1
|
Główka N, Malik J, Anioła J, Zawieja EE, Chmurzynska A, Durkalec-Michalski K. The effect of caffeine dose on caffeine and paraxanthine changes in serum and saliva and CYP1A2 enzyme activity in athletes: a randomized placebo-controlled crossover trial. Nutr Metab (Lond) 2024; 21:90. [PMID: 39529054 PMCID: PMC11555877 DOI: 10.1186/s12986-024-00863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although caffeine (CAF) supplementation has been shown to improve exercise performance, its dose-dependent effect on CAF metabolism has not been sufficiently investigated. The aim of this study was to evaluate the effects of 3, 6 and 9 mg of CAF/kgBM on changes of CAF and paraxanthine (PRX) in the serum and saliva at four time-points. METHODS In a randomized, double-blind, placebo-controlled crossover design, acute pre-exercise supplementation in 26 moderately-trained athletes, participating in high-intensity functional training (HIFT), was examined. The study protocol involved CAF/PRX biochemical analyses of serum and saliva with respect to CYP1A2 polymorphism and CYP1A2 enzyme activity. RESULTS Despite significant differences between the serum and saliva levels of CAF and PRX, there was no difference in the PRX/CAF ratio. The interaction effect of dose and time-points for PRX concentration was revealed. The main effects of dose were observed for CAF and the PRX/CAF ratio. The main effect of time-points was registered only for serum CAF. CONCLUSIONS Dose- and time-dependent effect of CAF supplementation on CAF and PRX in the serum and saliva of athletes was confirmed, but there was no effect of the CAF dose on CYP1A2 enzyme activity, nor was there an interaction of CYP1A2 with enzyme inducibility. The CAF/PRX correlation indicated the possibility of interchangeable use of serum and/or saliva analyses in exercise studies. CLINICAL TRIAL REGISTRATION This trial was registered prospectively at ClinicalTrials.gov (NCT03822663, registration date: 30/01/2019).
Collapse
Affiliation(s)
- Natalia Główka
- Department of Sports Dietetics, Poznan University of Physical Education, Poznań, 61- 871, Poland.
| | - Jakub Malik
- Department of Pedagogy, Poznan University of Physical Education, Poznań, Poland
| | - Jacek Anioła
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Emilia E Zawieja
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznan University of Physical Education, Poznań, 61- 871, Poland.
- Sport Sciences-Biomedical Department, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Li S, Shi C, Wu H, Yan H, Xia M, Jiao H, He Y, Zhong M, Lou W, Gao X, Bian H, Chang X. Longitudinal changes of serum metabolomic profile after laparoscopic sleeve gastrectomy in obesity. Endocr Connect 2024; 13:e240292. [PMID: 39302038 PMCID: PMC11562687 DOI: 10.1530/ec-24-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Background Bariatric surgery induces significant weight loss, increases insulin sensitivity, and improves dyslipidemia. As one of the most widely performed bariatric surgeries, laparoscopic sleeve gastrectomy (LSG) is thought to improve the metabolic profile along with weight loss. The objective of this study was to evaluate longitudinal changes in the serum metabolite levels after LSG and elucidate the underlying mechanisms of metabolic improvement. Methods Clinical metabolic parameters and serum samples were collected preoperatively and at 1, 3, and 6 months postoperatively from nine patients with obesity undergoing LSG. Serum metabolites were measured using a non-targeted metabolic liquid chromatography-mass spectrometry method. Results During the 1, 3, and 6 months postoperative follow-up, the body mass index, HOMA-IR, and liver fat content showed a gradual descending trend. A total of 328 serum metabolites were detected, and 38 were differentially expressed. The up-regulated metabolites were mainly enriched in ketone body metabolism, alpha-linolenic acid and linoleic acid metabolism, pantothenate and CoA biosynthesis, glycerolipid metabolism, and fructose and mannose degradation, while the down-regulated metabolites were closely related to caffeine metabolism, oxidation of branched-chain fatty acids, glutamate metabolism, and homocysteine degradation. Notably, nine metabolites (oxoglutarate, 2-ketobutyric acid, succinic acid semialdehyde, phthalic acid, pantetheine, eicosapentaenoate, 3-hydroxybutanoate, oxamic acid, and dihydroxyfumarate) showed persistent differential expression at 1, 3, and 6 months follow-up. Some were found to be significantly associated with weight loss, insulin resistance improvement, and liver fat content reduction. Conclusions This finding may provide a new perspective for revealing novel biomarkers and mechanisms of metabolic improvement in obesity and related comorbidities.
Collapse
Affiliation(s)
- Shuqi Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenye Shi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haifu Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Jiao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang He
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Vital-Lopez FG, Doty TJ, Reifman J. Authors' response to editorial on Vital-Lopez et al. Sleep 2024; 47:zsae195. [PMID: 39157942 DOI: 10.1093/sleep/zsae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Francisco G Vital-Lopez
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Tracy J Doty
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| |
Collapse
|
4
|
Dawson D, Sprajcer M. Editorial on Vital-Lopez et al. (2024). Sleep 2024; 47:zsae200. [PMID: 39192717 PMCID: PMC11467055 DOI: 10.1093/sleep/zsae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Drew Dawson
- Appleton Institute, Central Queensland University, Wayville, SA 5014, Australia
| | - Madeline Sprajcer
- Appleton Institute, Central Queensland University, Wayville, SA 5014, Australia
| |
Collapse
|
5
|
Vital-Lopez FG, Doty TJ, Reifman J. When to sleep and consume caffeine to boost alertness. Sleep 2024; 47:zsae133. [PMID: 38877981 DOI: 10.1093/sleep/zsae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/31/2024] [Indexed: 08/20/2024] Open
Abstract
STUDY OBJECTIVES Sleep loss can cause cognitive impairments that increase the risk of mistakes and accidents. However, existing guidelines to counteract the effects of sleep loss are generic and are not designed to address individual-specific conditions, leading to suboptimal alertness levels. Here, we developed an optimization algorithm that automatically identifies sleep schedules and caffeine-dosing strategies to minimize alertness impairment due to sleep loss for desired times of the day. METHODS We combined our previous algorithms that separately optimize sleep or caffeine to simultaneously identify the best sleep schedules and caffeine doses that minimize alertness impairment at desired times. The optimization algorithm uses the predictions of the well-validated Unified Model of Performance to estimate the effectiveness and physiological feasibility of a large number of possible solutions and identify the best one. To assess the optimization algorithm, we used it to identify the best sleep schedules and caffeine-dosing strategies for four studies that exemplify common sleep-loss conditions and compared the predicted alertness-impairment reduction achieved by using the algorithm's recommendations against that achieved by following the U.S. Army caffeine guidelines. RESULTS Compared to the alertness-impairment levels in the original studies, the algorithm's recommendations reduced alertness impairment on average by 63%, an improvement of 24 percentage points over the U.S. Army caffeine guidelines. CONCLUSIONS We provide an optimization algorithm that simultaneously identifies effective and safe sleep schedules and caffeine-dosing strategies to minimize alertness impairment at user-specified times.
Collapse
Affiliation(s)
- Francisco G Vital-Lopez
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Tracy J Doty
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| |
Collapse
|
6
|
Koehn LM, Jalaldeen R, Pelle J, Nicolazzo JA. Plasma, brain and spinal cord concentrations of caffeine are reduced in the SOD1 G93A mouse model of amyotrophic lateral sclerosis following oral administration. Eur J Pharm Biopharm 2024; 203:114434. [PMID: 39098618 DOI: 10.1016/j.ejpb.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Modifications to the small intestine and liver are known to occur during the symptomatic disease period of amyotrophic lateral sclerosis (ALS), a member of the motor neuron disease (MND) family of neurodegenerative disorders. How these modifications impact on oral absorption and pharmacokinetics of drugs remains unknown. In this study, model drugs representing different mechanisms of intestinal transport (caffeine for passive diffusion, digoxin for P-glycoprotein efflux, and sulfasalazine for breast cancer resistance protein efflux) were administered via oral gavage to postnatal day 114-120 male and female SOD1G93A mice (model of familial ALS) and wild-type (WT) littermates. Samples of blood, brain and spinal cord were taken at either 15, 30, 60 or 180 min after administration. In addition, the in vivo gastric emptying of 70 kDa fluorescein isothiocyanate-dextran (FITC-dextran) and the ex vivo intestinal permeability of caffeine were assessed. The area under the plasma concentration-time curves (AUCplasma) of digoxin and sulfasalazine were not significantly different between SOD1G93A and WT mice for both sexes. However, the AUCplasma of caffeine was significantly lower (female: 0.79-fold, male: 0.76-fold) in SOD1G93A compared to WT mice, which was associated with lower AUCbrain (female: 0.76-fold, male: 0.80-fold) and AUCspinal cord (female: 0.81-fold, male: 0.82-fold). The AUCstomach of caffeine was significantly higher (female: 1.5-fold, male: 1.9-fold) in SOD1G93A compared to WT mice, suggesting reduced gastric emptying in SOD1G93A mice. In addition, there was a significant reduction in gastric emptying of FITC-dextran (0.66-fold) and ex vivo intestinal permeability of caffeine (0.52-fold) in male SOD1G93A compared to WT mice. Reduced systemic and brain/spinal cord exposure of caffeine in SOD1G93A mice may therefore result from alterations to gastric emptying and small intestinal permeability. Specific dosing requirements may therefore be required for certain medicines in ALS to ensure that they remain in a safe and effective concentration range.
Collapse
Affiliation(s)
- Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| | - Roshan Jalaldeen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Joseph Pelle
- Helen Macpherson Smith Trust Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
7
|
Dai HR, Guo HL, Hu YH, Liu Y, Lu KY, Zhang YY, Wang J, Ding XS, Jiao Z, Cheng R, Chen F. Development and application of a population pharmacokinetic model repository for caffeine dose tailoring in preterm infants. Expert Opin Drug Metab Toxicol 2024; 20:923-938. [PMID: 39167118 DOI: 10.1080/17425255.2024.2395561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Considerable interindividual variability for the pharmacokinetics of caffeine in preterm infants has been demonstrated, emphasizing the importance of personalized dosing. This study aimed to develop and apply a repository of currently published population pharmacokinetic (PopPK) models of caffeine in preterm infants to facilitate model-informed precision dosing (MIPD). RESEARCH DESIGN AND METHODS Literature search was conducted using PubMed, Embase, Scopus, and Web of Science databases. Relevant publications were screened, and their quality was assessed. PopPK models were reestablished to develop the model repository. Covariate effects were evaluated and the concentration-time profiles were simulated. An online simulation and calculation tool was developed as an instance. RESULTS Twelve PopPK models were finally included in the repository. Preterm infants' age and body size, especially the postnatal age and current weight, were identified as the most clinically critical covariates. Simulated blood concentration-time profiles across these models were comparable. Caffeine citrate-dose regimen should be adjusted according to the age and body size of preterm infants. The developed online tool can be used to facilitate clinical decision-making. CONCLUSIONS The first developed repository of PopPK models for caffeine in preterm infants has a wide range of potential applications in the MIPD of caffeine.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Yu Lu
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Rothschild JA, Maunder E, Saunders B. Letter to the Editor Regarding Tuma et al. (2024). Int J Sport Nutr Exerc Metab 2024; 34:329-331. [PMID: 39089678 DOI: 10.1123/ijsnem.2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Jeffrey A Rothschild
- High Performance Sport New Zealand, Auckland, New Zealand
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Chen J, Yu H, Liu H, Yu H, Liang S, Wu Q, Zhang X, Zeng R, Diao L. Causal relationship between immune cells and epilepsy mediated by metabolites analyzed through Mendelian randomization. Sci Rep 2024; 14:19644. [PMID: 39179617 PMCID: PMC11343848 DOI: 10.1038/s41598-024-70370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Our study investigated the causal relationship between immune cells, metabolites, and epilepsy using two-sample Mendelian Randomization (MR) and mediation MR analysis of 731 immune cell traits and 1400 metabolites. Our core methodology centered on inverse-variance weighted MR, supplemented by other methods. This approach was crucial in clarifying the potential intermediary functions of metabolites in the genetic links between traits of immune cells and epilepsy. We found a causal relationship between immune cells and epilepsy. Specifically, the genetically predicted levels of CD64 on CD14-CD16- are positively correlated with the risk of epilepsy (p < 0.001, OR = 1.0826, 95% CI 1.0361-1.1312). Similarly, metabolites also exhibit a causal relationship with both immune cells (OR = 1.0438, 95% CI 1.0087-1.0801, p = 0.0140) and epilepsy (p = 0.0334, OR = 1.0897, 95% CI 1.0068-1.1795), and sensitivity analysis was conducted to further validate these relationships. Importantly, our intermediate MR results suggest that the metabolite Paraxanthine to linoleate (18:2n6) ratio may mediate the causal relationship between immune cell CD64 on CD14-CD16- and epilepsy, with a mediation effect of 5.05%. The results suggest the importance of specific immune cell levels and metabolites in understanding epilepsy's pathogenesis, which is significant for its prevention and treatment.
Collapse
Affiliation(s)
- Jiangwei Chen
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, 530007, China
| | - Huihua Liu
- Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China
| | - Han Yu
- Harbin Medical University, Harbin, 150086, China
| | - Shuang Liang
- Nanning Traditional Chinese Medicine Hospital, Nanning, 530000, China
| | - Qiong Wu
- Xin Yang Central Hospital, Xinyang, 464000, China
| | - Xian Zhang
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China
| | - Rong Zeng
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Limei Diao
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, 545005, China.
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
10
|
Marcinek K, Luzak B, Rozalski M. The Effects of Caffeine on Blood Platelets and the Cardiovascular System through Adenosine Receptors. Int J Mol Sci 2024; 25:8905. [PMID: 39201591 PMCID: PMC11354695 DOI: 10.3390/ijms25168905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect on the cardiovascular system mainly due to increasing blood pressure. However, more recent data suggest that habitual caffeine consumption may reduce the risk of cardiovascular disease and hypertension. This could be a significant finding as cardiovascular disease is the leading cause of death worldwide. Caffeine is known to inhibit A1 adenosine receptors, through which it is believed to modulate inter alia coronary blood flow, total peripheral resistance, diuresis, and heart rate. It has been shown that coffee possesses antiplatelet activity, but depending on the dose and the term of its use, caffeine may stimulate or inhibit platelet reactivity. Also, chronic exposure to caffeine may sensitize or upregulate the adenosine receptors in platelets causing increased cAMP accumulation and anti-aggregatory effects and decrease calcium levels elicited by AR agonists. The search for new, selective, and safe AR agonists is one of the new strategies for improving antiplatelet therapy involving targeting multiple pathways of platelet activation. Therefore, this review examines the AR-dependent impact of caffeine on blood platelets in the presence of adenosine receptor agonists.
Collapse
Affiliation(s)
| | | | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (K.M.); (B.L.)
| |
Collapse
|
11
|
von Morze C, Shaw A, Blazey T. Hyperpolarized 15N caffeine, a potential probe of liver function and perfusion. Magn Reson Med 2024; 92:459-468. [PMID: 38469685 DOI: 10.1002/mrm.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation byβ $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Rai SP, Ansari AH, Singh D, Singh S. Coffee, antioxidants, and brain inflammation. PROGRESS IN BRAIN RESEARCH 2024; 289:123-150. [PMID: 39168577 DOI: 10.1016/bs.pbr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee is the most popular beverage in the world and, aside from tea and water, the most often consumed caffeine-containing beverage. Because of its high caffeine concentration, it is typically classified as a stimulant. There are other bioactive ingredients in coffee besides caffeine. The coffee beverage is a blend of several bioactive substances, including diterpenes (cafestol and kahweol), alkaloids (caffeine and trigonelline), and polyphenols (particularly chlorogenic acids in green beans and caffeic acid in roasted coffee beans). Caffeine has also been linked to additional beneficial benefits such as antioxidant and anti-inflammatory properties, which change cellular redox and inflammatory status in a dose-dependent manner. Pyrocatechol, a constituent of roasted coffee that is created when chlorogenic acid is thermally broken down, has anti-inflammatory properties as well. It is postulated that coffee consumption reduces neuroinflammation, which is intimately linked to the onset of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). This review provides an overview of the most recent studies regarding coffee's possible benefits in preventing brain inflammation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
13
|
Charles A. The role of caffeine in headache disorders. Curr Opin Neurol 2024; 37:289-294. [PMID: 38327229 DOI: 10.1097/wco.0000000000001249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
PURPOSE OF REVIEW Caffeine is known to have both beneficial and adverse effects in individuals with headache disorders. This review describes recent findings regarding caffeine that are relevant to headache disorders and puts these findings into the context of clinical management. RECENT FINDINGS Preclinical studies show that caffeine has complex effects on sleep, brain blood flow, and intracranial pressure that may depend on the timing of caffeine intake relative to the sleep-wake cycle. Caffeine metabolism may have significant inter-individual variation that influences its therapeutic and/or adverse effects. Caffeine has acute therapeutic benefit for some primary headache disorders. For migraine, this benefit is predominantly in milder headache without cutaneous allodynia. High levels of caffeine intake may contribute to progression of headache disorders. Caffeine-containing combination analgesics commonly cause medication overuse headache. Abrupt reduction in caffeine consumption is a trigger for migraine that may be important in situations including the hospital setting, religious and cultural fasting, and pregnancy. SUMMARY There is not sufficient evidence to support universal guidelines for the use of dietary and medicinal caffeine in headache disorders. A sensible approach based upon available evidence is to limit dietary caffeine intake to moderate amounts with consistent timing before noon, and to use caffeine-containing combination analgesics infrequently for milder headache.
Collapse
Affiliation(s)
- Andrew Charles
- UCLA Goldberg Migraine Program Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
14
|
Sivalogan K, Liang D, Accardi C, Diaz-Artiga A, Hu X, Mollinedo E, Ramakrishnan U, Teeny SN, Tran V, Clasen TF, Thompson LM, Sinharoy SS. Human Milk Composition Is Associated with Maternal Body Mass Index in a Cross-Sectional, Untargeted Metabolomics Analysis of Human Milk from Guatemalan Mothers. Curr Dev Nutr 2024; 8:102144. [PMID: 38726027 PMCID: PMC11079463 DOI: 10.1016/j.cdnut.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Background Maternal overweight and obesity has been associated with poor lactation performance including delayed lactogenesis and reduced duration. However, the effect on human milk composition is less well understood. Objectives We evaluated the relationship of maternal BMI on the human milk metabolome among Guatemalan mothers. Methods We used data from 75 Guatemalan mothers who participated in the Household Air Pollution Intervention Network trial. Maternal BMI was measured between 9 and <20 weeks of gestation. Milk samples were collected at a single time point using aseptic collection from one breast at 6 mo postpartum and analyzed using high-resolution mass spectrometry. A cross-sectional untargeted high-resolution metabolomics analysis was performed by coupling hydrophilic interaction liquid chromatography (HILIC) and reverse phase C18 chromatography with mass spectrometry. Metabolic features associated with maternal BMI were determined by a metabolome-wide association study (MWAS), adjusting for baseline maternal age, education, and dietary diversity, and perturbations in metabolic pathways were identified by pathway enrichment analysis. Results The mean age of participants at baseline was 23.62 ± 3.81 y, and mean BMI was 24.27 ± 4.22 kg/m2. Of the total metabolic features detected by HILIC column (19,199 features) and by C18 column (11,594 features), BMI was associated with 1026 HILIC and 500 C18 features. Enriched pathways represented amino acid metabolism, galactose metabolism, and xenobiotic metabolic metabolism. However, no significant features were identified after adjusting for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure (FDRBH < 0.2). Conclusions Findings from this untargeted MWAS indicate that maternal BMI is associated with metabolic perturbations of galactose metabolism, xenobiotic metabolism, and xenobiotic metabolism by cytochrome p450 and biosynthesis of amino acid pathways. Significant metabolic pathway alterations detected in human milk were associated with energy metabolism-related pathways including carbohydrate and amino acid metabolism.This trial was registered at clinicaltrials.gov as NCT02944682.
Collapse
Affiliation(s)
- Kasthuri Sivalogan
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Carolyn Accardi
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Anaite Diaz-Artiga
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Xin Hu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Erick Mollinedo
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Environmental Health, College of Public Health, University of Georgia, Athens, GA, United States
| | - Sami Nadeem Teeny
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Thomas F Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Lisa M Thompson
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Sheela S Sinharoy
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
Flanagan RJ, Obee SJ, Kim AHM, Every-Palmer S. Effect of Coffee and Chocolate Ingestion on Clozapine Dose and on Plasma Clozapine and Norclozapine Concentrations in Clinical Practice. J Clin Psychopharmacol 2024; 44:161-167. [PMID: 38421925 DOI: 10.1097/jcp.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Some reports point to dietary caffeine intake as a cause of increased plasma clozapine concentrations in certain patients. METHODS We compared clozapine dose and plasma clozapine and N-desmethylclozapine (norclozapine) concentrations in male and female smokers and nonsmokers in relation to reported (i) coffee (caffeine) and (ii) chocolate (caffeine and theobromine) intake in samples submitted for clozapine therapeutic drug monitoring, 1993-2017. RESULTS There was information on coffee ingestion for 16,558 samples (8833 patients) from males and 5886 samples (3433 patients) from females and on chocolate ingestion for 12,616 samples (7568 patients) from males and 4677 samples (2939 patients) from females. When smoking was considered, there was no discernible effect of either coffee or chocolate ingestion either on the median dose of clozapine or on the median plasma clozapine and norclozapine concentrations in men and in women. However, cigarette smoking was associated with higher coffee and chocolate consumption. Although male nonsmokers who reported drinking 3 or more cups of coffee daily had significantly higher median plasma clozapine and norclozapine concentrations than those who drank less coffee, they were also prescribed a significantly higher clozapine dose. There was no clear effect of coffee ingestion on plasma clozapine and norclozapine in female nonsmokers. IMPLICATIONS Inhibition of clozapine metabolism by caffeine at the doses of caffeine normally encountered in those treated with clozapine is unlikely even in male nonsmokers. Measurement of plasma caffeine in an appropriate sample should be considered in any future investigation into a presumed clozapine-caffeine interaction.
Collapse
Affiliation(s)
- Robert James Flanagan
- From Precision Medicine, Networked Services, Bessemer Wing, King's College Hospital NHS Foundation Trust, London, England
| | - Stephen John Obee
- From Precision Medicine, Networked Services, Bessemer Wing, King's College Hospital NHS Foundation Trust, London, England
| | | | - Susanna Every-Palmer
- Department of Psychological Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
16
|
Herman AP, Tomczyk M, Wójcik M, Bochenek J, Antushevich H, Herman A, Wiechetek W, Szczepkowska A, Marciniak E, Tomaszewska-Zaremba D. Effect of Caffeine on the Inflammatory-Dependent Changes in the GnRH/LH Secretion in a Female Sheep Model. Int J Mol Sci 2024; 25:2663. [PMID: 38473910 DOI: 10.3390/ijms25052663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeine is one of the most widely consumed psychoactive drugs in the world. It easily crosses the blood-brain barrier, and caffeine-interacting adenosine and ryanodine receptors are distributed in various areas of the brain, including the hypothalamus and pituitary. Caffeine intake may have an impact on reproductive and immune function. Therefore, in the present study performed on the ewe model, we decided to investigate the effect of peripheral administration of caffeine (30 mg/kg) on the secretory activity of the hypothalamic-pituitary unit which regulates the reproductive function in females during both a physiological state and an immune/inflammatory challenge induced by lipopolysaccharide (LPS; 400 ng/kg) injection. It was found that caffeine stimulated (p < 0.01) the biosynthesis of gonadotropin-releasing hormone (GnRH) in the hypothalamus of ewe under both physiological and inflammatory conditions. Caffeine also increased (p < 0.05) luteinizing hormone (LH) secretion in ewes in a physiological state; however, a single administration of caffeine failed to completely release the LH secretion from the inhibitory influence of inflammation. This could result from the decreased expression of GnRHR in the pituitary and it may also be associated with the changes in the concentration of neurotransmitters in the median eminence (ME) where GnRH neuron terminals are located. Caffeine and LPS increased (p < 0.05) dopamine in the ME which may explain the inhibition of GnRH release. Caffeine treatment also increased (p < 0.01) cortisol release, and this stimulatory effect was particularly evident in sheep under immunological stress. Our studies suggest that caffeine affects the secretory activity of the hypothalamic-pituitary unit, although its effect appears to be partially dependent on the animal's immune status.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Anna Herman
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Wiktoria Wiechetek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, 02-786 Warsaw, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Elżbieta Marciniak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
17
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
18
|
Tzakri T, Rehenbrock L, Senekowitsch S, Rump A, Schick P, Krause J, Kromrey ML, Grimm M, Weitschies W. Determination of Gastric Water Emptying in Fasted and Fed State Conditions Using a Compression-Coated Tablet and Salivary Caffeine Kinetics. Pharmaceutics 2023; 15:2584. [PMID: 38004563 PMCID: PMC10674960 DOI: 10.3390/pharmaceutics15112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Because of the importance of gastric emptying for pharmacokinetics, numerous methods have been developed for its determination. One of the methods is the salivary tracer technique, which utilizes an ice capsule containing caffeine as a salivary tracer. Despite the ice capsule's advantage in labeling ingested fluids with caffeine for subsequent salivary detection, its risk of premature melting before swallowing, and its complicated storage and preparation, limit its application, particularly in special populations (e.g., older people). For this reason, here, a compression-coated tablet was developed and validated against the ice capsule in a cross-over clinical trial. The two dosage forms were administered simultaneously to 12 volunteers in an upright position under fasted and fed state conditions. To distinguish the caffeine concentrations in saliva from each dosage form, regular type of caffeine (12C) was added to the tablet, while for the ice capsule 13C3 labelled caffeine was used. The salivary caffeine concentrations showed no statistically significant differences for the pharmacokinetic parameters tmax and AUC0→60 (p > 0.05). Thus, the new formulation is a useful tool for determining gastric emptying that can also be used in special populations.
Collapse
Affiliation(s)
- Theodora Tzakri
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Lara Rehenbrock
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Adrian Rump
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Marie-Luise Kromrey
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17489 Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| |
Collapse
|
19
|
Lomba L, Polo A, Werner Á, Lafuente C, Giner B. Deep eutectic solvents based on sugars for oral applications. Eur J Pharm Biopharm 2023; 191:103-113. [PMID: 37582410 DOI: 10.1016/j.ejpb.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Solubility is a critical parameter in drug formulation to achieve the desired therapeutical concentration. Most drugs are weak acids or bases and, therefore, exhibit low solubility and poor oral availability. The main aim of this work is the use of Deep Eutectic Systems (DESs) for improving the solubility of drugs in aqueous medium. In this case, we use DESs formed by choline chloride and sugars (xylitol, fructose, glucose and sorbitol) at different proportions of water. These compounds present low toxicity, and thus can be used in syrups or liquid formulations. Different physicochemical properties, such as density, refractive index, and surface tension, were obtained. In addition, a rheological study of the different systems was carried out. Finally, these DESs were applied to analyse the solubility of the following active principles: caffeine (Class I) and furosemide (Class IV) of the Biopharmaceutics Classification System (BCS). The selection of the drugs attends to different reasons. On one hand, we want to develop a new liquid formulation for model drug furosemide and, on the other hand, the study of caffeine, instead, will be used as a model for comparing purposes. Solubility results show that the systems that best solubilize caffeine are those with the highest water content; however, they do not reach the levels of solubility of pure water. On the other hand, for furosemide, a great increase in solubility was observed, especially for systems formed by xylitol and, fundamentally, in the system with the lowest water content. Obtaining an increase in solubility of up to 4530 times. These systems provide an opportunity to improve the formulation of drugs in the liquid medium of active ingredients that are poorly soluble in an aqueous medium.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Alejandra Polo
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Álvaro Werner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Carlos Lafuente
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain; Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov. A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain.
| |
Collapse
|
20
|
Wingelaar-Jagt YQ, Wingelaar TT, de Vrijer L, Riedel WJ, Ramaekers JG. Daily Caffeine Intake and the Effect of Caffeine on Pilots' Performance After Extended Wakefulness. Aerosp Med Hum Perform 2023; 94:750-760. [PMID: 37726901 DOI: 10.3357/amhp.6253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
INTRODUCTION: Fatigue is a major contributor to aviation accidents. Sufficient sleep may be difficult to achieve under operational conditions in military aviation. Countermeasures include caffeine, however, studies evaluating its effects often do not represent daily practice with regular caffeine consumption. This study aims to establish the effect of caffeine on psychomotor performance in a realistic scenario (i.e., after a limited period of extended wakefulness).METHODS: This randomized, double-blind, crossover, placebo-controlled trial included 30 aeromedically fit subjects. On trial days, subjects followed their normal routine till 17:00, after which caffeine intake was stopped. At midnight, subjects were given 300 mg of caffeine or placebo and performed the Psychomotor Vigilance Test, Vigilance and Tracking Test, and the Stanford Sleepiness Scale hourly up to 04:00 and again at 06:00 and 08:00. Four blood samples were collected. Statistical analyses included repeated-measures ANOVA or Friedman tests, marginal models, and Wilcoxon Signed Rank tests.RESULTS: Median time awake at midnight was 17 h (IQR 16.5-17.5 h). Performance decreased significantly less during the night in the caffeine condition versus placebo. Neither habitual intake nor daytime caffeine consumption affected this. No statistically significant correlation was identified between blood concentrations of caffeine and performance.DISCUSSION: A single dose of 300 mg of caffeine has beneficial effects on performance during the night in a realistic scenario for military aviation. Daytime caffeine consumption does not affect the effects of caffeine at night. These findings could be relevant for all industries in which optimal performance is required during nighttime after a limited period of extended wakefulness.Wingelaar-Jagt YQ, Wingelaar TT, de Vrijer L, Riedel WJ, Ramaekers JG. Daily caffeine intake and the effect of caffeine on pilots' performance after extended wakefulness. Aerosp Med Hum Perform. 2023; 94(10):750-760.
Collapse
|
21
|
Aframian K, Yousef Yengej D, Nwaobi S, Raman S, Faas GC, Charles A. Effects of chronic caffeine on patterns of brain blood flow and behavior throughout the sleep-wake cycle in freely behaving mice. PNAS NEXUS 2023; 2:pgad303. [PMID: 37780231 PMCID: PMC10538474 DOI: 10.1093/pnasnexus/pgad303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Caffeine has significant effects on neurovascular activity and behavior throughout the sleep-wake cycle. We used a minimally invasive microchip/video system to continuously record effects of caffeine in the drinking water of freely behaving mice. Chronic caffeine shifted both rest and active phases by up to 2 h relative to the light-dark cycle in a dose-dependent fashion. There was a particular delay in the onset of rapid eye movement (REM) sleep as compared with non-REM sleep during the rest phase. Chronic caffeine increased wakefulness during the active phase and consolidated sleep during the rest phase; overall, there was no net change in the amount of time spent in the wake, sleep, or REM sleep states during caffeine administration. Despite these effects on wakefulness and sleep, chronic caffeine decreased mean cerebral blood volume (CBV) during the active phase and increased mean CBV during the rest phase. Chronic caffeine also increased heart rate variability in both the sleep and wake states. These results provide new insight into the effects of caffeine on the biology of the sleep-wake cycle. Increased blood flow during sleep caused by chronic caffeine may have implications for its potential neuroprotective effects through vascular mechanisms of brain waste clearance.
Collapse
Affiliation(s)
- Kimiya Aframian
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Dmitri Yousef Yengej
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Sinifunanya Nwaobi
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Shrayes Raman
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Guido C Faas
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Deepa Maheshvare M, Raha S, König M, Pal D. A pathway model of glucose-stimulated insulin secretion in the pancreatic β-cell. Front Endocrinol (Lausanne) 2023; 14:1185656. [PMID: 37600713 PMCID: PMC10433753 DOI: 10.3389/fendo.2023.1185656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023] Open
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β-cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct a novel data-driven kinetic model of GSIS in the pancreatic β-cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β-cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and phenomenological equations for insulin secretion coupled to cellular energy state, ATP dynamics and (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β-cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and biphasic insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β-cell.
Collapse
Affiliation(s)
- M. Deepa Maheshvare
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Soumyendu Raha
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
23
|
Esteves F, Almeida CMM, Silva S, Saldanha I, Urban P, Rueff J, Pompon D, Truan G, Kranendonk M. Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism. Biomolecules 2023; 13:1083. [PMID: 37509119 PMCID: PMC10377444 DOI: 10.3390/biom13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
Collapse
Affiliation(s)
- Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Inês Saldanha
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Denis Pompon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
24
|
Vlad RA, Pintea A, Coaicea M, Antonoaea P, Rédai EM, Todoran N, Ciurba A. Preparation and Evaluation of Caffeine Orodispersible Films: The Influence of Hydrotropic Substances and Film-Forming Agent Concentration on Film Properties. Polymers (Basel) 2023; 15:polym15092034. [PMID: 37177181 PMCID: PMC10181256 DOI: 10.3390/polym15092034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to develop caffeine (CAF) orodispersible films (ODFs) and verify the effects of different percentages of film-forming agent and hydrotropic substances (citric acid-CA or sodium benzoate-SB) on various film properties. Hydroxypropyl methylcellulose E 5 (HPMC E 5) orodispersible films were prepared using the solvent casting method. Four CAF-ODF formulations were prepared and coded as CAF1 (8% HPMC E 5, CAF), CAF2 (8% HPMC E 5 and CAF:CA-1:1), CAF3 (9% HPMC E 5 and CAF:CA-1:1), and CAF4 (9% HPMC E 5 and CAF:SB-1:1). The CAF-ODFs were evaluated in terms of disintegration time, folding endurance, thickness, uniformity of mass, CAF content, thickness-normalized tensile strength, adhesiveness, dissolution, and pH. Thin, opaque, and slightly white CAF-ODFs were obtained. All the formulations developed exhibited disintegration times less than 3 min. The dissolution test revealed that CAF1, CAF2, and CAF3 exhibited concentrations of active pharmaceutical ingredients (APIs) released at 30 min that were close to 100%, whilst CAF4 showed a faster dissolution behaviour (100% of the CAF was released at 5 min). Thin polymeric films containing 10 mg of CAF/surface area (3.14 cm2) were prepared.
Collapse
Affiliation(s)
- Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Andrada Pintea
- Targu Mures Clinical County Hospital, 6th Bernady Gyorgy Street, 540072 Targu Mures, Romania
| | - Mădălina Coaicea
- Catena Hygeia Darmanesti, 1st Muncii Street, 605300 Bacau, Romania
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Emőke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Nicoleta Todoran
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| |
Collapse
|
25
|
Deepa Maheshvare M, Raha S, König M, Pal D. A Consensus Model of Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532028. [PMID: 36945414 PMCID: PMC10028967 DOI: 10.1101/2023.03.10.532028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β -cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct the first consensus model of GSIS in the pancreatic β -cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β -cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and equations for insulin secretion coupled to cellular energy state (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β -cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β -cell.
Collapse
|
26
|
Mokkawes T, de Visser SP. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Int J Mol Sci 2023; 24:3651. [PMID: 36835057 PMCID: PMC9959256 DOI: 10.3390/ijms24043651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cytochrome P450 enzymes are versatile enzymes found in most biosystems that catalyze mono-oxygenation reactions as a means of biosynthesis and biodegradation steps. In the liver, they metabolize xenobiotics, but there are a range of isozymes with differences in three-dimensional structure and protein chain. Consequently, the various P450 isozymes react with substrates differently and give varying product distributions. To understand how melatonin is activated by the P450s in the liver, we did a thorough molecular dynamics and quantum mechanics study on cytochrome P450 1A2 activation of melatonin forming 6-hydroxymelatonin and N-acetylserotonin products through aromatic hydroxylation and O-demethylation pathways, respectively. We started from crystal structure coordinates and docked substrate into the model, and obtained ten strong binding conformations with the substrate in the active site. Subsequently, for each of the ten substrate orientations, long (up to 1 μs) molecular dynamics simulations were run. We then analyzed the orientations of the substrate with respect to the heme for all snapshots. Interestingly, the shortest distance does not correspond to the group that is expected to be activated. However, the substrate positioning gives insight into the protein residues it interacts with. Thereafter, quantum chemical cluster models were created and the substrate hydroxylation pathways calculated with density functional theory. These relative barrier heights confirm the experimental product distributions and highlight why certain products are obtained. We make a detailed comparison with previous results on CYP1A1 and identify their reactivity differences with melatonin.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
27
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
28
|
Lomba L, Polo A, Alejandre J, Martínez N, Giner B. Solubility enhancement of caffeine and furosemide using deep eutectic solvents formed by choline chloride and xylitol, citric acid, sorbitol or glucose. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
30
|
Grzegorzewski J, Brandhorst J, König M. Physiologically based pharmacokinetic (PBPK) modeling of the role of CYP2D6 polymorphism for metabolic phenotyping with dextromethorphan. Front Pharmacol 2022; 13:1029073. [PMID: 36353484 PMCID: PMC9637881 DOI: 10.3389/fphar.2022.1029073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The cytochrome P450 2D6 (CYP2D6) is a key xenobiotic-metabolizing enzyme involved in the clearance of many drugs. Genetic polymorphisms in CYP2D6 contribute to the large inter-individual variability in drug metabolism and could affect metabolic phenotyping of CYP2D6 probe substances such as dextromethorphan (DXM). To study this question, we (i) established an extensive pharmacokinetics dataset for DXM; and (ii) developed and validated a physiologically based pharmacokinetic (PBPK) model of DXM and its metabolites dextrorphan (DXO) and dextrorphan O-glucuronide (DXO-Glu) based on the data. Drug-gene interactions (DGI) were introduced by accounting for changes in CYP2D6 enzyme kinetics depending on activity score (AS), which in combination with AS for individual polymorphisms allowed us to model CYP2D6 gene variants. Variability in CYP3A4 and CYP2D6 activity was modeled based on in vitro data from human liver microsomes. Model predictions are in very good agreement with pharmacokinetics data for CYP2D6 polymorphisms, CYP2D6 activity as described by the AS system, and CYP2D6 metabolic phenotypes (UM, EM, IM, PM). The model was applied to investigate the genotype-phenotype association and the role of CYP2D6 polymorphisms for metabolic phenotyping using the urinary cumulative metabolic ratio (UCMR), DXM/(DXO + DXO-Glu). The effect of parameters on UCMR was studied via sensitivity analysis. Model predictions indicate very good robustness against the intervention protocol (i.e. application form, dosing amount, dissolution rate, and sampling time) and good robustness against physiological variation. The model is capable of estimating the UCMR dispersion within and across populations depending on activity scores. Moreover, the distribution of UCMR and the risk of genotype-phenotype mismatch could be estimated for populations with known CYP2D6 genotype frequencies. The model can be applied for individual prediction of UCMR and metabolic phenotype based on CYP2D6 genotype. Both, model and database are freely available for reuse.
Collapse
Affiliation(s)
- Jan Grzegorzewski
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
31
|
Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|