1
|
Bains A, Goksen G, Ali N, Khan MR, Patil S, Chawla P. Exploration of Agrocybe aegerita mushroom polysaccharide-polyphenolic complex: Functional properties, binding efficiency, and biological activities. Int J Biol Macromol 2025:139309. [PMID: 39756726 DOI: 10.1016/j.ijbiomac.2024.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
This study investigates the functional and biological activities of a polysaccharide-polyphenolic complex derived from the edible mushroom Agrocybe aegerita. Polyphenols (AMP) were extracted using a modified solvent evaporation technique, and polysaccharides (AMPP) were extracted using enzyme-assisted methods, yielding 8.02 %. The presence of fructose, mannose, glucose, galactose, sucrose, and maltose in varying amounts was confirmed. Different AMP concentrations (0.025-1.00 %) were tested for interaction with AMPP. Samples with 0.2 % and 0.5 % AMP showed significantly higher binding efficiency with polysaccharides. AMP exhibited a particle size of 319 nm, while AMPP revealed 136 nm with an irregular shape and smooth surface. Both AMP and AMPP showed three stages of decomposition, with distinct weight loss. Anti-quorum sensing tests against P. aeruginosa PAO1 showed that AMPP significantly decreased pyocyanin, pyoverdine, and swarming activity and exhibited higher biofilm inhibition. These findings suggest that the AMPP has substantial potential for developing sustainable health products, owing to its enhanced bioactivity.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian 15 Road, Shenzhen 510038, China
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
2
|
Ghosh A, Mukherjee M. Type 1 fimbrial phase variation in multidrug-resistant asymptomatic uropathogenic Escherichia coli clinical isolates upon adherence to HTB-4 cells. Folia Microbiol (Praha) 2024; 69:1185-1204. [PMID: 38568394 DOI: 10.1007/s12223-024-01159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/23/2024] [Indexed: 10/17/2024]
Abstract
The adherence of bladder uroepithelial cells, subsequent expression, and regulation of type 1 fimbrial genes (key mediator of attachment) in clinical multidrug-resistant uropathogenic Escherichia coli (MDR-UPECs) isolated from individuals with asymptomatic bacteriuria (ABU) remain unexplored till date. Therefore, this study aimed to investigate the underlying molecular mechanisms associated with the adherence of clinical MDR-ABU-UPECs to human a uroepithelial cell line (HTB-4), both in the absence and presence of D-Mannose. These investigations focused on phase variation, expression, and regulation of type 1 fimbriae and were compared to a prototype ABU-strain (E. coli 83972) and symptomatic MDR-UPECs. Discordant to the ABU prototype strain, MDR-ABU-UPECs exhibited remarkable adhesive capacity that was significantly reduced after D-mannose exposure, fairly like the MDR symptomatic UPECs. The type 1 fimbrial phase variation, determined by the fim switch analysis, asserted the statistically significant incidence of "both OFF and ON" orientation among the adherent MDR-ABU-UPECs with a significant reduction in phase-ON colonies post-D-mannose exposure, akin to the symptomatic ones. This was indicative of an operative and alternating type 1 fimbrial phase switch. The q-PCR assay revealed a coordinated action of the regulatory factors; H-NS, IHF, and Lrp on the expression of FimB and FimE recombinases, which further controlled the function of fimH and fimA genes in ABU-UPECs, similar to symptomatic strains. Therefore, this study is the first of its kind to provide an insight into the regulatory crosstalk of different cellular factors guiding the adhesion of ABU-UPECs to the host. Additionally, it also advocated for the need to accurately characterize ABU-UPECs.
Collapse
Affiliation(s)
- Arunita Ghosh
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India.
| |
Collapse
|
3
|
Zhang C, Feng L, Wu P, Liu Y, Jin X, Ren H, Li H, Wu F, Zhou X, Jiang W. Establishing the link between D-mannose and juvenile grass carp ( Ctenopharyngodon idella): Improved growth and intestinal structure associated with endoplasmic reticulum stress, mitophagy, and apical junctional complexes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:450-463. [PMID: 39315328 PMCID: PMC11417208 DOI: 10.1016/j.aninu.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
D-mannose, essential for protein glycosylation, has been reported to have immunomodulatory effects and to maintain intestinal flora homeostasis. In addition to evaluating growth performance, we examined the impact of D-mannose on the structure of epithelial cells and apical junction complexes in the animal intestine. All 1800 grass carp (16.20 ± 0.01 g) were randomly divided into six treatments with six replicates of 50 fish each and fed with six different levels of D-mannose (0.52, 1.75, 3.02, 4.28, 5.50 and 6.78 g/kg diet) for 70 d. The study revealed that D-mannose increased feed intake (P < 0.001) but did not affect the percent weight gain (PWG), special growth rate, and feed conversion ratio (P > 0.05). D-mannose supplementation at 1.75 g/kg increased crude protein content in fish and lipid production value (P < 0.05). D-mannose supplementation at 4.28 g/kg increased intestinal length, intestinal weight and fold height of grass carp compared to the control group (P < 0.05). This improvement may be attributed to the phosphomannose isomerase (PMI)-mediated enhancement of glycolysis. This study found that D-mannose supplementation at 4.28 or 3.02 g/kg reduced serum diamine oxidase activity or D-lactate content (P < 0.05) and improved cellular and intercellular structures for the first time. The improvement of cellular redox homeostasis involves alleviating endoplasmic reticulum (ER) stress through the inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling pathways. The alleviation of ER stress may be linked to the phosphomannomutase (PMM)-mediated enhancement of protein glycosylation. In addition, ubiquitin-dependent [PTEN-induced putative kinase 1 (PINK1)/Parkin] and ubiquitin-independent [BCL2-interacting protein 3-like (BNIP3L), BCL2-interacting protein 3 (BNIP3), and FUN14 domain containing 1 (FUNDC1)] mitophagy may play a role in maintaining cellular redox homeostasis. The enhancement of intercellular structures includes enhancing tight junction and adherent junction structures, which may be closely associated with the small Rho GTPase protein (RhoA)/the Rho-associated protein kinase (ROCK) signaling pathway. In conclusion, D-mannose improved intestinal cellular redox homeostasis associated with ER stress and mitophagy pathways, and enhanced intercellular structures related to tight junctions and adherent junctions. Furthermore, quadratic regression analysis of the PWG and intestinal reactive oxygen species content indicated that the optimal addition level of D-mannose for juvenile grass carp was 4.61 and 4.59 g/kg, respectively.
Collapse
Affiliation(s)
- Chong Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
4
|
Kopeć M, Beton-Mysur K, Abramczyk H. Biochemical changes in lipid and protein metabolism caused by mannose-Raman spectroscopy studies. Analyst 2024; 149:2942-2955. [PMID: 38597575 DOI: 10.1039/d4an00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biochemical analysis of human normal bronchial cells (BEpiC) and human cancer lung cells (A549) has been performed by using Raman spectroscopy and Raman imaging. Our approach provides a biochemical compositional mapping of the main cell components: nucleus, mitochondria, lipid droplets, endoplasmic reticulum, cytoplasm and cell membrane. We proved that Raman spectroscopy and Raman imaging can distinguish successfully BEpiC and A549 cells. In this study, we have focused on the role of mannose in cancer development. It has been shown that changes in the concentration of mannose can regulate some metabolic processes in cells. Presented results suggest lipids and proteins can be considered as Raman biomarkers during lung cancer progression. Analysis obtained for bands 1444 cm-1, and 2854 cm-1 characteristic for lipids and derivatives proved that the addition of mannose reduced levels of these compounds. Results obtained for protein compounds based on bands 858 cm-1, 1004 cm-1 and 1584 cm-1 proved that the addition of mannose increases the values of protein in BEpiC cells and blocks protein glycolisation in A549 cells. Noticing Raman spectral changes in BEpiC and A549 cells supplemented with mannose can help to understand the mechanism of sugar metabolism during cancer development and could play in the future an important role in clinical treatment.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
5
|
Scaglione F, Minghetti P, Ambrosio F, Ernst B, Ficarra V, Gobbi M, Naber K, Schellekens H. Nature of the Interaction of Alpha-D-Mannose and Escherichia coli Bacteria, and Implications for its Regulatory Classification. A Delphi Panel European Consensus Based on Chemistry and Legal Evidence. Ther Innov Regul Sci 2023; 57:1153-1166. [PMID: 37578736 PMCID: PMC10579141 DOI: 10.1007/s43441-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Abstract
The nature of alpha-D-mannose-natural aldohexose sugar, C-2 glucose epimer, whose intended use is for preventing urinary tract infections-in the interaction with E. coli is addressed in order to drive the issue of its regulatory classification as a medicinal product or medical device. PRISMA systematic review approach was applied; Delphi Panel method was used to target consensus on statements retrieved from evidence. Based on regulatory definitions and research evidence, the mechanism of D-mannose does not involve a metabolic or immunological action while there is uncertainty regarding the pharmacological action. Specific interaction between the product and the bacteria within the body occurs, but its nature is inert: it does not induce a direct response activating or inhibiting body processes. Moreover, the action of D-mannose takes place, even if inside the bladder, outside the epithelium on bacteria that have not yet invaded the urothelial tissue. Therefore, its mechanism of action is not directed to host structures but to structures (bacteria) external to the host's tissues. On the basis of current regulation, the uncertainty as regard a pharmacological action of alpha-D-mannose makes possible its medical device classification: new regulations and legal judgments can add further considerations. From a pharmacological perspective, research is driven versus synthetic mannosides: no further considerations are expected on alpha-D-mannose.
Collapse
Affiliation(s)
- Francesco Scaglione
- Clinical Pharmacology and Toxicology Unit -GOM Niguarda, GOM Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | | | - Beat Ernst
- Group Molecular Pharmacy Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Vincenzo Ficarra
- Department of Human and Pediatric Pathology “Gaetano Barresi”, Urologic Section, University of Messina, Piazza Pugliatti, 1, Messina, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milan, MI Italy
| | - Kurt Naber
- Department of Urology, Technical University of Munich, Munich, Germany
- Department of Urology, Technical University of Munich, Karl-Bickleder Str. 44C, 94315 Straubing, Germany
| | - Huub Schellekens
- Faculty of Sciences, Utrecht University, PO Box 80125, 3508 TC Utrecht, The Netherlands
| |
Collapse
|
6
|
Crocetto F, Balsamo R, Amicuzi U, De Luca L, Falcone A, Mirto BF, Giampaglia G, Ferretti G, Capone F, Machiella F, Varriale D, Sicignano E, Pagano G, Lombardi A, Lucarelli G, Lasorsa F, Busetto GM, Del Giudice F, Ferro M, Imbimbo C, Barone B. Novel Key Ingredients in Urinary Tract Health-The Role of D-mannose, Chondroitin Sulphate, Hyaluronic Acid, and N-acetylcysteine in Urinary Tract Infections (Uroial PLUS ®). Nutrients 2023; 15:3573. [PMID: 37630763 PMCID: PMC10459296 DOI: 10.3390/nu15163573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Urinary tract infections represent a common and significant health concern worldwide. The high rate of recurrence and the increasing antibiotic resistance of uropathogens are further worsening the current scenario. Nevertheless, novel key ingredients such as D-mannose, chondroitin sulphate, hyaluronic acid, and N-acetylcysteine could represent an important alternative or adjuvant to the prevention and treatment strategies of urinary tract infections. Several studies have indeed evaluated the efficacy and the potential use of these compounds in urinary tract health. In this review, we aimed to summarize the characteristics, the role, and the application of the previously reported compounds, alone and in combination, in urinary tract health, focusing on their potential role in urinary tract infections.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Raffaele Balsamo
- Urology Unit, AORN Ospedali dei Colli, Monaldi Hospital, 80131 Naples, Italy;
| | - Ugo Amicuzi
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Luigi De Luca
- Division of Urology, Department of Surgical Multispecialty, AORN Antonio Cardarelli, 80131 Naples, Italy;
| | - Alfonso Falcone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Benito Fabio Mirto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Gaetano Giampaglia
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Gianpiero Ferretti
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Federico Capone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Fabio Machiella
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Domenico Varriale
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Enrico Sicignano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Giovanni Pagano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Alessandro Lombardi
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71121 Foggia, Italy;
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Matteo Ferro
- Department of Urology, IEO—European Institute of Oncology, IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy;
| | - Ciro Imbimbo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (G.G.); (G.F.); (F.C.); (F.M.); (D.V.); (E.S.); (G.P.); (A.L.); (C.I.)
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| |
Collapse
|
7
|
Faustino M, Silva S, Costa EM, Pereira AM, Pereira JO, Oliveira AS, Ferreira CMH, Pereira CF, Durão J, Pintado ME, Carvalho AP. Effect of Mannan Oligosaccharides Extracts in Uropathogenic Escherichia coli Adhesion in Human Bladder Cells. Pathogens 2023; 12:885. [PMID: 37513732 PMCID: PMC10384913 DOI: 10.3390/pathogens12070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are a common public health problem, mainly caused by uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and may complicate their long-term management. D-mannose and extracts rich in D-mannose such as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection. This highlights the therapeutic potential and commercial value of using them as health supplements. Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is through the competitive inhibition of FimH adhesins through the action of mannose, validated by a bacterial growth impact assessment.
Collapse
Affiliation(s)
- Margarida Faustino
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eduardo M Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Margarida Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana Sofia Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carlos M H Ferreira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
8
|
Insightful Improvement in the Design of Potent Uropathogenic E. coli FimH Antagonists. Pharmaceutics 2023; 15:pharmaceutics15020527. [PMID: 36839848 PMCID: PMC9962304 DOI: 10.3390/pharmaceutics15020527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Selective antiadhesion antagonists of Uropathogenic Escherichia coli (UPEC) type-1 Fimbrial adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH antagonists based on previously described C-linked allyl α-D-mannopyranoside was synthesized using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two new members of FimH antagonist amongst the above family with sub nanomolar affinity. The resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to provide additional favorable binding interactions with the so-called FimH "tyrosine gate". The newly synthesized C-linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage, exhibited improved binding when compared to previously published analogs, as demonstrated by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither affected bacterial growth or cell viability nor interfered with antibiotic activity. C-linked mannoside antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9). Therefore, these molecules constituted additional therapeutic candidates' worth further development in the search for potent anti-adhesive drugs against infections caused by UPEC.
Collapse
|
9
|
Luo J, Li Y, Zhai Y, Liu Y, Zeng J, Wang D, Li L, Zhu Z, Chang B, Deng F, Zhang J, Zhou J, Sun L. D-Mannose ameliorates DNCB-induced atopic dermatitis in mice and TNF-α-induced inflammation in human keratinocytes via mTOR/NF-κB pathway. Int Immunopharmacol 2022; 113:109378. [DOI: 10.1016/j.intimp.2022.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
10
|
Rocco P, Musazzi UM, Minghetti P. Medicinal products meet medical devices: Classification and nomenclature issues arising from their combined use. Drug Discov Today 2022; 27:103324. [PMID: 35872298 DOI: 10.1016/j.drudis.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
When a medicinal product (MP) and a medical device (MD) are combined, their correct classification implies discrimination among different possible scenarios, based on the nature of the combination and the principal mechanism of action. In the European Union (EU), stakeholders deal with a lack of harmonization, which can represent an obstacle toward the development of these products, and a complex nomenclature, emerging from two divergent regulatory philosophies (i.e., that of MPs and that of MDs). In the USA, where the US Food and Drug Administration (FDA) supervises MDs, drugs, and biological products, stakeholders interact with a single authority, where any issue is addressed internally.
Collapse
Affiliation(s)
- Paolo Rocco
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy
| | - Umberto Maria Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, 20133 Milan, Italy.
| |
Collapse
|
11
|
Lv L, Xu Z, Zhao M, Gao J, Jiang R, Wang Q, Shi X. Mannose inhibits Plasmodium parasite growth and cerebral malaria development via regulation of host immune responses. Front Immunol 2022; 13:859228. [PMID: 36211381 PMCID: PMC9546034 DOI: 10.3389/fimmu.2022.859228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
D-mannose can be transported into a variety of cells via glucose transporter (GLUT), and supraphysiological levels of D-mannose impairs tumor growth and modulates immune cell function through mechanisms such as interference with glycolysis and induction of oxidative stress. Blood-stage Plasmodium mainly depends on glycolysis for energy supply and pathological immune response plays a vital role in cerebral malaria. However, it is not clear whether mannose affects malaria blood-stage infection. Here, we fed D-mannose to Plasmodium berghei-infected mice and found weight loss and reduced parasitemia without apparent side effects. Compromised parasitemia in C57BL/6 mice was accompanied by an increase in splenic macrophages compared to an untreated group. When mannose was applied to a rodent experimental cerebral malaria (ECM) model, the incidence of ECM decreased. Expression of activation marker CD69 on T cells in peripheral blood and the brain were reduced, and cerebral migration of activated T cells was prevented by decreased expression of CXCR3. These findings suggest that mannose inhibits Plasmodium infection by regulating multiple host immune responses and could serve as a potential strategy for facilitating malaria treatment.
Collapse
Affiliation(s)
- Li Lv
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihao Xu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Meichen Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Jian Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Rumeng Jiang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Qian Wang, ; Xiaoyu Shi,
| | - Xiaoyu Shi
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
- *Correspondence: Qian Wang, ; Xiaoyu Shi,
| |
Collapse
|
12
|
Parazzini F, Ricci E, Fedele F, Chiaffarino F, Esposito G, Cipriani S. Systematic review of the effect of D‑mannose with or without other drugs in the treatment of symptoms of urinary tract infections/cystitis (Review). Biomed Rep 2022; 17:69. [PMID: 35815191 PMCID: PMC9260159 DOI: 10.3892/br.2022.1552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies, reviews and meta-analyses have documented that D-mannose use lowers the risk of recurrent urinary tract infections (UTI), but its role in the treatment of UTI/cystitis-related symptoms is unclear. In particular, no systematic review has analyzed the role of treatment with D-mannose in acute UTI/cystitis. In this paper, we systematically reviewed the published data on the effect of D-mannose, alone or in association with other compounds, on the typical symptoms of UTI/cystitis. PubMed/Medline and EMBASE databases were searched, from 1990 to January 2022, using combinations of the following keywords: ‘urinary tract infections’, ‘cystalgia’, ‘recurrent next urinary tract infection’, ‘cystitis’, ‘mannose’, ‘mannoside’, ‘D-mannose’, ‘bacteriuria’, ‘pyuria’, ‘pyelocystitis’ with the appropriate Boolean modifiers (Limits: Human, English, full article). Studies were selected for the systematic review if they were clinical studies and reported original data, the number of patients using D-mannose alone or in association with other treatments, and the number of patients with symptoms of UTI/cystitis at trial entry and after the follow-up period. A total of seven studies were identified. D-mannose was given alone in two studies, and was associated with cranberry extract, Morinda citrifolia fruit extract, pomegranate extract, fructo-oligosaccharides, lactobacilli, and N-acetylcysteine in the others. All studies reported that symptoms decreased after treatment with D-mannose. Despite the limitations of the studies, the consistent results observed among all studies give support to the general findings that D-mannose may be useful in the treatment of UTI/cystitis symptoms.
Collapse
Affiliation(s)
- Fabio Parazzini
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Elena Ricci
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Francesco Fedele
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Francesca Chiaffarino
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I‑20122 Milan, Italy
| | - Giovanna Esposito
- Department of Clinical Sciences and Community Health, University of Milan, School of Medicine and Surgery, I‑20122 Milan, Italy
| | - Sonia Cipriani
- Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, I‑20122 Milan, Italy
| |
Collapse
|
13
|
Hu M, Chen Y, Deng F, Chang B, Luo J, Dong L, Lu X, Zhang Y, Chen Z, Zhou J. D-Mannose Regulates Hepatocyte Lipid Metabolism via PI3K/Akt/mTOR Signaling Pathway and Ameliorates Hepatic Steatosis in Alcoholic Liver Disease. Front Immunol 2022; 13:877650. [PMID: 35464439 PMCID: PMC9021718 DOI: 10.3389/fimmu.2022.877650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective properties and mechanisms of D-mannose against hepatic steatosis in experimental alcoholic liver disease (ALD). Drinking-water supplementation of D-mannose significantly attenuated hepatic steatosis in a standard mouse ALD model established by chronic-binge ethanol feeding, especially hepatocyte lipid deposition. This function of D-mannose on lipid accumulation in hepatocytes was also confirmed using ethanol-treated primary mouse hepatocytes (PMHs) with a D-mannose supplement. Meanwhile, D-mannose regulated lipid metabolism by rescuing ethanol-mediated reduction of fatty acid oxidation genes (PPARα, ACOX1, CPT1) and elevation of lipogenic genes (SREBP1c, ACC1, FASN). PI3K/Akt/mTOR signaling pathway was involved in this effect of D-mannose on lipid metabolism since PI3K/Akt/mTOR pathway inhibitors or agonists could abolish this effect in PMHs. Overall, our findings suggest that D-mannose exhibits its anti-steatosis effect in ALD by regulating hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Ala-Jaakkola R, Laitila A, Ouwehand AC, Lehtoranta L. Role of D-mannose in urinary tract infections - a narrative review. Nutr J 2022; 21:18. [PMID: 35313893 PMCID: PMC8939087 DOI: 10.1186/s12937-022-00769-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most prevalent bacterial diseases worldwide. Despite the efficacy of antibiotics targeted against UTI, the recurrence rates remain significant among the patients. Furthermore, the development of antibiotic resistance is a major concern and creates a demand for alternative treatment options. D-mannose, a monosaccharide naturally found in fruits, is commonly marketed as a dietary supplement for reducing the risk for UTIs. Research suggests that supplemented D-mannose could be a promising alternative or complementary remedy especially as a prophylaxis for recurrent UTIs. When excreted in urine, D-mannose potentially inhibits Escherichia coli, the main causative organism of UTIs, from attaching to urothelium and causing infection. In this review, we provide an overview of UTIs, E. coli pathogenesis and D-mannose and outline the existing clinical evidence of D-mannose in reducing the risk of UTI and its recurrence. Furthermore, we discuss the potential effect mechanisms of D-mannose against uropathogenic E.coli.
Collapse
Affiliation(s)
- Reeta Ala-Jaakkola
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland
| | - Arja Laitila
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland
| | - Arthur C Ouwehand
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland.
| | - Liisa Lehtoranta
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland
| |
Collapse
|
15
|
Leggett A, Li DW, Sindeldecker D, Staats A, Rigel N, Bruschweiler-Li L, Brüschweiler R, Stoodley P. Cadaverine Is a Switch in the Lysine Degradation Pathway in Pseudomonas aeruginosa Biofilm Identified by Untargeted Metabolomics. Front Cell Infect Microbiol 2022; 12:833269. [PMID: 35237533 PMCID: PMC8884266 DOI: 10.3389/fcimb.2022.833269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.
Collapse
Affiliation(s)
- Abigail Leggett
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Amelia Staats
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nicholas Rigel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Rafael Brüschweiler
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, The Ohio State University, Columbus, OH, United States
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| |
Collapse
|
16
|
D-Mannose Slows Glioma Growth by Modulating Myeloperoxidase Activity. Cancers (Basel) 2021; 13:cancers13246360. [PMID: 34944979 PMCID: PMC8699108 DOI: 10.3390/cancers13246360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Inflammation and oxidative stress are important host defense responses. However, while the host response can be cytotoxic and kill tumor cells, tumor cells can also alter and exploit the host immune environment to further their survival. Thus, the host response can impact both tumor suppression and progression. Modulating the tumor–host response interaction to favor tumor suppression would be highly desirable. D-mannose has been found to have anti-inflammatory properties and can block signaling related to myeloperoxidase (MPO), a highly oxidizing pro-inflammatory enzyme secreted in host defense. However, the effect of D-mannose on host immune response in the glioma microenvironment has not been explored. We found that D-mannose slowed glioma growth by increasing MPO activity and oxidative stress in the glioma microenvironment. Our findings revealed that D-mannose may be able to shift the host immune response toward tumor suppression and could be a potential new therapeutic direction for these difficult-to-treat tumors. Abstract Host immune response in the tumor microenvironment plays key roles in tumorigenesis. We hypothesized that D-mannose, a simple sugar with anti-inflammatory properties, could decrease oxidative stress and slow glioma progression. Using a glioma stem cell model in immunocompetent mice, we induced gliomas in the brain and tracked MPO activity in vivo with and without D-mannose treatment. As expected, we found that D-mannose treatment decreased the number of MPO+ cells and slowed glioma progression compared to PBS-treated control animals with gliomas. Unexpectedly, instead of decreasing MPO activity, D-mannose increased MPO activity in vivo, revealing that D-mannose boosted the MPO activity per MPO+ cell. On the other hand, D-glucose had no effect on MPO activity. To better understand this effect, we examined the effect of D-mannose on bone marrow-derived myeloid cells. We found that D-mannose modulated MPO activity via two mechanisms: directly via N-glycosylation of MPO, which boosted the MPO activity of each molecule, and indirectly by increasing H2O2 production, the main substrate for MPO. This increased host immune response acted to reduce tumor size, suggesting that increasing MPO activity such as through D-mannose administration may be a potential new therapeutic direction for glioma treatment.
Collapse
|
17
|
Wang J, Jalali Motlagh N, Wang C, Wojtkiewicz GR, Schmidt S, Chau C, Narsimhan R, Kullenberg EG, Zhu C, Linnoila J, Yao Z, Chen JW. d-mannose suppresses oxidative response and blocks phagocytosis in experimental neuroinflammation. Proc Natl Acad Sci U S A 2021; 118:e2107663118. [PMID: 34702739 PMCID: PMC8673064 DOI: 10.1073/pnas.2107663118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammation drives the pathology of many neurological diseases. d-mannose has been found to exert an antiinflammatory effect in peripheral diseases, but its effects on neuroinflammation and inflammatory cells in the central nervous system have not been studied. We aimed to determine the effects of d-mannose on key macrophage/microglial functions-oxidative stress and phagocytosis. In murine experimental autoimmune encephalomyelitis (EAE), we found d-mannose improved EAE symptoms compared to phosphate-buffered saline (PBS)-control mice, while other monosaccharides did not. Multiagent molecular MRI performed to assess oxidative stress (targeting myeloperoxidase [MPO] using MPO-bis-5-hydroxytryptamide diethylenetriaminepentaacetate gadolinium [Gd]) and phagocytosis (using cross-linked iron oxide [CLIO] nanoparticles) in vivo revealed that d-mannose-treated mice had smaller total MPO-Gd+ areas than those of PBS-control mice, consistent with decreased MPO-mediated oxidative stress. Interestingly, d-mannose-treated mice exhibited markedly smaller CLIO+ areas and much less T2 shortening effect in the CLIO+ lesions compared to PBS-control mice, revealing that d-mannose partially blocked phagocytosis. In vitro experiments with different monosaccharides further confirmed that only d-mannose treatment blocked macrophage phagocytosis in a dose-dependent manner. As phagocytosis of myelin debris has been known to increase inflammation, decreasing phagocytosis could result in decreased activation of proinflammatory macrophages. Indeed, compared to PBS-control EAE mice, d-mannose-treated EAE mice exhibited significantly fewer infiltrating macrophages/activated microglia, among which proinflammatory macrophages/microglia were greatly reduced while antiinflammatory macrophages/microglia increased. By uncovering that d-mannose diminishes the proinflammatory response and boosts the antiinflammatory response, our findings suggest that d-mannose, an over-the-counter supplement with a high safety profile, may be a low-cost treatment option for neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Negin Jalali Motlagh
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cuihua Wang
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Stephan Schmidt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cindy Chau
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Radha Narsimhan
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Enrico G Kullenberg
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cindy Zhu
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jenny Linnoila
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - John W Chen
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
18
|
Zhu H, Chen Y, Hang Y, Luo H, Fang X, Xiao Y, Cao X, Zou S, Hu X, Hu L, Zhong Q. Impact of inappropriate empirical antibiotic treatment on clinical outcomes of urinary tract infections caused by Escherichia coli: a retrospective cohort study. J Glob Antimicrob Resist 2021; 26:148-153. [PMID: 34118479 DOI: 10.1016/j.jgar.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES We aimed to determine the clinical impact of inappropriate empirical antibiotic treatment (IEAT) compared with appropriate empirical antibiotic treatment (AEAT) in hospitalised patients with urinary tract infections (UTIs) caused by Escherichia coli (E. coli). METHODS This retrospective cohort study included adult patients with a primary diagnosis of UTI who were treated with empirical antibiotics at a tertiary hospital in southern China over a 2-year period. Clinical data of patients who received IEAT were compared with those of patients receiving AEAT. We used multivariable logistic regression to identify the predictors for receiving IEAT and the risk factors affecting clinical outcomes. RESULTS A total of 213 patients were enrolled (median age, 61 years), of whom 103 (48.4%) received IEAT. IEAT was associated with empirical use of fluoroquinolones, male sex and age-adjusted Charlson comorbidity index (aCCI) score >6. Hospital length of stay (LOS) was longer for patients who received IEAT than for those who received AEAT (13.6 ± 8.6 days vs. 10.8 ± 7.9 days; P = 0.008). IEAT was an independent risk factor for longer LOS along with aCCI score ≥2, lung disease and cardiac disease. CONCLUSION Empirical use of fluoroquinolones for UTIs should be avoided, especially in male patients with aCCI score >6. Improved empirical antimicrobial therapy may have a beneficial impact in reducing bacterial resistance and healthcare costs by decreasing the LOS. Therefore, interventions to promote in-depth antibiotic stewardship programmes in China are needed.
Collapse
Affiliation(s)
- Hongying Zhu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yanhui Chen
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yaping Hang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hong Luo
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xueyao Fang
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yanping Xiao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xingwei Cao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shan Zou
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoyan Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qiaoshi Zhong
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
19
|
Khodavandi A, Alizadeh F, Hosseini F. Differential expression of bla CTX-M-33 with vancomycin/trimethoprim combination in Escherichia coli-producing extended-spectrum β-lactamase isolated from intensive care unit-acquired urinary tract infection. INTERNATIONAL ARCHIVES OF HEALTH SCIENCES 2021. [DOI: 10.4103/iahs.iahs_39_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|