1
|
Chen J, Wang B, Meng T, Li C, Liu C, Liu Q, Wang J, Liu Z, Zhou Y. Oxidative Stress and Inflammation in Myocardial Ischemia-Reperfusion Injury: Protective Effects of Plant-Derived Natural Active Compounds. J Appl Toxicol 2024. [PMID: 39482870 DOI: 10.1002/jat.4719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death among patients with cardiovascular diseases. Percutaneous coronary intervention (PCI) has been the preferred clinical treatment for AMI due to its safety and efficiency. However, research indicates that the rapid restoration of myocardial oxygen supply following PCI can lead to secondary myocardial injury, termed myocardial ischemia-reperfusion injury (MIRI), posing a grave threat to patient survival. Despite ongoing efforts, the mechanisms underlying MIRI are not yet fully elucidated. Among them, oxidative stress and inflammation stand out as critical pathophysiological mechanisms, playing significant roles in MIRI. Natural compounds have shown strong clinical therapeutic potential due to their high efficacy, availability, and low side effects. Many current studies indicate that natural compounds can mitigate MIRI by reducing oxidative stress and inflammatory responses. Therefore, this paper reviews the mechanisms of oxidative stress and inflammation during MIRI and the role of natural compounds in intervening in these processes, aiming to provide a basis and reference for future research and development of drugs for treating MIRI.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Wu H, Jiang W, Pang P, Si W, Kong X, Zhang X, Xiong Y, Wang C, Zhang F, Song J, Yang Y, Zeng L, Liu K, Jia Y, Wang Z, Ju J, Diao H, Bian Y, Yang B. m 6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation. Front Med 2024; 18:499-515. [PMID: 38806989 DOI: 10.1007/s11684-023-1052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024]
Abstract
Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weitao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ping Pang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jinglun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Linghua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kuiwu Liu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingqiong Jia
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongtao Diao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Duran-Izquierdo M, Sierra-Marquez L, Taboada-Alquerque M, Olivero-Verbel J. Simira cordifolia protects against metal induced-toxicity in Caenorhabditis elegans. Front Pharmacol 2023; 14:1235190. [PMID: 38035022 PMCID: PMC10684763 DOI: 10.3389/fphar.2023.1235190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
Simira cordifolia (Hook.f.) Steyerm (Rubiaceae) is a vascular plant used in Northern Colombia as a source of pigments and wood. However, there is a lack of information regarding its pharmacology and toxicity. This research aimed to study the hydroalcoholic extract of Simira cordifolia as a protector against metal-induced toxicity in Caenorhabditis elegans. Preliminary phytochemical screening of the hydroalcoholic extract of S. cordifolia (HAE-Sc) was conducted using HPLC-ESI-QTOF. Wild-type N2 C. elegans larvae were exposed to different concentrations of HAE-Sc evaluating lethality (50-5000 μg/mL), growth, lifespan, resistance to heat stress, and its protective effect against Mercury (Hg)-, Lead (Pb)- and Cadmium (Cd)-induced lethality (50-1000 μg/mL). The main metabolites present in the extract were iridoids, β-carboline-alkaloids and polyphenols. Bioassays demonstrated that HAE-Sc exhibited low toxicity, with significant lethality (4.2% and 9.4%) occurring at 2500-5000 μg/mL. Growth inhibition reached up to 23.3%, while reproduction declined 13% and 17% at concentrations 500 and 1000 μg/mL, respectively. HAE-Sc enhanced the survival rate of the nematode under thermal stress by up to 79.8%, and extended the mean lifespan of worms by over 33% compared to control. The average lifespan was prolonged by 15.3% and 18.5% at 50 and 100 μg/mL HAE-Sc, respectively. The extract (1000 μg/mL) was able to reduce the death of C. elegans in the presence of heavy metals up to 65.9, 96.8% and 87% for Pb, Hg, and Cd, respectively. In summary, S. cordifolia shows potential protective effects in C. elegans against toxicity caused by heavy metals and heat.
Collapse
Affiliation(s)
| | | | | | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, Colombia
| |
Collapse
|
4
|
Li W, Fan P, Wang X, Tang H. Loganin alleviates myocardial ischemia-reperfusion injury through GLP-1R/NLRP3-mediated pyroptosis pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2730-2740. [PMID: 37497884 DOI: 10.1002/tox.23908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is one of main pathological manifestations of cardiovascular outcomes related to NLRP3 inflammasome-mediated pyroptosis pathway. Loganin is an iridoid glycoside extracted from traditional Chinese medicines, which has multiple activities. However, the roles and mechanism of loganin in myocardial I/R injury remain largely unknown. The models of myocardial I/R injury were established using I/R-treated rats or OGD/R-treated H9C2 cardiomyocytes. Myocardial damage was assessed by TTC and hematoxylin-eosin staining. Pyroptosis-related marker levels were detected by immunohistochemistry, immunofluorescence and western blotting assays. Cell proliferation was examined via EdU assay. Cell apoptosis was investigated by LDH release and flow cytometry. The integrity of cell membrane was analyzed via Dil staining. GLP-1R and NLRP3 levels were detected by immunofluorescence and western blotting assays. Our results showed that loganin suppressed I/R-induced myocardial damage in rats by reducing myocardial infarct, injury and pyroptosis. In addition, loganin attenuated OGD/R-induced cardiomyocyte apoptosis through increasing cell proliferation and reducing LDH release and apoptotic rate. Loganin also mitigated OGD/R-induced cardiomyocyte pyroptosis by reducing cell membrane damage and levels of cleaved caspase-1, IL-1β and IL-18. Furthermore, loganin repressed GLP-1R/NLRP3 pathway activation in OGD/R-treated H9C2 cardiomyocytes by enhancing GLP-1R expression and decreasing NLRP3 level. GLP-1R/NLRP3 activation by GLP-1R inhibition or NLRP3 overexpression reversed the suppressive effects of loganin on OGD/R-induced cardiomyocyte pyroptosis. These data indicated that loganin prevented OGD/R-induced proliferation inhibition, apoptosis and pyroptosis in OGD/R-treated cardiomyocytes by inhibiting GLP-1R/NLRP3 activity, indicating the therapeutic potential of loganin in myocardial I/R injury.
Collapse
Affiliation(s)
- Wenfan Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Pei Fan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Xiaobo Wang
- Department of Aerospace Medicine, The Air Force Medical University, Xi'an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| |
Collapse
|
5
|
Chang CC, Cheng HC, Chou WC, Huang YT, Hsieh PL, Chu PM, Lee SD. Sesamin suppresses angiotensin-II-enhanced oxidative stress and hypertrophic markers in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2165-2172. [PMID: 37357850 DOI: 10.1002/tox.23853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Myocardial hypertrophy plays a crucial role in cardiovascular disease (CVD) development. Myocardial hypertrophy is an adaptive response by myocardial cells to stress after cardiac injury to maintain cardiac output and function. Angiotensin II (Ang-II) regulates CVD through the renin-angiotensin-aldosterone system, and its signaling in cardiac myocytes leads to excessive reactive oxygen species (ROS) production, oxidative stress, and inflammation. Sesamin (SA), a natural compound in sesame seeds, has anti-inflammatory and anti-apoptotic effects. This study investigated whether SA could attenuate hypertrophic damage and oxidative injuries in H9c2 cells under Ang-II stimulation. We found that SA decreased the cell surface area. Furthermore, Ang-II treatment reduced Ang-II-increased ANP, BNP, and β-MHC expression. Ang-II enhanced NADPH oxidase activity, ROS formation, and decreased Superoxide Dismutase (SOD) activity. SA treatment reduces Ang-II-caused oxidative injuries. We also found that SA mitigates Ang-II-induced apoptosis and pro-inflammatory responses. In conclusion, SA could attenuate Ang-II-induced cardiac hypertrophic injuries by inhibiting oxidative stress, apoptosis, and inflammation in H9c2 cells. Therefore, SA might be a potential supplement for CVD management.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hui-Ching Cheng
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Wan-Ching Chou
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Huang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
覃 秋, 吕 祥, 何 梓, 陈 礼, 路 凤, 李 于, 黄 宇, 莫 琪, 徐 华, 吕 菲. [mRNA Expression Profile Changes in Angiotensin-Ⅱ-Induced Atrial Myocardial Fibrosis in Rats]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:959-964. [PMID: 37866953 PMCID: PMC10579065 DOI: 10.12182/20230960211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 10/24/2023]
Abstract
Objective To study the differences between the mRNA expression profile in angiotensin Ⅱ (Ang Ⅱ)-induced fibrotic cardiomyocytes and that of normal cardiomyocytes and the relevant signaling pathways. Methods Six 8-week-old male Sprague-Dawley (SD) rats were randomly assigned to a control group and an Ang Ⅱ group, with 3 rats in each group. Rats in the control group were injected via caudal vein with 0.9% normal saline at 2 mg/kg per day, while rats in the Ang Ⅱ group were injected with Ang Ⅱ via caudal vein at 2 mg/kg per day. The medications were continuously administered in the two groups for 14 days. The degree of myocardial fibrosis was determined by Masson's Trichrome staining and the content of collagen Ⅰ was determined by immunohistochemistry. High throughput sequencing was performed to measure the mRNA expression of rat cardiomyocytes in the two groups and to screen for differentially-expressed mRNAs. The differentially-expressed mRNAs were analyzed by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results Compared with those of the control group, the degree of myocardial fibrosis and the content of collagen Ⅰ in Ang Ⅱ group were significantly higher ( P<0.05). Through sequencing, 313 differentially-expressed mRNAs were identified, with 201 being up-regulated and 112 being down-regulated. Go and KEGG analyses showed that these differentially-expressed mRNA were involved in a variety of biological regulatory functions and pathways of myocardial fibrosis. Conclusion Ang Ⅱ can cause myocardial fibrosis in rats. There are significant differences in mRNA expression between fibrotic cardiomyocytes and normal cardiomyocytes. The differentially expressed mRNAs may play an important role in biological processes, including immune response, cell remodeling, and extracellular matrix deposition.
Collapse
Affiliation(s)
- 秋语 覃
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 祥威 吕
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 梓峰 何
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 礼琴 陈
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 凤霞 路
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 于庭 李
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 宇莉 黄
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 琪 莫
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 华欣 徐
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - 菲 吕
- 桂林医学院附属医院 综合科医疗保健病区 (桂林 541001)Department of Medical Care Ward, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
7
|
Activation of Nrf2/HO-1 antioxidant signaling correlates with the preventive effect of loganin on oxidative injury in ARPE-19 human retinal pigment epithelial cells. Genes Genomics 2023; 45:271-284. [PMID: 36018494 DOI: 10.1007/s13258-022-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.
Collapse
|
8
|
Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, Han J, Han X, Huang W, Wu G, Wang X, Liang G. USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circ Res 2023; 132:465-480. [PMID: 36722348 DOI: 10.1161/circresaha.122.321849] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.
Collapse
Affiliation(s)
- Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Hao Zhou
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wante Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.)
| | - Weijian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences (X.W.), Wenzhou Medical University, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.)
| |
Collapse
|
9
|
Waldrop TI, Graham C, Gard W, Ingle K, Ptacek T, Nguyen N, Lose B, Sethu P, Lee T. Biomimetic cardiac tissue chip and murine arteriovenous fistula models for recapitulating clinically relevant cardiac remodeling under volume overload conditions. Front Bioeng Biotechnol 2023; 11:1101622. [PMID: 36873372 PMCID: PMC9978753 DOI: 10.3389/fbioe.2023.1101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Cardiovascular events are the primary cause of death among dialysis patients. While arteriovenous fistulas (AVFs) are the access of choice for hemodialysis patients, AVF creation can lead to a volume overload (VO) state in the heart. We developed a three-dimensional (3D) cardiac tissue chip (CTC) with tunable pressure and stretch to model the acute hemodynamic changes associated with AVF creation to complement our murine AVF model of VO. In this study, we aimed to replicate the hemodynamics of murine AVF models in vitro and hypothesized that if 3D cardiac tissue constructs were subjected to "volume overload" conditions, they would display fibrosis and key gene expression changes seen in AVF mice. Mice underwent either an AVF or sham procedure and were sacrificed at 28 days. Cardiac tissue constructs composed of h9c2 rat cardiac myoblasts and normal adult human dermal fibroblasts in hydrogel were seeded into devices and exposed to 100 mg/10 mmHg pressure (0.4 s/0.6 s) at 1 Hz for 96 h. Controls were exposed to "normal" stretch and experimental group exposed to "volume overload". RT-PCR and histology were performed on the tissue constructs and mice left ventricles (LVs), and transcriptomics of mice LVs were also performed. Our tissue constructs and mice LV both demonstrated cardiac fibrosis as compared to control tissue constructs and sham-operated mice, respectively. Gene expression studies in our tissue constructs and mice LV demonstrated increased expression of genes associated with extracellular matrix production, oxidative stress, inflammation, and fibrosis in the VO conditions vs. control conditions. Our transcriptomics studies demonstrated activated upstream regulators related to fibrosis, inflammation, and oxidative stress such as collagen type 1 complex, TGFB1, CCR2, and VEGFA and inactivated regulators related to mitochondrial biogenesis in LV from mice AVF. In summary, our CTC model yields similar fibrosis-related histology and gene expression profiles as our murine AVF model. Thus, the CTC could potentially play a critical role in understanding cardiac pathobiology of VO states similar to what is present after AVF creation and may prove useful in evaluating therapies.
Collapse
Affiliation(s)
- Tatyana Isayeva Waldrop
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Graham
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William Gard
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin Ingle
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Travis Ptacek
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nguyen Nguyen
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bailey Lose
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Veterans Affairs Medical Center, Birmingham, AL, United States
| |
Collapse
|
10
|
Ge N, Li Z, Yang L, Yan G, Zhang A, Zhang X, Wu X, Sun H, Li D, Wang X. Development and Validation of a UPLC-MS/MS Method for the Quantification of Components in the Ancient Classical Chinese Medicine Formula of Guyinjian. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238611. [PMID: 36500703 PMCID: PMC9738704 DOI: 10.3390/molecules27238611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Guyinjian (GYJ) is an ancient classic formula of traditional Chinese medicine used for the treatment of liver and kidney yin deficiency; it was derived from the book "Jing Yue Quan Shu" in the Ming Dynasty. Modern clinical observation experiments have shown that GYJ has a definite therapeutic effect on the treatment of gynecological diseases such as kidney deficiency type oligomenorrhea, climacteric syndrome, intermenstrual bleeding, pubertal metrorrhagia, etc. However, the lack of GYJ quality control studies has greatly limited the development of its wider clinical application. In this study, a validated UPLC-MS/MS method was developed successfully for the first time and used to quantify fourteen compounds in GYJ samples with good specificity, linearity (r = 0.9960-0.9999), precision (RSD% ≤ 3.18%), stability (RSD% ≤ 2.22%) and accuracy (recovery test within 88.64-107.43%, RSD% at 2.82-6.22%). Simultaneously, the determination results of 15 batches of GYJ samples were analyzed by multivariate statistical methods, and it was found that the compounds have a greater influence on batch-to-batch stability, mainly Rehmannioside D, Loganin, Morroniside, Ginsenoside Re, and 3',6-Disinapoylsucrose. The proposed new method has the advantages of high sensitivity, high selectivity, and rapid analysis, which provides a reference for the GYJ quality control study.
Collapse
Affiliation(s)
- Nan Ge
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhineng Li
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510120, China
| | - Guangli Yan
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Aihua Zhang
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiuhong Wu
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Dan Li
- Beijing-Tianjin-Hebei Lianchuang Drug Research (Beijing) Co., Ltd., No. 100, Balizhuang Xili, Chaoyang District, Beijing 100025, China
| | - Xijun Wang
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau 999078, China
- Correspondence:
| |
Collapse
|
11
|
Li RJ, Xu JJ, Zhang ZH, Chen MW, Liu SX, Yang C, Li YL, Luo P, Liu YJ, Tang R, Shan ZG. Rhein ameliorates transverse aortic constriction-induced cardiac hypertrophy via regulating STAT3 and p38 MAPK signaling pathways. Front Pharmacol 2022; 13:940574. [PMID: 36091816 PMCID: PMC9459036 DOI: 10.3389/fphar.2022.940574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The progression from compensatory hypertrophy to heart failure is difficult to reverse, in part due to extracellular matrix fibrosis and continuous activation of abnormal signaling pathways. Although the anthraquinone rhein has been examined for its many biological properties, it is not clear whether it has therapeutic value in the treatment of cardiac hypertrophy and heart failure. In this study, we report for the first time that rhein can ameliorate transverse aortic constriction (TAC)-induced cardiac hypertrophy and other cardiac damage in vivo and in vitro. In addition, rhein can reduce cardiac hypertrophy by attenuating atrial natriuretic peptide, brain natriuretic peptide, and β-MHC expression; cardiac fibrosis; and ERK phosphorylation and transport into the nucleus. Furthermore, the inhibitory effect of rhein on myocardial hypertrophy was similar to that of specific inhibitors of STAT3 and ERK signaling. In addition, rhein at therapeutic doses had no significant adverse effects or toxicity on liver and kidney function. We conclude that rhein reduces TAC-induced cardiac hypertrophy via targeted inhibition of the molecular function of ERK and downregulates STAT3 and p38 MAPK signaling. Therefore, rhein might be a novel and effective agent for treating cardiac hypertrophy and other cardiovascular diseases.
Collapse
Affiliation(s)
- Run-Jing Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jia-Jia Xu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zheng-Hao Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Min-Wei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shi-Xiao Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-Ling Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Jiang Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Tang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Rong Tang, ; Zhong-Gui Shan,
| | - Zhong-Gui Shan
- Department of Cardiac Surgery, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Rong Tang, ; Zhong-Gui Shan,
| |
Collapse
|
12
|
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL, Wang X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2022; 37:571-584. [PMID: 35796905 DOI: 10.1007/s10557-022-07362-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Can Cui
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fang Shao
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, China
| | - Ashim K Bagchi
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China. .,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
13
|
Tenuta MC, Deguin B, Loizzo MR, Cuyamendous C, Bonesi M, Sicari V, Trabalzini L, Mitaine-Offer AC, Xiao J, Tundis R. An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 2022; 11:1240. [PMID: 35563963 PMCID: PMC9102190 DOI: 10.3390/foods11091240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Cornus species are widely distributed in central and southern Europe, east Africa, southwest Asia, and America. Several species are known for edible fruits, especially Cornus mas and Cornus officinalis. These delicious fruits, characterized by their remarkable nutritional and biological values, are widely used in traditional medicine. In contrast to the other edible Cornus species, C. mas and C. officinalis are the most studied for which little information is available on the main phytochemicals and their biological activities. Fruits are characterised by several classes of secondary metabolites, such as flavonoids, phenolic acids, lignans, anthocyanins, tannins, triterpenoids, and iridoids. The available phytochemical data show that the different classes of metabolites have not been systematically studied. However, these edible species are all worthy of interest because similarities have been found. Thus, this review describes the traditional uses of Cornus species common in Europe and Asia, a detailed classification of the bioactive compounds that characterize the fruits, and their beneficial health effects. Cornus species are a rich source of phytochemicals with nutritional and functional properties that justify the growing interest in these berries, not only for applications in the food industry but also useful for their medicinal properties.
Collapse
Affiliation(s)
- Maria C. Tenuta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
- Faculté de Pharmacie de Paris, Université Paris Cité, U.M.R. n°8038-CiTCoM-(CNRS, Université de Paris Cité), F-75006 Paris, France;
| | - Brigitte Deguin
- Faculté de Pharmacie de Paris, Université Paris Cité, U.M.R. n°8038-CiTCoM-(CNRS, Université de Paris Cité), F-75006 Paris, France;
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Claire Cuyamendous
- Faculté de Pharmacie de Paris, Université Paris Cité, U.M.R. n°8038-CiTCoM-(CNRS, Université de Paris Cité), F-75006 Paris, France;
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Vincenzo Sicari
- Department of Agraria, “Mediterranea” University of Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Anne-Claire Mitaine-Offer
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, CEDEX, F-21079 Dijon, France;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain;
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| |
Collapse
|
14
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|