1
|
Yao L, Mei X, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A novel electrochemiluminescent sensor based on AgMOF@N-CD composites for sensitive detection of trilobatin. Analyst 2024; 149:5265-5276. [PMID: 39264159 DOI: 10.1039/d4an01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this study, a novel electrochemiluminescent (ECL) sensor for highly sensitive detection of trilobatin (Tri) was developed based on silver metal-organic frameworks (AgMOFs) and nitrogen-doped carbon quantum dots (N-CDs). N-CDs exhibited high ECL intensity but poor ECL stability, while AgMOFs had a large specific surface area, high porosity, and good adsorption properties. Compositing both of them not only improved the ECL stability of N-CDs, but also enhanced the ECL strength of materials, so AgMOF@N-CD composites were used as the luminophore of the sensor. Under the optimized conditions, the ECL sensor showed a linear range of 1.0 × 10-7 M to 1.0 × 10-3 M for the detection of Tri, and the detection limit was as low as 5.99 × 10-8 M (S/N = 3). In addition, the sensor had excellent reproducibility, stability, and anti-interference ability. It could be utilized for the detection of Tri in real samples with recoveries of 95.78-102.26%, indicating that the constructed ECL sensor for detecting Tri possessed better application prospects.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, China
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit. Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Zhang Y, Jiang X, Wu D, Huang H, Jia G, Zhao G. Sema4D deficiency enhances glucose tolerance through GLUT2 retention in hepatocytes. J Transl Med 2024; 22:864. [PMID: 39334386 PMCID: PMC11429007 DOI: 10.1186/s12967-024-05694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The glucose transporter 2 (GLUT2) is constitutively expressed in pancreatic beta cells and hepatocytes of mice. It is the most important receptor in glucose-stimulated insulin release and hepatic glucose transport. The Sema4D is a signalin receptor on cell membranes. The correlation between Sema4D and GLUT2 has not been reported previously. We investigated whether knockdown of Sema4D could exert a hypoglycemic effect based on the increased GLUT2 expression in Sema4D -/- mice hepatocytes. METHODS The glucose tolerance test and insulin tolerance test in sema4D -/- and sema4D +/+ mice were compared before and after streptozotocin (STZ) injection; the expression of GLUT2 content on the membrane surface of both groups was verified by Western blot. Then, the levels of insulin and C-peptide in the serum of the two groups of mice after STZ injection were measured by ELISA; the differentially expressed mRNAs in the liver of the two groups of mice were analyzed by transcriptomic analysis; then the differences in the expression of GLUT2, glycogen, insulin and glucagon in the two groups of mice were compared by tissue section staining. Finally, metabolomics analysis was performed to analyze the metabolites differentially expressed in the two groups of mice. KEY FINDINGS First, Sema4D -/- male mice exhibited significantly greater glucose tolerance than wild-type mice in a hyperglycemic environment. Secondly, Sema4D -/- mice had more retained GLUT2 in liver membranes after STZ injection according to an immunofluorescence assay. After STZ injection, Sema4D -/- male mice did not exhibit fasting hyperinsulinemia like wild-type mice. Finally, analysis of metabolomic and immunohistochemical data also revealed that Sema4D -/- mice produce hypoglycemic effects by enhancing the pentose phosphate pathway, but not glycogen synthesis. CONCLUSIONS Thus, Sema4D may play an important role in the regulation of glucose homeostasis by affecting GLUT2 synthesis.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Dongsong Wu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Hao Huang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Cao Z, Wang X, Zeng Z, Yang Z, Lin Y, Sun L, Lu Q, Fan G. The improvement of modified Si-Miao granule on hepatic insulin resistance and glycogen synthesis in type 2 diabetes mellitus involves the inhibition of TNF-α/JNK1/IRS-2 pathway: network pharmacology, molecular docking, and experimental validation. Chin Med 2024; 19:128. [PMID: 39285464 PMCID: PMC11403785 DOI: 10.1186/s13020-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Modified Si-Miao granule (mSMG), a traditional Chinese medicine, is beneficial for T2DM and insulin resistance (IR), but the underlying mechanism remains unknown. METHODS Using network pharmacology, we screened the compounds of mSMG and identified its targets and pathway on hepatic IR in T2DM. Using molecular docking, we identified the affinity between the compounds and hub target TNF-α. Then these were verified in KK-Ay mice and HepG2 cells. RESULTS 50 compounds and 170 targets of mSMG against IR in T2DM were screened, and 9 hub targets such as TNF and MAPK8 were identified. 170 targets were mainly enriched in insulin resistance and TNF pathway, so we speculated that mSMG might act on TNF-α, JNK1 and then regulate insulin signaling to mitigate IR. Experimental validation proved that mSMG ameliorated hyperglycemia, IR, and TNF-α, enhanced glucose consumption and glycogen synthesis, relieved the phosphorylation of JNK1 and IRS-2 (Ser388), and elevated the phosphorylation of Akt (Ser473) and GSK-3β (Ser9) and GLUT2 expression in KK-Ay mice. Molecular docking further showed berberine from mSMG had excellent binding capacity with TNF-α. Then, in vitro validation experiments, we found that 20% mSMG-MS or 50 μM berberine had little effect in IR-HepG2 cell viability, but significantly increased glucose consumption and glycogen synthesis and regulated TNF-α/JNK1/IRS-2 pathway. CONCLUSION Network pharmacology and molecular docking help us predict potential mechanism of mSMG and further guide experimental validation. mSMG and its representative compound berberine improve hepatic IR and glycogen synthesis, and its mechanism may be related to the inhibition of TNF-α/JNK1/IRS-2 pathway.
Collapse
Affiliation(s)
- Zebiao Cao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhili Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaojun Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuping Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyun Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanjie Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
5
|
Mohamed DA, Fouda K, Mabrok HB, El-Shamarka ME, Hamed IM. Sourdough bread as nutritional intervention tool for improvement of cognitive dysfunction in diabetic rats. BMC Nutr 2024; 10:53. [PMID: 38528644 DOI: 10.1186/s40795-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The current research targeted to study the impact of nutritional intervention by two sourdough breads in improvement of cognitive dysfunction in diabetic rats. METHODS Type-2 diabetes was induced in rats by Streptozotocin-Nicotinamide (STZ-NC). Diabetic rats were fed on balanced diet or balanced diet containing 20% of sourdough bread I or II for a month. Lipid profile, oxidative stress, inflammatory markers and cognitive functions were assessed in all rats. Gene expression of brain-derived neurotrophic factor (BDNF) and nuclear respiratory factor 2 (NRF-2) were assessed in hippocampal tissue, while expression of phosphoenol pyruvate carboxy kinase (PEPCK), and glucose transporter 2 (GLUT2) genes were evaluated in hepatic tissue. Chemical composition and fatty acids profile were evaluated in the prepared sourdough bread. RESULTS Sourdough bread II showed higher content of phenolic compounds, fat, fiber and carbohydrates. Fatty acids profile revealed that sourdough bread I was higher in saturated fatty acids (16.08%), while sourdough bread sample II was higher in unsaturated fatty acids (79.33%). Sourdough bread I or II feeding rats' showed significant improvement in hyperglycemia, oxidative stress markers, inflammatory markers, lipid profile, liver and kidney functions in association with improvement in cognitive function. Gene expression of BDNF and NRF2 in hippocampal tissue were increased significantly, while hepatic GLUT2 and PEPCK gene expression were down-regulated in diabetic given sourdough bread I or II. CONCLUSION Sourdough bread II was superior in all the studied parameters. The anti-diabetic effect and protection from cognitive dysfunction of sourdough bread samples may be ascribed to the occurrence of dietary fibers, phenolic compounds, and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa E El-Shamarka
- Toxicology and Narcotics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ibrahim M Hamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Xu N, Liu S, Zhang Y, Chen Y, Zuo Y, Tan X, Liao B, Li P, Feng J. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin. Redox Rep 2023; 28:2246720. [PMID: 37747066 PMCID: PMC10538464 DOI: 10.1080/13510002.2023.2246720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders that poses a global threat to human health. It can lead to complications in multiple organs and tissues, owing to its wide-ranging impact on the human body. Diabetic cardiomyopathy (DCM) is a specific cardiac manifestation of DM, which is characterized by heart failure in the absence of coronary heart disease, hypertension and valvular heart disease. Given that oxidative stress is a key factor in the pathogenesis of DCM, intervening to mitigate oxidative stress may serve as a therapeutic strategy for managing DCM. Naringenin is a natural product with anti-oxidative stress properties that can suppress oxidative damage by regulating various oxidative stress signaling pathways. In this review, we address the relationship between oxidative stress and its primary signaling pathways implicated in DCM, and explores the therapeutic potential of naringenin in DCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, People’s Republic of China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yujing Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
| | - Pengyun Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
7
|
The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12020236. [PMID: 36829795 PMCID: PMC9952802 DOI: 10.3390/antiox12020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Redox balance is essential to maintain the body's normal metabolism. Once disrupted, it may lead to various chronic diseases, such as diabetes, neurodegenerative diseases, cardiovascular diseases, inflammatory diseases, cancer, aging, etc. Oxidative stress can cause or aggravate a series of pathological processes. Inhibition of oxidative stress and related pathological processes can help to ameliorate these chronic diseases, which have been found to be associated with Nrf2 activation. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damage, but also directly regulate genes related to the above-mentioned pathological processes to counter the corresponding changes. Therefore, targeting Nrf2 has great potential for the prevention or treatment of chronic diseases, and many natural phytochemicals have been reported as Nrf2 activators although the defined mechanisms remain to be elucidated. This review article focuses on the possible mechanism of Nrf2 activation by natural phytochemicals in the prevention or treatment of chronic diseases and the regulation of oxidative stress. Moreover, the current clinical trials of phytochemical-originated drug discovery by targeting the Nrf2-ARE pathway were also summarized; the outcomes or the relationship between phytochemicals and chronic diseases prevention are finally analyzed to propose the future research strategies and prospective.
Collapse
|
8
|
Li Y, Li Y, Chen N, Feng L, Gao J, Zeng N, He Z, Gong Q. Icariside II Exerts Anti-Type 2 Diabetic Effect by Targeting PPARα/γ: Involvement of ROS/NF-κB/IRS1 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11091705. [PMID: 36139776 PMCID: PMC9495514 DOI: 10.3390/antiox11091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multisystem and complex metabolic disorder which is associated with insulin resistance and impairments of pancreatic β-cells. Previous studies have shown that icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exerts potent anti-inflammatory and anti-oxidative properties. In this study, we investigated whether ICS II exerted anti-T2DM profile and further explored its possible underlying mechanism both in vivo and in vitro. db/db mice were administered ICS II (10, 20, 40 mg·kg−1) for 7 weeks. We found that ICS II dose-dependently attenuated hyperglycemia and dyslipidemia, as well as inhibited hepatic steatosis and islet architecture damage in db/db mice. Moreover, ICS II not only dramatically reduced inflammatory cytokines and oxidative stress, but also up-regulated PPARα/γ protein expressions, phosphorylation of Akt, GSK3β and IR, meanwhile, down-regulated phosphorylation of NF-κB(p65) and IRS1 in db/db mice. In palmitic acid (PA)-treated HepG2 or MIN6 cells, ICS II (5−20 μM) concentration-dependently promoted the cell viability via mediating PPARα/γ/NF-κB signaling pathway. PPARα/γ knockout by CRISPR-Cas9 system partly abolished the protective effects of ICS II on HepG2 or MIN6 cells following PA insults. These findings reveal that ICS II effectively confer anti-T2DM property by targeting PPARα/γ through mediation of ROS/NF-κB/IRS1 signaling pathway.
Collapse
Affiliation(s)
- Yiqi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Nana Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Linying Feng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Nan Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Qihai Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Correspondence: ; Tel./Fax: +86-851-286-423-03
| |
Collapse
|
9
|
Ismail A, Tanasova M. Importance of GLUT Transporters in Disease Diagnosis and Treatment. Int J Mol Sci 2022; 23:8698. [PMID: 35955833 PMCID: PMC9368955 DOI: 10.3390/ijms23158698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Facilitative sugar transporters (GLUTs) are the primary method of sugar uptake in all mammalian cells. There are 14 different types of those transmembrane proteins, but they transport only a handful of substrates, mainly glucose and fructose. This overlap and redundancy contradict the natural tendency of cells to conserve energy and resources, and has led researchers to hypothesize that different GLUTs partake in more metabolic roles than just sugar transport into cells. Understanding those roles will lead to better therapeutics for a wide variety of diseases and disorders. In this review we highlight recent discoveries of the role GLUTs play in different diseases and disease treatments.
Collapse
Affiliation(s)
- Abdelrahman Ismail
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
10
|
Xiao R, Wei Y, Zhang Y, Xu F, Ma C, Gong Q, Gao J, Xu Y. Trilobatin, a Naturally Occurring Food Additive, Ameliorates Exhaustive Exercise-Induced Fatigue in Mice: Involvement of Nrf2/ARE/Ferroptosis Signaling Pathway. Front Pharmacol 2022; 13:913367. [PMID: 35814232 PMCID: PMC9263197 DOI: 10.3389/fphar.2022.913367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Nrf2-mediated oxidative stress is a promising target of exhaustive exercise-induced fatigue (EEIF). Trilobatin (TLB) is a naturally occurring food additive with antioxidant effect and Nrf2 activation potency. The present study aimed to investigate the effect of TLB on EEIF and elucidate its underlying mechanism. Our results showed that TLB exerted potent anti-EEIF effect, as reflected by the rope climbing test and exhaustive swimming test. Moreover, TLB also effectively reduced the levels of lactate, creatine kinase, and blood urea nitrogen, and increased liver glycogen and skeletal muscle glycogen in mice after EEIF insult. Additionally, TLB also balanced the redox status as evidenced by decreasing the generation of reactive oxygen species and improving the antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of glutathione both in the tissue of muscle and myocardium. Furthermore, TLB promoted nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, and upregulated its downstream antioxidant response element (ARE) including quinone oxidoreductase-1 and heme oxygenase-1. Intriguingly, TLB also upregulated the GPx4 protein expression and reduced iron overload in mice after EEIF insult. Encouragingly, the beneficial effect of TLB on EEIF-induced oxidative stress and ferroptosis were substantially abolished in Nrf2-deficient mice. In conclusion, our findings demonstrate, for the first time, that TLB alleviates EEIF-induced oxidative stress through mediating Nrf2/ARE/ferroptosis axis.
Collapse
Affiliation(s)
- Ran Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yueping Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yingshu Xu,
| |
Collapse
|
11
|
Chen XM, Yang WQ, Wang X, Chen C, Qian ZM, Wang SM, Tang D. Effects of natural dihydrochalcones in sweet tea ( Lithocarpus polystachyus) on diabetes: a systematical review and meta-analysis of animal studies. Food Funct 2022; 13:5899-5913. [PMID: 35583219 DOI: 10.1039/d2fo00245k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sweet tea (Lithocarpus polystachyus Rehd.), a natural functional food highly rich in dihydrochalcones including trilobatin, phlorizin and phloretin, is reported to possess numerous biological activities especially for treating diabetes. Here, the aim of this systematical review and meta-analysis is to assess the effect of dihydrochalcones in sweet tea (DST) on diabetes and summarize their possible mechanisms. We searched in eight databases including Embase, PubMed, Cochrane, Web of Science, WanFang database, VIP database, China National Knowledge Infrastructure and China Biology Medicine from Jan 2000 to Nov 2021 and ultimately included 21 animal studies in this review. A total of 10 outcome measurements including blood lipid indexes, blood glucose, insulin resistance indicators and oxidative stress biomarkers were extracted for meta-analysis using RevMan 5.4 software. DST significantly decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), blood glucose (BG), homeostasis model assessment of insulin resistance (HOMA-IR) and malondialdehyde (MDA), and increased high-density lipoprotein cholesterol (HDL-c), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in diabetic animal models. In summary, DST could treat diabetes by regulation of blood glucose/lipid metabolism, oxidative/carbonyl stress, inflammatory response etc.
Collapse
Affiliation(s)
- Xue-Min Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wei-Qi Yang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chong Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|