1
|
Leskiw E, Whaley A, Hopwood P, Houston T, Murib N, Al-Falih D, Fujiwara R. Validating Disease Associations of Drug-Metabolizing Enzymes through Genome-Wide Association Study Data Analysis. Genes (Basel) 2024; 15:1326. [PMID: 39457450 PMCID: PMC11507559 DOI: 10.3390/genes15101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Phase I and phase II drug-metabolizing enzymes are crucial for the metabolism and elimination of various endogenous and exogenous compounds, such as small-molecule hormones, drugs, and xenobiotic carcinogens. While in vitro and animal studies have suggested a link between genetic mutations in these enzymes and an increased risk of cancer, human in vivo studies have provided limited supportive evidence. METHODS Genome-wide association studies (GWASs) are a powerful tool for identifying genes associated with specific diseases by comparing two large groups of individuals. In the present study, we analyzed a GWAS database to identify key diseases genetically associated with drug-metabolizing enzymes, focusing on UDP-glucuronosyltransferases (UGTs). RESULTS Our analysis confirmed a strong association between the UGT1 gene and hyperbilirubinemia. Additionally, over ten studies reported a link between the UGT1 gene and increased low-density lipoprotein (LDL) cholesterol levels. UGT2B7 was found to be associated with testosterone levels, total cholesterol levels, and vitamin D levels. CONCLUSIONS Despite the in vitro capability of UGT1 and UGT2 family enzymes to metabolize small-molecule carcinogens, the GWAS data did not indicate their genetic association with cancer, except for one study that linked UGT2B4 to ovarian cancer. Further investigations are necessary to fill the gap between in vitro, animal, and human in vivo data.
Collapse
Affiliation(s)
- Evan Leskiw
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Adeline Whaley
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Peter Hopwood
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Tailyn Houston
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Nehal Murib
- College of Arts and Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Donna Al-Falih
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ryoichi Fujiwara
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
2
|
Jadhav VS, Stair JG, Eck RJ, Smukowski SN, Currey HN, Toscano LG, Hincks JC, Latimer CS, Valdmanis PN, Kraemer BC, Liachko NF. Transcriptomic evaluation of tau and TDP-43 synergism shows tauopathy predominance and reveals potential modulating targets. Neurobiol Dis 2024; 193:106441. [PMID: 38378122 PMCID: PMC11059213 DOI: 10.1016/j.nbd.2024.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aβ) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aβ, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.
Collapse
Affiliation(s)
- Vaishnavi S Jadhav
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA; Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jade G Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Randall J Eck
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA; Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Samuel N Smukowski
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Heather N Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Laura Garcia Toscano
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA; Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joshua C Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA; Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nicole F Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA; Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
3
|
Shilbayeh SAR, Adeen IS, Ghanem EH, Aljurayb H, Aldilaijan KE, AlDosari F, Fadda A. Exploratory focused pharmacogenetic testing reveals novel markers associated with risperidone pharmacokinetics in Saudi children with autism. Front Pharmacol 2024; 15:1356763. [PMID: 38375040 PMCID: PMC10875102 DOI: 10.3389/fphar.2024.1356763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Autism spectrum disorders (ASDs) encompass a broad range of phenotypes characterized by diverse neurological alterations. Genomic studies have revealed considerable overlap between the molecular mechanisms implicated in the etiology of ASD and genes involved in the pharmacokinetic (PK) and pharmacodynamic (PD) pathways of antipsychotic drugs employed in ASD management. Given the conflicting data originating from candidate PK or PD gene association studies in diverse ethnogeographic ASD populations, dosage individualization based on "actionable" pharmacogenetic (PGx) markers has limited application in clinical practice. Additionally, off-label use of different antipsychotics is an ongoing practice, which is justified given the shortage of approved cures, despite the lack of satisfactory evidence for its safety according to precision medicine. This exploratory study aimed to identify PGx markers predictive of risperidone (RIS) exposure in autistic Saudi children. Methods: This prospective cohort study enrolled 89 Saudi children with ASD treated with RIS-based antipsychotic therapy. Plasma levels of RIS and 9-OH-RIS were measured using a liquid chromatography-tandem mass spectrometry system. To enable focused exploratory testing, genotyping was performed with the Axiom PharmacoFocus Array, which included a collection of probe sets targeting PK/PD genes. A total of 720 PGx markers were included in the association analysis. Results: A total of 27 PGx variants were found to have a prominent impact on various RIS PK parameters; most were not located within the genes involved in the classical RIS PK pathway. Specifically, 8 markers in 7 genes were identified as the PGx markers with the strongest impact on RIS levels (p < 0.01). Four PGx variants in 3 genes were strongly associated with 9-OH-RIS levels, while 5 markers in 5 different genes explained the interindividual variability in the total active moiety. Notably, 6 CYP2D6 variants exhibited strong linkage disequilibrium; however, they significantly influenced only the metabolic ratio and had no considerable effects on the individual estimates of RIS, 9-OH-RIS, or the total active moiety. After correction for multiple testing, rs78998153 in UGT2B17 (which is highly expressed in the brain) remained the most significant PGx marker positively adjusting the metabolic ratio. For the first time, certain human leukocyte antigen (HLA) markers were found to enhance various RIS exposure parameters, which reinforces the gut-brain axis theory of ASD etiology and its suggested inflammatory impacts on drug bioavailability through modulation of the brain, gastrointestinal tract and/or hepatic expression of metabolizing enzymes and transporters. Conclusion: Our hypothesis-generating approach identified a broad spectrum of PGx markers that interactively influence RIS exposure in ASD children, which indicated the need for further validation in population PK modeling studies to define polygenic scores for antipsychotic efficacy and safety, which could facilitate personalized therapeutic decision-making in this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Iman Sharaf Adeen
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ezzeldeen Hasan Ghanem
- Pharmaceutical Analysis Section, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Haya Aljurayb
- Molecular Pathology Laboratory, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khawlah Essa Aldilaijan
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah AlDosari
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia
| | | |
Collapse
|
4
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Riffi R, Boughrara W, Chentouf A, Ilias W, Brahim NMT, Berrebbah AA, Belhoucine F. Pharmacogenetics of Carbamazepine: A Systematic Review on CYP3A4 and CYP3A5 Polymorphisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1463-1473. [PMID: 38859787 DOI: 10.2174/0118715273298953240529100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND OBJECTIVE The association between carbamazepine (CBZ) metabolism and resistance in epilepsy and the genetic polymorphisms of CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) has been the subject of previous investigations with controversial results. Hence, we conducted a systematic review to assess the potential link between these polymorphisms and CBZ metabolism and resistance. METHODS Identifying relevant studies was carried out by searching PubMed, Scopus, PharmGKB, EPIGAD, and PHARMAADME databases up until June 2023. The studies included in our analysis investigated the connection between CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) polymorphisms and CBZ metabolism and resistance. RESULTS This review included a total of 23 studies and more than 2177 epilepsy patients. It was found that the CYP3A4 (rs12721627 and rs28371759) polymorphisms are associated with reduced catalytic activity, whereas the CYP3A4 (rs2740574) polymorphism is linked to lower levels of CBZ-diol and decreased activity. It was also observed that the CYP3A5 (rs776746) polymorphism influences the dose-adjusted plasma levels of CBZ. CONCLUSION Although these findings highlight the impact of genetic variations in the CYP3A4 and CYP3A5 genes on CBZ pharmacokinetics and pharmacodynamics, further studies across diverse populations are essential to enhance personalized epilepsy therapy in clinical settings.
Collapse
Affiliation(s)
- Rachda Riffi
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | - Wefa Boughrara
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| | - Amina Chentouf
- Service de Neurologie, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
- Laboratoire de Recherche ACCIPED, Faculté de Médecine, Université Oran1, Oran, Algeria
| | - Wassila Ilias
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | | | | | - Fatma Belhoucine
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| |
Collapse
|
6
|
Liu W, Huang J, Yan Z, Lin Y, Huang G, Chen X, Wang Z, Spencer PS, Liu J. Association of N-nitrosodimethylamine exposure with cognitive impairment based on the clues of mice and humans. Front Aging Neurosci 2023; 15:1137164. [PMID: 37441677 PMCID: PMC10333700 DOI: 10.3389/fnagi.2023.1137164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
N-nitrosodimethylamine (NDMA) is an environmental and food contaminant, but limited data to concern whether NDMA has adverse effects on the brain. This study first determined the concentration of NDMA in foods from aquaculture markets in Shenzhen, then analyzed the effects on C57BL/6 mice and further evaluated on the urine samples of elderly Chinese residents with normal cognition (NC, n = 144), cognitive decline (CD, n = 116) and mild cognitive impairment (MCI, n = 123). The excessive rate of NDMA in foods was 3.32% (27/813), with a exceeding range of 4.78-131.00 μg/kg. Behavioral tests showed that 60 days treatment of mice with 3 mg/kg NDMA reduced cognitive performance. Cognitive impairment in human was significantly associated with sex, educational levels, length of residence in Shenzhen, household registration, passive smoking, rice, fresh vegetables, bacon products. NDMA was detected in 55.4% (212/383) of urine samples, with a median concentration of 0.23 μg/L (1.20 × 10 -7-157.39 μg/L). The median concentration for NC, CD and MCI were 0.32, 0.27, and 0 μg/L, respectively. The urinary NDMA concentration had a strong negative correlation with cognitive impairment (Kendall's Tau-b = -0.89, P = 0.024). The median estimated daily intake (EDI) of NDMA was determined to be 6.63 ng/kg-bw/day. Taken together, there appears to be an association between NDMA and human and murine cognition, which provides a new clue to Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Wei Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Department of Communicable Diseases Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jia Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Zhi Yan
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen, China
| | - Yankui Lin
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhou Wang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Department of Nutrition and Food Safety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Hassen LM, Daghestani MH, Omair MA, Althomali AK, Almukaynizi FB, Almaghlouth IA. CYP2D6 genetic polymorphisms in Saudi systemic lupus erythematosus patients: A cross-sectional study. Saudi Med J 2023; 44:237-245. [PMID: 36940959 PMCID: PMC10043891 DOI: 10.15537/smj.2023.44.3.20220581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES To determine the prevalence of selected single nucleotide polymorphisms (rs1080985, rs28624811, rs1065852, rs28371725, and rs1135840) in cytochrome P450 2D6 (CYP2D6) gene among Saudi systemic lupus erythematosus (SLE) patients and to investigate the association between the genetic variants and clinical features of SLE. METHODS This cross-sectional study was carried out on adult Saudi patients at King Khalid University Hospital, Riyadh, Saudi Arabia. Patients with confirmed SLE based on the 2012 Systemic Lupus International Collaborating Clinics classification criteria were included in the study. Peripheral blood was collected for genomic deoxyribonucleic acid extraction and TaqMan® technologies were used for target genotyping. For statistical analysis, differences in genotype frequencies were determined using the Chi-square test, and the association between the variant genotypes and SLE features was evaluated using logistical regression models. RESULTS There were 107 participants included in this study. Overall, the most predominant (23.4%) recessive genotype was AA in rs28624811, and the least prevalent (1.9%) recessive genotype was TT in rs28371725. Moreover, the variant rs1080985 genotypes (GC or CC) were significantly associated with the presence of serositis manifestation (OR=3.15, p=0.03), even after adjusting for age and gender. However, the dominant rs28624811 genotype (GG) was associated with renal involvement (OR=2.56, p=0.03). CONCLUSION Systemic lupus erythematosus patients carrying CYP2D6 variants might be considered at risk for certain manifestations of SLE. Further studies are needed to investigate the implication of these genetic variations in clinical outcomes and drug response.
Collapse
Affiliation(s)
- Lena M. Hassen
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Maha H. Daghestani
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed A. Omair
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Arwa K. Althomali
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Fatimah B. Almukaynizi
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ibrahim A. Almaghlouth
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Wang JY, Li JX, Ning J, Huo XK, Yu ZL, Tian Y, Zhang BJ, Wang Y, Sa D, Li YC, Lv X, Ma XC. Human cytochrome P450 3A-mediated two-step oxidation metabolism of dimethomorph: Implications in the mechanism-based enzyme inactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153585. [PMID: 35121040 DOI: 10.1016/j.scitotenv.2022.153585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Dimethomorph (DMM), an effective and broad-spectrum fungicide applied in agriculture, is toxic to environments and living organisms due to the hazardous nature of its toxic residues. This study aims to investigate the human cytochrome P450 enzyme (CYP)-mediated oxidative metabolism of DMM by combining experimental and computational approaches. Dimethomorph was metabolized predominantly through a two-step oxidation process mediated by CYPs, and CYP3A was identified as the major contributor to DMM sequential oxidative metabolism. Meanwhile, DMM elicited the mechanism-based inactivation (MBI) of CYP3A in a suicide manner, and the iminium ion and epoxide reactive intermediates generated in DMM metabolism were identified as the culprits of MBI. Furthermore, three common pesticides, prochloraz (PCZ), difenoconazole (DFZ) and chlorothalonil (CTL), could significantly inhibit CYP3A-mediated DMM metabolism, and consequently trigger elevated exposure to DMM in vivo. Computational studies elucidated that the differentiation effects in charge distribution and the interaction pattern played crucial roles in DMM-induced MBI of CYP3A4 during sequential oxidative metabolism. Collectively, this study provided a global view of the two-step metabolic activation process of DMM mediated by CYP3A, which was beneficial for elucidating the environmental fate and toxicological mechanism of DMM in humans from a new perspective.
Collapse
Affiliation(s)
- Jia-Yue Wang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jing-Xin Li
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China; School of Public Health, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Xiao-Kui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yan Tian
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Bao-Jing Zhang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Yan Wang
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Deng Sa
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Ya-Chen Li
- School of Public Health, Dalian Medical University, Dalian 116000, Liaoning, China
| | - Xia Lv
- College of Integrative Medicine, Dalian Medical University, Dalian 116000, Liaoning, China.
| | - Xiao-Chi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116000, Liaoning, China.
| |
Collapse
|
9
|
Kutuk MO, Tufan AE, Topal Z, Acikbas U, Guler G, Karakas B, Basaga H, Kilicaslan F, Altintas E, Aka Y, Kutuk O. CYP450 2D6 and 2C19 genotypes in ADHD: not related with treatment resistance but with over-representation of 2C19 ultra-metabolizers. Drug Metab Pers Ther 2022; 37:261-269. [PMID: 35218180 DOI: 10.1515/dmpt-2021-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cytochrome P450 (CYP450) is a major enzyme system involved in drug metabolism as well as regulation of brain function. Although individual variability in CYP enzymes have been studied in terms of personality traits and treatment effects, no study up to now evaluated CYP polymorphisms in children with attention deficit/hyperactivity disorder (ADHD). We aimed to define the genetic profiles of CYP2D6 and CYP2C19 relevant alleles in children with ADHD according to treatment status and compare the frequencies according to past results. METHODS Three hundred and seventeen patients with ADHD-Combined Presentation were enrolled; symptom severity was evaluated by parents and clinicians while adverse effects of previous treatments were evaluated with parent and child reports. Reverse blotting on strip assays was used for genotyping and descriptive and bivariate analyses were conducted. A p-value was set at 0.05 (two-tailed). RESULTS Children were divided into treatment-naïve (n=194, 61.2%) and treatment-resistant (n=123, 38.8%) groups. Within the whole sample PM, EM and UM status according to 2D6 were 3.8% (n=12), 94.3% (n=299) and 21.9% (n=6); respectively. PM, IM, EM and UM status according to 2C19 were 2.5% (n=8), 19.8% (n=63), 48.6% (n=154) and 29.0% (n=92), respectively. No relationship with treatment resistance, comorbidity or gender could be found. Importantly, CYP2C19 UMs were significantly more frequent in ADHD patients compared to previous studies in the general population. CONCLUSIONS CYPs may be a rewarding avenue of research to elucidate the etiology and treatment of patients with ADHD.
Collapse
Affiliation(s)
- Meryem Ozlem Kutuk
- Department of Child and Adolescent Psychiatry, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Abant Izzet Baysal University, School of Medicine, Bolu, Turkey
| | - Zehra Topal
- Department of Child and Adolescent Psychiatry, Gaziantep University, Gaziantep, Turkey
| | | | - Gulen Guler
- Department of Child and Adolescent Psychiatry, Mersin University School of Medicine, Mersin, Turkey
| | - Bahriye Karakas
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fethiye Kilicaslan
- Department of Child and Adolescent Psychiatry, Harran University, Sanliurfa, Turkey
| | - Ebru Altintas
- Department of Psychiatry, Baskent University, Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Yeliz Aka
- Department of Immunology, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ozgur Kutuk
- Department of Immunology, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| |
Collapse
|
10
|
Pang S, Dong W, Liu N, Gao S, Li J, Zhang X, Lu D, Zhang L. Diallyl sulfide protects against dilated cardiomyopathy via inhibition of oxidative stress and apoptosis in mice. Mol Med Rep 2021; 24:852. [PMID: 34651661 PMCID: PMC8532119 DOI: 10.3892/mmr.2021.12492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 family 2 subfamily E member 1 (CYP2E1) is a member of the cytochrome P450 enzyme family and catalyzes the metabolism of various substrates. CYP2E1 is upregulated in multiple heart diseases and causes damage mainly via the production of reactive oxygen species (ROS). In mice, increased CYP2E1 expression induces cardiac myocyte apoptosis, and knockdown of endogenous CYP2E1 can attenuate the pathological development of dilated cardiomyopathy (DCM). Nevertheless, targeted inhibition of CYP2E1 via the administration of drugs for the treatment of DCM remains elusive. Therefore, the present study aimed to investigate whether diallyl sulfide (DAS), a competitive inhibitor of CYP2E1, can be used to inhibit the development of the pathological process of DCM and identify its possible mechanism. Here, cTnTR141W transgenic mice, which developed typical DCM phenotypes, were used. Following treatment with DAS for 6 weeks, echocardiography, histological analysis and molecular marker detection were conducted to investigate the DAS-induced improvement on myocardial function and morphology. Biochemical analysis, western blotting and TUNEL assays were used to detected ROS production and myocyte apoptosis. It was found that DAS improved the typical DCM phenotypes, including chamber dilation, wall thinning, fibrosis, poor myofibril organization and decreased ventricular blood ejection, as determined using echocardiographic and histopathological analyses. Furthermore, the regulatory mechanisms, including inhibition both of the oxidative stress levels and the mitochondria-dependent apoptosis pathways, were involved in the effects of DAS. In particular, DAS showed advantages in terms of improved chamber dilation and dysfunction in model mice, and the improvement occurred in the early stage of the treatment compared with enalaprilat, an angiotensin-converting enzyme inhibitor that has been widely used in the clinical treatment of DCM and HF. The current results demonstrated that DAS could protect against DCM via inhibition of oxidative stress and apoptosis. These findings also suggest that inhibition of CYP2E1 may be a valuable therapeutic strategy to control the development of heart diseases, especially those associated with CYP2E1 upregulation. Moreover, the development of DAS analogues with lower cytotoxicity and metabolic rate for CYP2E1 may be beneficial.
Collapse
Affiliation(s)
- Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Jing Li
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| |
Collapse
|