellular and extracellular mechanisms [...].
Collapse
|
5
|
Chen Z, Liu M, Wang N, Xiao W, Shi J. Unleashing the Potential of Camptothecin: Exploring Innovative Strategies for Structural Modification and Therapeutic Advancements. J Med Chem 2024; 67:3244-3273. [PMID: 38421819 DOI: 10.1021/acs.jmedchem.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.
Collapse
Affiliation(s)
- Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Maoyu Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu 610083, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
6
|
Amoafo EB, Entsie P, Kang Y, Canobbio I, Liverani E. Platelet P2Y 12 signalling pathway in the dysregulated immune response during sepsis. Br J Pharmacol 2024; 181:532-546. [PMID: 37525937 PMCID: PMC10830899 DOI: 10.1111/bph.16207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Sepsis is a complicated pathological condition in response to severe infection. It is characterized by a strong systemic inflammatory response, where multiple components of the immune system are involved. Currently, there is no treatment for sepsis. Blood platelets are known for their role in haemostasis, but they also participate in inflammation through cell-cell interaction and the secretion of inflammatory mediators. Interestingly, an increase in platelet activation, secretion, and aggregation with other immune cells (such as monocytes, T-lymphocytes and neutrophils) has been detected in septic patients. Therefore, antiplatelet therapy in terms of P2Y12 antagonists has been evaluated as a possible treatment for sepis. It was found that blocking P2Y12 receptors decreased platelet marker expression and limited attachment to immune cells in some studies, but not in others. This review addresses the role of platelets in sepsis and discusses whether antagonizing P2Y12 signalling pathways can alter the disease outcome. Challenges in studying P2Y12 antagonists in sepsis also are discussed. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Emmanuel Boadi Amoafo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Philomena Entsie
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Ying Kang
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elisabetta Liverani
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
7
|
Jovičić SM. Uncovering novel therapeutic targets in glucose, nucleotides and lipids metabolism during cancer and neurological diseases. Int J Immunopathol Pharmacol 2024; 38:3946320241250293. [PMID: 38712748 PMCID: PMC11080811 DOI: 10.1177/03946320241250293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Shafaghat Z, Ghomi AHK, Khorramdelazad H, Safari E. Purinergic signaling: decoding its role in COVID-19 pathogenesis and promising treatment strategies. Inflammopharmacology 2023; 31:3005-3020. [PMID: 37805959 DOI: 10.1007/s10787-023-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
The pathogenesis of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), is complex and involves dysregulated immune responses, inflammation, and coagulopathy. Purinergic signaling, mediated by extracellular nucleotides and nucleosides, has emerged as a significant player in the pathogenesis of COVID-19. Extracellular adenosine triphosphate (ATP), released from damaged or infected cells, is a danger signal triggering immune responses. It activates immune cells, releasing pro-inflammatory cytokines, contributing to the cytokine storm observed in severe COVID-19 cases. ATP also promotes platelet activation and thrombus formation, contributing to the hypercoagulability seen in COVID-19 patients. On the other hand, adenosine, an immunosuppressive nucleoside, can impair anti-viral immune responses and promote tissue damage through its anti-inflammatory effects. Modulating purinergic receptors represents a promising therapeutic strategy for COVID-19. Understanding the role of purinergic signaling in COVID-19 pathogenesis and developing targeted therapeutic approaches can potentially improve patient outcomes. This review focuses on the part of purinergic signaling in COVID-19 pathogenesis and highlights potential therapeutic approaches targeting purinergic receptors.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Borde S, Matosevic S. Metabolic adaptation of NK cell activity and behavior in tumors: challenges and therapeutic opportunities. Trends Pharmacol Sci 2023; 44:832-848. [PMID: 37770314 DOI: 10.1016/j.tips.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The adaptation of natural killer (NK) cells to conditions in the microenvironment of tumors is deeply affected by their metabolic activity, itself a result of nutrient availability and the metabolism of the cancer cells themselves. Elevated rates of glycolysis and lipid metabolism in cancers not only lead to the accumulation of immunosuppressive byproducts but also contribute to an environment of elevated concentrations of extracellular metabolites. This results in altered NK cell bioenergetics through changes in transcriptional and translational profiles, ultimately affecting their pharmacology and impairing NK cell responses. However, understanding the metabolic processes that drive alterations in immunological signaling on NK cells remains both difficult and vastly underexplored. We discuss the varied and complex drivers of NK cell metabolism in homeostasis and the tumor microenvironment (TME), challenges associated with their targetability, and unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Shambhavi Borde
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Xing J, Zhang J, Wang J. The Immune Regulatory Role of Adenosine in the Tumor Microenvironment. Int J Mol Sci 2023; 24:14928. [PMID: 37834375 PMCID: PMC10573203 DOI: 10.3390/ijms241914928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Jianlei Xing
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinyan Wang
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
| |
Collapse
|
11
|
Jantsch MH, Doleski PH, Viana AR, da Silva JLG, Passos DF, Cabral FL, Manzoni AG, Ebone RDS, Soares ABU, de Andrade CM, Schetinger MRC, Leal DBR. Effects of clopidogrel bisulfate on B16-F10 cells and tumor development in a murine model of melanoma. Biochem Cell Biol 2023; 101:443-455. [PMID: 37163764 DOI: 10.1139/bcb-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Metastatic melanoma is a very aggressive skin cancer. Platelets are constituents of the tumor microenvironment and, when activated, contribute to cancer progression, especially metastasis and inflammation. P2Y12 is an adenosine diphosphate receptor that triggers platelet activation. Inhibition of P2Y12 by clopidogrel bisulfate (CB) decreases platelet activation, which is also controlled by the extracellular concentration and the metabolism of purines by purinergic enzymes. We evaluated the effects of CB on the viability and proliferation of cultured B16-F10 cells. We also used a metastatic melanoma model with C57BL-6 mice to evaluate cancer development and purine metabolism modulation in platelets. B16-F10 cells were administered intraperitoneally to the mice. Two days later, the animals underwent a 12-day treatment with CB (30 mg/kg by gavage). We have found that CB reduced cell viability and proliferation in B16-F10 culture in 72 h at concentrations above 30 µm. In vivo, CB decreased tumor nodule counts and lactate dehydrogenase levels and increased platelet purine metabolism. Our results showed that CB has significant effects on melanoma progression.
Collapse
Affiliation(s)
- Matheus Henrique Jantsch
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Instituto Federal Farroupilha, Campus Santo Ângelo, Santo Ângelo, RS, Brazil
| | - Pedro Henrique Doleski
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Altevir Rossato Viana
- Programa de Pós-graduação em Nanociências; Laboratório de Biociências. Universidade Franciscana, Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra Guedes Manzoni
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renan da Silva Ebone
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Cínthia Melazzo de Andrade
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
12
|
Viviani LG, Kokh DB, Wade RC, T-do Amaral A. Molecular Dynamics Simulations of the Human Ecto-5'-Nucleotidase (h-ecto-5'-NT, CD73): Insights into Protein Flexibility and Binding Site Dynamics. J Chem Inf Model 2023; 63:4691-4707. [PMID: 37532679 DOI: 10.1021/acs.jcim.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Human ecto-5'-nucleotidase (h-ecto-5'-NT, CD73) is a homodimeric Zn2+-binding metallophosphoesterase that hydrolyzes adenosine 5'-monophosphate (5'-AMP) to adenosine and phosphate. h-Ecto-5'-NT is a key enzyme in purinergic signaling pathways and has been recognized as a promising biological target for several diseases, including cancer and inflammatory, infectious, and autoimmune diseases. Despite its importance as a biological target, little is known about h-ecto-5'-NT dynamics, which poses a considerable challenge to the design of inhibitors of this target enzyme. Here, to explore h-ecto-5'-NT flexibility, all-atom unbiased molecular dynamics (MD) simulations were performed. Remarkable differences in the dynamics of the open (catalytically inactive) and closed (catalytically active) conformations of the apo-h-ecto-5'-NT were observed during the simulations, and the nucleotide analogue inhibitor AMPCP was shown to stabilize the protein structure in the closed conformation. Our results suggest that the large and complex domain motion that enables the h-ecto-5'-NT open/closed conformational switch is slow, and therefore, it could not be completely captured within the time scale of our simulations. Nonetheless, we were able to explore the faster dynamics of the h-ecto-5'-NT substrate binding site, which is mainly located at the C-terminal domain and well conserved among the protein's open and closed conformations. Using the TRAPP ("Transient Pockets in Proteins") approach, we identified transient subpockets close to the substrate binding site. Finally, conformational states of the substrate binding site with higher druggability scores than the crystal structure were identified. In summary, our study provides valuable insights into h-ecto-5'-NT structural flexibility, which can guide the structure-based design of novel h-ecto-5'-NT inhibitors.
Collapse
Affiliation(s)
- Lucas G Viviani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Antonia T-do Amaral
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
13
|
Liu Y, Li Z, Zhao X, Xiao J, Bi J, Li XY, Chen G, Lu L. Review immune response of targeting CD39 in cancer. Biomark Res 2023; 11:63. [PMID: 37287049 DOI: 10.1186/s40364-023-00500-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Jing Xiao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
- Department of R&D, OriCell Therapeutics Co. Ltd, No.1227, Zhangheng Rd, Pudong, Shanghai, China.
| | - Guokai Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
14
|
de Sousa Palmeira PH, Peixoto RF, Csordas BG, de Medeiros IA, de Azevedo FDLAA, Veras RC, Janebro DI, Amaral IP, Keesen TSL. Differential regulatory T cell signature after recovery from mild COVID-19. Front Immunol 2023; 14:1078922. [PMID: 36969257 PMCID: PMC10030602 DOI: 10.3389/fimmu.2023.1078922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.
Collapse
Affiliation(s)
- Pedro Henrique de Sousa Palmeira
- Postgraduate program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Rephany Fonseca Peixoto
- Postgraduate program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Bárbara Guimarães Csordas
- Postgraduate program in Natural and Synthetic Bioactive Products, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Isac Almeida de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Robson Cavalcante Veras
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Daniele Idalino Janebro
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Ian P.G. Amaral
- Biotechnology Graduation Program, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
15
|
von Mücke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology 2023; 224:109366. [PMID: 36470368 DOI: 10.1016/j.neuropharm.2022.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Psychiatric disorders are among the most burdensome disorders worldwide. Though therapies have evolved over the last decades, treatment resistance still affects many patients. Recently, neuroimmune systems have been identified as important factors of mood disorder biology. The underlying dysregulation in neuroimmune cross-talk is driven by genetic risk factors and accumulating adverse environmental influences like chronic psychosocial stress. These result in a cluster of proinflammatory cytokines and quantitative and functional changes of immune cell populations (e.g., microglia, monocytes, T cells), varying by disease entity and state. Among the emerging immune targets, purinergic signalling revolving around the membranous and ATP specific P2X7 receptor (P2X7R) has gained wider attention and clinical studies making use of antagonistic drugs are on-going. Still, no clinically meaningful applications have been identified so far. A major problem is the often overly simplified approach taken to translate findings from bench to bedside. Therefore, the present review focuses on purinergic signalling via P2X7R in the context of recent advances in immunopsychiatric mood disorder research. Our aim is to provide an overview of the current P2X7R-related findings, from bench to bedside. First, we summarize the characteristics of purinergic signalling and P2X7R, followed by a depiction of genetic and clinical data connecting P2X7R to mood disorders. We close with our perspective on current developments and discuss changes necessary to translate the evident potential of P2X7R signalling modulation into meaningful clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
| | - Jan M Deussing
- Max Planck Institute for Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
16
|
Liu W, Yu X, Yuan Y, Feng Y, Wu C, Huang C, Xie P, Li S, Li X, Wang Z, Qi L, Chen Y, Shi L, Li MJ, Huang Z, Tang B, Chang A, Hao J. CD73, a Promising Therapeutic Target of Diclofenac, Promotes Metastasis of Pancreatic Cancer through a Nucleotidase Independent Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206335. [PMID: 36563135 PMCID: PMC9951332 DOI: 10.1002/advs.202206335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
CD73, a cell surface-bound nucleotidase, facilitates extracellular adenosine formation by hydrolyzing 5'-AMP to adenosine. Several studies have shown that CD73 plays an essential role in immune escape, cell proliferation and tumor angiogenesis, making it an attractive target for cancer therapies. However, there are limited clinical benefits associated with the mainstream enzymatic inhibitors of CD73, suggesting that the mechanism underlying the role of CD73 in tumor progression is more complex than anticipated, and further investigation is necessary. In this study, CD73 is found to overexpress in the cytoplasm of pancreatic ductal adenocarcinoma (PDAC) cells and promotes metastasis in a nucleotidase-independent manner, which cannot be restrained by the CD73 monoclonal antibodies or small-molecule enzymatic inhibitors. Furthermore, CD73 promotes the metastasis of PDAC by binding to the E3 ligase TRIM21, competing with the Snail for its binding site. Additionally, a CD73 transcriptional inhibitor, diclofenac, a non-steroidal anti-inflammatory drug, is more effective than the CD73 blocking antibody for the treatment of PDAC metastasis. Diclofenac also enhances the therapeutic efficacy of gemcitabine in the spontaneous KPC (LSL-KrasG12D/+ , LSL-Trp53R172H/+ , and Pdx-1-Cre) pancreatic cancer model. Therefore, diclofenac may be an effective anti-CD73 therapy, when used alone or in combination with gemcitabine-based chemotherapy regimen, for metastatic PDAC.
Collapse
Affiliation(s)
- Weishuai Liu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Xiaozhou Yu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yudong Yuan
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yixing Feng
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Chao Wu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Chongbiao Huang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Peng Xie
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Shengnan Li
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Xiaofeng Li
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Ziyang Wang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Lisha Qi
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yanan Chen
- School of MedicineNankai UniversityTianjin300071China
| | - Lei Shi
- Tianjin Medical UniversityTianjin300070China
| | | | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of SciencesTianjin300308China
| | - Bo Tang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Antao Chang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Jihui Hao
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| |
Collapse
|
17
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
18
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
19
|
Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 2022; 83:104216. [PMID: 35986950 PMCID: PMC9403334 DOI: 10.1016/j.ebiom.2022.104216] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) imposes a major obstacle to infiltrating T-lymphocytes and suppresses their function. Several immune checkpoint proteins that interfere with ligand/receptor interactions and impede T-cell anti-tumour responses have been identified. Immunotherapies that block immune checkpoints have revolutionized the treatment paradigm for many patients with advanced-stage tumours. However, metabolic constraints and soluble factors that exist within the TME exacerbate the functional exhaustion of tumour-infiltrating T-cells. Here we review these multifactorial constraints and mechanisms – elevated immunosuppressive metabolites and enzymes, nutrient insufficiency, hypoxia, increased acidity, immense amounts of extracellular ATP and adenosine, dysregulated bioenergetic and purinergic signalling, and ionic imbalance - that operate in the TME and collectively suppress T-cell function. We discuss how scientific advances could help overcome the complex TME obstacles for tumour-infiltrating T-lymphocytes, aiming to stimulate further research for developing new therapeutic strategies by harnessing the full potential of the immune system in combating cancer.
Collapse
|
20
|
De Marchi E, Pegoraro A, Turiello R, Di Virgilio F, Morello S, Adinolfi E. A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Front Cell Dev Biol 2022; 10:876510. [PMID: 35663396 PMCID: PMC9159855 DOI: 10.3389/fcell.2022.876510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
ATP and adenosine are key constituents of the tumor niche where they exert opposite and complementary roles. ATP can be released in response to cell damage or actively released by tumor cells and subsequently degraded into adenosine, which accumulates within the tumor microenvironment. Notably, while ATP promotes immune eradicating responses mainly via the P2X7 receptor (P2X7R), extracellular adenosine acts as a potent immune suppressor and facilitates neovascularization thanks to the A2A receptor (A2AR). To date, studies exploring the interplay between P2X7R and A2AR in the tumor microenvironment are as yet missing. Here, we show that, in C57/bl6 P2X7 null mice inoculated with B16-F10 melanoma cells, several pro-inflammatory cytokines, including interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 17 (IL-17), interferon gamma (IFN-γ) were significantly decreased, while the immune suppressant transforming growth factor beta (TGF-β) was almost three-fold increased. Interestingly, tumors growing in P2X7-null mice upregulated tumor-associated and splenic A2AR, suggesting that immunosuppression linked to lack of the P2X7R might depend upon A2AR overexpression. Immunohistochemical analysis showed that tumor cells’ A2AR expression was increased, especially around necrotic areas, and that vascular endothelial growth factor (VEGF) and the endothelial marker CD31 were upregulated. A2AR antagonist SCH58261 treatment reduced tumor growth similarly in the P2X7 wild type or null mice strain. However, SCH58261 reduced VEGF only in the P2X7 knock out mice, thus supporting the hypothesis of an A2AR-mediated increase in vascularization observed in the P2X7-null host. SCH58261 administration also significantly reduced intratumor TGF-β levels, thus supporting a key immune suppressive role of A2AR in our model. Altogether, these results indicate that in the absence of host P2X7R, the A2AR favors tumor growth via immune suppression and neovascularization. This study shows a novel direct correlation between P2X7R and A2AR in oncogenesis and paves the way for new combined therapies promoting anti-cancer immune responses and reducing tumor vascularization.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- *Correspondence: Elena Adinolfi,
| |
Collapse
|
21
|
Wang Z, Yu L, Wang Y, Wang C, Mu Q, Liu X, Yu M, Wang K, Yao G, Yu Z. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104793. [PMID: 35064653 PMCID: PMC8922098 DOI: 10.1002/advs.202104793] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Indexed: 05/07/2023]
Abstract
Due to the aggregation-caused quenching effect and near-infrared I poor penetration capabilities of common fluorescent molecules, their applications in visualized imaging and photoactivated treatment are limited. Therefore, new near-infrared II (NIR-II) molecule (named TST), which had the abilities of aggregation-induced emission (AIE) and photothermal therapy are synthesized. Moreover, in order to further improve its fluorescent yield and therapeutic effect, camptothecin prodrug (CPT-S-PEG) and novel immune checkpoint inhibitor AZD4635 are used to co-assemble with TST into nanoparticles for drug delivery. On account of the strong interaction of camptothecin and TST, the intramolecular rotation of TST is limited, thereby inhibiting non-radiation attenuation and promoting fluorescence generation when the nanoparticles are intact. As nanoparticles uptake by cancer cells, redox sensitive CPT-S-PEG is degraded and the nanoparticles disintegrate. The released TST enhances non-radiative attenuation and expedites photothermal conversion because of the removal of the constraint of camptothecin. Furthermore, photothermal therapy induces immunogenic cell death of cancer cells and releases abundant ATP into the tumor microenvironment to recruit immune cells. However, superfluous ATP is converted into immunosuppressive adenosine through the CD39-CD73-A2AR pathway. The AZD4635 released by photothermal disintegration of the nanoparticles just blocks this pathway timely, achieving favorable synergistic effect of photothermal therapy, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Zhenjie Wang
- The People's Hospital of GaozhouMaoming525200P. R. China
| | - Ling Yu
- Second Clinical CollegeGuangzhou University of Chinese MedicineGuangzhou510006P. R. China
- AMI Key laboratory of Chinese Medicine in GuangzhouGuangdong Provincial Hospital of Chinese MedicineGuangzhou510120P. R. China
| | - Yuehua Wang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510315P. R. China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Qingchun Mu
- The People's Hospital of GaozhouMaoming525200P. R. China
| | - Xiaojing Liu
- The People's Hospital of GaozhouMaoming525200P. R. China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityNo. 1023, South Shatai RoadGuangzhou510515P. R. China
| | - Kang‐Nan Wang
- Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528308P. R. China
| | - Guangyu Yao
- Breast CenterDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityNo. 1023, South Shatai RoadGuangzhou510515P. R. China
| |
Collapse
|
22
|
Role of purinergic system and vitamin D in the anti-cancer immune response. Life Sci 2021; 287:120110. [PMID: 34743945 DOI: 10.1016/j.lfs.2021.120110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
For several years, scientists have recognized that vitamin D plays an important role in mineral and bone homeostasis. It was mostly used to treat osteoporosis and rickets in the past decades. Vitamin D has also been discovered to be modulator of the immune system and may play a role in a variety of diseases, including autoimmune diseases, in recent years. Vitamin D interaction with the vitamin D receptor (VDR), which has transcriptional imparts and is displayed on a variety of cell types, including those of the immune system, appears to be accountable for the immune-modulating effects. The action of tumor cells and vitamin D were the first to be investigated, but the spotlight is now on immunologic and purinergic systems. We conducted a systematic search in Pub Med as well as Google scholar for studies written in English. Vitamin D, cancer, purinergic signaling, and immune response were among the search words. Vitamin D has the potential to be a useful coadjuvant in cancer therapy and the purinergic system may be a potential treatment target to cancer therapy, according to our findings.
Collapse
|
23
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Benecke L, Coray M, Umbricht S, Chiang D, Figueiró F, Muller L. Exosomes: Small EVs with Large Immunomodulatory Effect in Glioblastoma. Int J Mol Sci 2021; 22:3600. [PMID: 33808435 PMCID: PMC8036988 DOI: 10.3390/ijms22073600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are among the most aggressive tumors, and with low survival rates. They are characterized by the ability to create a highly immunosuppressive tumor microenvironment. Exosomes, small extracellular vesicles (EVs), mediate intercellular communication in the tumor microenvironment by transporting various biomolecules (RNA, DNA, proteins, and lipids), therefore playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Exosomes are found in all body fluids and can cross the blood-brain barrier due to their nanoscale size. Recent studies have highlighted the multiple influences of tumor-derived exosomes on immune cells. Owing to their structural and functional properties, exosomes can be an important instrument for gaining a better molecular understanding of tumors. Furthermore, they qualify not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting aggressive tumor cells, like glioblastomas.
Collapse
Affiliation(s)
- Laura Benecke
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| | - Mali Coray
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Sandra Umbricht
- Faculty of Medicine, University of Basel, 4051 Basel, Switzerland;
| | - Dapi Chiang
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil;
| | - Laurent Muller
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| |
Collapse
|