1
|
Du W, Chen H, Gróf I, Lemaitre L, Bocsik A, Perdyan A, Mieczkowski J, Deli MA, Hortobágyi T, Wan Q, Glebov OO. Antidepressant-induced membrane trafficking regulates blood-brain barrier permeability. Mol Psychiatry 2024; 29:3590-3598. [PMID: 38816584 PMCID: PMC11541205 DOI: 10.1038/s41380-024-02626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
As the most prescribed psychotropic drugs in current medical practice, antidepressant drugs (ADs) of the selective serotonin reuptake inhibitor (SSRI) class represent prime candidates for drug repurposing. The mechanisms underlying their mode of action, however, remain unclear. Here, we show that common SSRIs and selected representatives of other AD classes bidirectionally regulate fluid-phase uptake at therapeutic concentrations and below. We further characterize membrane trafficking induced by a canonical SSRI fluvoxamine to show that it involves enhancement of clathrin-mediated endocytosis, endosomal system, and exocytosis. RNA sequencing analysis showed few fluvoxamine-associated differences, consistent with the effect being independent of gene expression. Fluvoxamine-induced increase in membrane trafficking boosted transcytosis in cell-based blood-brain barrier models, while a single injection of fluvoxamine was sufficient to enable brain accumulation of a fluid-phase fluorescent tracer in vivo. These findings reveal modulation of membrane trafficking by ADs as a possible cellular mechanism of action and indicate their clinical repositioning potential for regulating drug delivery to the brain.
Collapse
Affiliation(s)
- Wenjia Du
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, 266071, China
| | - Huanhuan Chen
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ilona Gróf
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Lucien Lemaitre
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Tibor Hortobágyi
- Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, 266071, China
| | - Oleg O Glebov
- Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
2
|
Fernández JJ, Marín A, Rosales R, Penrice-Randal R, Mlcochova P, Alvarez Y, Villalón-Letelier F, Yildiz S, Pérez E, Rathnasinghe R, Cupic A, Kehrer T, Uccellini MB, Alonso S, Martínez F, McGovern BL, Clark JJ, Sharma P, Bayón Y, Alonso A, Albrecht RA, White KM, Schotsaert M, Miorin L, Stewart JP, Hiscox JA, Gupta RK, Irigoyen N, García-Sastre A, Crespo MS, Fernández N. The IRE1α-XBP1 arm of the unfolded protein response is a host factor activated in SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167193. [PMID: 38648902 DOI: 10.1016/j.bbadis.2024.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.
Collapse
Affiliation(s)
- Jose Javier Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arturo Marín
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebekah Penrice-Randal
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yolanda Alvarez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Enrique Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Ciencias de la Salud, Universidad Europea Miguel de Cervantes (UEMC), 47012 Valladolid, Spain
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Fernando Martínez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Briana Lynn McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan J Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James P Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Infectious Diseases, University of Georgia, GA 30602, USA
| | - Julian A Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore; Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain.
| | - Nieves Fernández
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003 Valladolid, Spain; Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
3
|
Fei L, Bozza B, Melani G, Righi L, Santarelli G, Boy OB, Benedetti D, Falone A, Flaccomio D, Giuranno G, Martelli M, Merola P, Moretti S, Ndoci E, Pecoraro V, Siviglia S, Berni A, Fanelli A, Giovagnini E, Morettini A, Nozzoli C, Para O, Rostagno C, Tozzetti C. SSRIs in the course of COVID-19 pneumonia: Evidence of effectiveness of antidepressants on acute inflammation. A retrospective study. Hum Psychopharmacol 2024; 39:e2887. [PMID: 38059650 DOI: 10.1002/hup.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Relationships between inflammation and mood have been observed in terms of pro-inflammatory effects induced by depressive conditions and, in parallel, by an antidepressant-induced favorable effect on the recovery of inflammatory states. Selective serotonin reuptake inhibitor (SSRI) drugs were hypothesized to improve the prognosis of COVID-19 pneumonia, a typical acute inflammation, in terms of decreased mortality rate and pro-inflammatory cytokine serum levels. METHODS The medical records of COVID-19 pneumonia inpatients at Careggi University Hospital (Florence) were analyzed for prognosis and Interleukin 6 (IL-6) after admission for over a period of 22 months. Medical records of patients treated at admission and not discontinued until discharge with an SSRI or with vortioxetine were identified. Two groups, one treated with antidepressants, the other not treated, were evaluated according to the mentioned parameters. Multiple linear regression and logistic regression were performed. RESULTS The entire sample composed of 1236 records (recovered patients 77.1%, deceased patients 22.9%). The treated group (n = 107) had a better prognosis than the untreated group in spite of age and comorbidity both being greater than in the untreated group. Correspondingly, IL-6 levels in the treated group were significantly lower (p < 0.01) than the levels in the untreated group, in every comparison. CONCLUSIONS Outcomes of this study support the hypothesis of the favorable influence of some antidepressants on the prognosis of COVID-19, possibly mediated by IL-6 modulation. Reduction in acute inflammation induced by the action of antidepressants was confirmed.
Collapse
Affiliation(s)
- Leonardo Fei
- Careggi University Hospital (IT), Chair of Psycho-Oncology, Florence, Italy
| | - Bernardo Bozza
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | - Giulia Melani
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | | | | | | | - Davide Benedetti
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | - Andrea Falone
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | - Dario Flaccomio
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | | | - Michela Martelli
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | - Pierpaolo Merola
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | | | - Endrit Ndoci
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | | | - Serena Siviglia
- School of Psychiatry, University of Florence (IT), Florence, Italy
| | - Andrea Berni
- Careggi University Hospital (IT), Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Glebov OO, Mueller C, Stewart R, Aarsland D, Perera G. Antidepressant drug prescription and incidence of COVID-19 in mental health outpatients: a retrospective cohort study. BMC Med 2023; 21:209. [PMID: 37340474 PMCID: PMC10283271 DOI: 10.1186/s12916-023-02877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/20/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Currently, the main pharmaceutical intervention for COVID-19 is vaccination. While antidepressant (AD) drugs have shown some efficacy in treatment of symptomatic COVID-19, their preventative potential remains largely unexplored. Analysis of association between prescription of ADs and COVID-19 incidence in the population would be beneficial for assessing the utility of ADs in COVID-19 prevention. METHODS Retrospective study of association between AD prescription and COVID-19 diagnosis was performed in a cohort of community-dwelling adult mental health outpatients during the 1st wave of COVID-19 pandemic in the UK. Clinical record interactive search (CRIS) was performed for mentions of ADs within 3 months preceding admission to inpatient care of the South London and Maudsley (SLaM) NHS Foundation Trust. Incidence of positive COVID-19 tests upon admission and during inpatient treatment was the primary outcome measure. RESULTS AD mention was associated with approximately 40% lower incidence of positive COVID-19 test results when adjusted for socioeconomic parameters and physical health. This association was also observed for prescription of ADs of the selective serotonin reuptake inhibitor (SSRI) class. CONCLUSIONS This preliminary study suggests that ADs, and SSRIs in particular, may be of benefit for preventing COVID-19 infection spread in the community. The key limitations of the study are its retrospective nature and the focus on a mental health patient cohort. A more definitive assessment of AD and SSRI preventative potential warrants prospective studies in the wider demographic.
Collapse
Affiliation(s)
- Oleg O Glebov
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Shandong, China.
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley National Health Service Foundation Trust, London, UK
| | - Robert Stewart
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley National Health Service Foundation Trust, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Gayan Perera
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Asadi Anar M, Foroughi E, Sohrabi E, Peiravi S, Tavakoli Y, Kameli Khouzani M, Behshood P, Shamshiri M, Faridzadeh A, Keylani K, Langari SF, Ansari A, Khalaji A, Garousi S, Mottahedi M, Honari S, Deravi N. Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19. Front Pharmacol 2022; 13:1036093. [PMID: 36532776 PMCID: PMC9748354 DOI: 10.3389/fphar.2022.1036093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The emerging COVID-19 pandemic led to a dramatic increase in global mortality and morbidity rates. As in most infections, fatal complications of coronavirus affliction are triggered by an untrammeled host inflammatory response. Cytokine storms created by high levels of interleukin and other cytokines elucidate the pathology of severe COVID-19. In this respect, repurposing drugs that are already available and might exhibit anti-inflammatory effects have received significant attention. With the in vitro and clinical investigation of several studies on the effect of antidepressants on COVID-19 prognosis, previous data suggest that selective serotonin reuptake inhibitors (SSRIs) might be the new hope for the early treatment of severely afflicted patients. SSRIs' low cost and availability make them potentially eligible for COVID-19 repurposing. This review summarizes current achievements and literature about the connection between SSRIs administration and COVID-19 prognosis.
Collapse
Affiliation(s)
- Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elika Sohrabi
- Department of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Samira Peiravi
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | | | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | - Melika Shamshiri
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Faride Langari
- Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ansari
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Honari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nyirenda JL, Sofroniou M, Toews I, Mikolajewska A, Lehane C, Monsef I, Abu-Taha A, Maun A, Stegemann M, Schmucker C. Fluvoxamine for the treatment of COVID-19. Cochrane Database Syst Rev 2022; 9:CD015391. [PMID: 36103313 PMCID: PMC9473347 DOI: 10.1002/14651858.cd015391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fluvoxamine is a selective serotonin reuptake inhibitor (SSRI) that has been approved for the treatment of depression, obsessive-compulsive disorder, and a variety of anxiety disorders; it is available as an oral preparation. Fluvoxamine has not been approved for the treatment of infections, but has been used in the early treatment of people with mild to moderate COVID-19. As there are only a few effective therapies for people with COVID-19 in the community, a thorough understanding of the current evidence regarding the efficacy and safety of fluvoxamine as an anti-inflammatory and possible anti-viral treatment for COVID-19, based on randomised controlled trials (RCTs), is needed. OBJECTIVES To assess the efficacy and safety of fluvoxamine in addition to standard care, compared to standard care (alone or with placebo), or any other active pharmacological comparator with proven efficacy for the treatment of COVID-19 outpatients and inpatients. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (including Cochrane Central Register of Controlled Trials, MEDLINE, Embase, ClinicalTrials.gov, WHO ICTRP, medRxiv), Web of Science and WHO COVID-19 Global literature on COVID-19 to identify completed and ongoing studies up to 1 February 2022. SELECTION CRITERIA We included RCTs that compared fluvoxamine in addition to standard care (also including no intervention), with standard care (alone or with placebo), or any other active pharmacological comparator with proven efficacy in clinical trials for the treatment of people with confirmed COVID-19, irrespective of disease severity, in both inpatients and outpatients. Co-interventions needed to be the same in both study arms. We excluded studies comparing fluvoxamine to other pharmacological interventions with unproven efficacy. DATA COLLECTION AND ANALYSIS We assessed risk of bias of primary outcomes using the Cochrane Risk of Bias 2 tool for RCTs. We used GRADE to rate the certainty of evidence to treat people with asymptomatic to severe COVID-19 for the primary outcomes including mortality, clinical deterioration, clinical improvement, quality of life, serious adverse events, adverse events of any grade, and suicide or suicide attempt. MAIN RESULTS We identified two completed studies with a total of 1649 symptomatic participants. One study was conducted in the USA (study with 152 participants, 80 and 72 participants per study arm) and the other study in Brazil (study with 1497 high-risk participants for progression to severe disease, 741 and 756 participants per study arm) among outpatients with mild COVID-19. Both studies were double-blind, placebo-controlled trials in which participants were prescribed 100 mg fluvoxamine two or three times daily for a maximum of 15 days. We identified five ongoing studies and two studies awaiting classification (due to translation issues, and due to missing published data). We found no published studies comparing fluvoxamine to other pharmacological interventions of proven efficacy. We assessed both included studies to have an overall high risk of bias. Fluvoxamine for the treatment of COVID-19 in inpatients We did not identify any completed studies of inpatients. Fluvoxamine for the treatment of COVID-19 in outpatients Fluvoxamine in addition to standard care may slightly reduce all-cause mortality at day 28 (RR 0.69, 95% CI 0.38 to 1.27; risk difference (RD) 9 per 1000; 2 studies, 1649 participants; low-certainty evidence), and may reduce clinical deterioration defined as all-cause hospital admission or death before hospital admission (RR 0.55, 95% CI 0.16 to 1.89; RD 57 per 1000; 2 studies, 1649 participants; low-certainty evidence). We are very uncertain regarding the effect of fluvoxamine on serious adverse events (RR 0.56, 95% CI 0.15 to 2.03; RD 54 per 1000; 2 studies, 1649 participants; very low-certainty evidence) or adverse events of any grade (RR 1.06, 95% CI 0.82 to 1.37; RD 7 per 1000; 2 studies, 1649 participants; very low-certainty evidence). Neither of the studies reported on symptom resolution (clinical improvement), quality of life or suicide/suicide attempt. AUTHORS' CONCLUSIONS Based on a low-certainty evidence, fluvoxamine may slightly reduce all-cause mortality at day 28, and may reduce the risk of admission to hospital or death in outpatients with mild COVID-19. However, we are very uncertain regarding the effect of fluvoxamine on serious adverse events, or any adverse events. In accordance with the living approach of this review, we will continually update our search and include eligible trials as they arise, to complete any gaps in the evidence.
Collapse
Affiliation(s)
- John Lz Nyirenda
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Public Health Department, Faculty of Applied Sciences, University of Livingstonia, Mzuzu, Malawi
| | - Mario Sofroniou
- Institute of General Practice/Family Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- NHS South West England, National Health Service, England, UK
- Fellow, Royal College of General Practitioners, FRCGP, London, UK
| | - Ingrid Toews
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Agata Mikolajewska
- Centre for Biological Threats and Special Pathogens (ZBS), Strategy and Incident Response (ZBS7), Clinical Management and Infection Control (ZBS7.1), Robert Koch Institute, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Lehane
- Department of Anesthesiology, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
| | - Ina Monsef
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cochrane Haematology, Cologne, Germany
| | - Aesha Abu-Taha
- Institute of General Practice/Family Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Andy Maun
- Institute of General Practice/Family Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Schmucker
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Mohamed Y, El-Maradny YA, Saleh AK, Nayl AA, El-Gendi H, El-Fakharany EM. A comprehensive insight into current control of COVID-19: Immunogenicity, vaccination, and treatment. Biomed Pharmacother 2022; 153:113499. [PMID: 36076589 PMCID: PMC9343749 DOI: 10.1016/j.biopha.2022.113499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
The healthy immune system eliminates pathogens and maintains tissue homeostasis through extraordinarily complex networks with feedback systems while avoiding potentially massive tissue destruction. Many parameters influence humoral and cellular vaccine responses, including intrinsic and extrinsic, environmental, and behavioral, nutritional, perinatal and administrative parameters. The relative contributions of persisting antibodies and immune memory as well as the determinants of immune memory induction, to protect against specific diseases are the main parameters of long-term vaccine efficacy. Natural and vaccine-induced immunity and monoclonal antibody immunotherapeutic, may be evaded by SARS-CoV-2 variants. Besides the complications of the production of COVID-19 vaccinations, there is no effective single treatment against COVID-19. However, administration of a combined treatment at different stages of COVID-19 infection may offer some cure assistance. Combination treatment of antiviral drugs and immunomodulatory drugs may reduce inflammation in critical COVID-19 patients with cytokine release syndrome. Molnupiravir, remdesivir and paxlovid are the approved antiviral agents that may reduce the recovery time. In addition, immunomodulatory drugs such as lactoferrin and monoclonal antibodies are used to control inflammatory responses in their respective auto-immune conditions. Therefore, the widespread occurrence of highly transmissible variants like Delta and Omicron indicates that there is still a lot of work to be done in designing efficient vaccines and medicines for COVID-19. In this review, we briefly discussed the immunological response against SARS-CoV-2 and the vaccines approved by the World Health Organization (WHO) for COVID-19, their mechanisms, and side effects. Moreover, we mentioned various treatment trials and strategies for COVID-19.
Collapse
Affiliation(s)
- Yasser Mohamed
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Laboratory of Kafr El-Sheikh Fever Hospital, Kafr El-Sheikh Fever Hospital, 33511 Kafr El-Sheikh, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, P.O. 12622, Giza, Egypt
| | - AbdElAziz A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia.
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes zone, New Borg El-Arab, Alexandria 21934, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
8
|
Abstract
Over the last 2 years, there has been gradual and sustained progress toward our understanding of pharmacotherapy for coronavirus disease 2019 (COVID-19) as a result of large- and small-scale randomized controlled trials. Numerous new and repurposed treatments have been evaluated; some have demonstrated benefit in clinically important outcomes like mortality and hospitalization, and optimism for oral antiviral treatments is growing. Given the rapidly evolving landscape of COVID-19 treatments, frontline clinicians should use treatment and management guidelines to guide their approach to each patient, with the individual's severity and location of illness in mind to appreciate the nuances in clinical evidence.
Collapse
Affiliation(s)
- Amy Hirsch Shumaker
- Clinical Pharmacy Specialist-Infectious Disease, Department of Pharmacy, VA Northeast Ohio Healthcare System, 10701 East Boulevard, Pharmacy 119 (W), Cleveland, OH 44106, USA; Senior Clinical Instructor, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-7341.
| | - Adarsh Bhimraj
- Section Head Neurologic Infectious Diseases, Department of Infectious Diseases, Cleveland Clinic, 9500 Euclid Avenue/g21, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry 2022; 27:1898-1907. [PMID: 34997196 PMCID: PMC8739627 DOI: 10.1038/s41380-021-01432-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
10
|
Le Corre P, Loas G. Difficulty in Repurposing Selective Serotonin Reuptake Inhibitors and Other Antidepressants with Functional Inhibition of Acid Sphingomyelinase in COVID-19 Infection. Front Pharmacol 2022; 13:849095. [PMID: 35308205 PMCID: PMC8927035 DOI: 10.3389/fphar.2022.849095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid spread of COVID-19 has become a health emergency causing an urgent need for drug treatments to control the outbreak, especially in more vulnerable individuals. This is reinforced by the fact that prophylactic vaccines and neutralizing monoclonal antibodies may not be fully effective against emerging variants. Despite all efforts made by the scientific community, efficient therapeutic options currently remain scarce, either in the initial, as well as in the advanced forms of the disease. From retrospective observational studies and prospective clinical trials, selective serotonin reuptake inhibitors (SSRIs), and other antidepressants with functional inhibition of acid sphingomyelinase (FIASMAs), have emerged as potential treatments of COVID-19. This has led to some prematurely optimistic points of view, promoting a large prescription of fluvoxamine in patients with COVID-19, that we think should be reasonably tempered.
Collapse
Affiliation(s)
- Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, Rennes, France
| | - Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|