1
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Young ME. The Cardiac Circadian Clock: Implications for Cardiovascular Disease and its Treatment. JACC Basic Transl Sci 2023; 8:1613-1628. [PMID: 38205356 PMCID: PMC10774593 DOI: 10.1016/j.jacbts.2023.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 01/12/2024]
Abstract
Virtually all aspects of physiology fluctuate with respect to the time of day. This is beautifully exemplified by cardiovascular physiology, for which blood pressure and electrophysiology exhibit robust diurnal oscillations. At molecular/biochemical levels (eg, transcription, translation, signaling, metabolism), cardiovascular-relevant tissues (such as the heart) are profoundly different during the day vs the night. Unfortunately, this in turn contributes toward 24-hour rhythms in both risk of adverse event onset (eg, arrhythmias, myocardial infarction) and pathogenesis severity (eg, extent of ischemic damage). Accumulating evidence indicates that cell-autonomous timekeeping mechanisms, termed circadian clocks, temporally govern biological processes known to play critical roles in cardiovascular function/dysfunction. In this paper, a comprehensive review of our current understanding of the cardiomyocyte circadian clock during both health and disease is detailed. Unprecedented basic, translational, and epidemiologic studies support a need to implement chronobiological considerations in strategies designed for both prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Latimer MN, Williams LJ, Shanmugan G, Carpenter BJ, Lazar MA, Dierickx P, Young ME. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart. Commun Biol 2023; 6:1149. [PMID: 37952007 PMCID: PMC10640639 DOI: 10.1038/s42003-023-05537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Circadian disruption increases cardiovascular disease (CVD) risk, through poorly understood mechanisms. Given that small RNA species are critical modulators of cardiac physiology/pathology, we sought to determine the extent to which cardiomyocyte circadian clock (CCC) disruption impacts cardiac small RNA species. Accordingly, we collected hearts from cardiomyocyte-specific Bmal1 knockout (CBK; a model of CCC disruption) and littermate control (CON) mice at multiple times of the day, followed by small RNA-seq. The data reveal 47 differentially expressed miRNAs species in CBK hearts. Subsequent bioinformatic analyses predict that differentially expressed miRNA species in CBK hearts influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 are predicted to be targeted by the transcriptional repressors REV-ERBα/β (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erbα/β double knockout (CM-RevDKO) mouse hearts exhibit increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs are commonly repressed in CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the circadian BMAL1-REV-ERBα/β regulatory network in the heart induces distinct miRNAs, whose mRNA targets impact critical cellular functions.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario J Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gobinath Shanmugan
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bryce J Carpenter
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pieterjan Dierickx
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
List EO, Duran-Ortiz S, Kulkarni P, Davis E, Mora-Criollo P, Berryman DE, Kopchick JJ. Growth hormone receptor gene disruption. VITAMINS AND HORMONES 2023; 123:109-149. [PMID: 37717983 PMCID: PMC11462719 DOI: 10.1016/bs.vh.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Much of our understanding of growth hormone's (GH)'s numerous activities stems from studies utilizing GH receptor (GHR) knockout mice. More recently, the role of GH action has been examined by creating mice with tissue-specific or temporal GHR disruption. To date, 37 distinct GHR knockout mouse lines have been created. Targeted tissues include fat, liver, muscle, heart, bone, brain, macrophage, intestine, hematopoietic stem cells, pancreatic β cells, and inducible multi-tissue "global" disruption at various ages. In this chapter, a summary of each mouse line is provided with background information on the generation of the mouse line as well as important physiological outcomes resulting from GHR gene disruption. Collectively, these mouse lines provide unique insights into GH action and have resulted in the development of new hypotheses about the functions ascribed to GH action in particular tissues.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Prateek Kulkarni
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Emily Davis
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Patricia Mora-Criollo
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Darlene E Berryman
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - John J Kopchick
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
5
|
Yusifova M, Yusifov A, Polson SM, Todd WD, Schmitt EE, Bruns DR. Voluntary Wheel Running Exercise Does Not Attenuate Circadian and Cardiac Dysfunction Caused by Conditional Deletion of Bmal1. J Biol Rhythms 2023:7487304231152398. [PMID: 36802963 DOI: 10.1177/07487304231152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Circadian misalignment occurs with age, jet lag, and shift work, leading to maladaptive health outcomes including cardiovascular diseases. Despite the strong link between circadian disruption and heart disease, the cardiac circadian clock is poorly understood, prohibiting identification of therapies to restore the broken clock. Exercise is the most cardioprotective intervention identified to date and has been suggested to reset the circadian clock in other peripheral tissues. Here, we tested the hypothesis that conditional deletion of core circadian gene Bmal1 would disrupt cardiac circadian rhythm and function and that this disruption would be ameliorated by exercise. To test this hypothesis, we generated a transgenic mouse with spatial and temporal deletion of Bmal1 only in adult cardiac myocytes (Bmal1 cardiac knockout [cKO]). Bmal1 cKO mice demonstrated cardiac hypertrophy and fibrosis concomitant with impaired systolic function. This pathological cardiac remodeling was not rescued by wheel running. While the molecular mechanisms responsible for the profound cardiac remodeling are unclear, it does not appear to involve activation of the mammalian target of rapamycin (mTOR) signaling or changes in metabolic gene expression. Interestingly, cardiac deletion of Bmal1 disrupted systemic rhythms as evidenced by changes in the onset and phasing of activity in relationship to the light/dark cycle and by decreased periodogram power as measured by core temperature, suggesting cardiac clocks can regulate systemic circadian output. Together, we suggest a critical role for cardiac Bmal1 in regulating both cardiac and systemic circadian rhythm and function. Ongoing experiments will determine how disruption of the circadian clock causes cardiac remodeling in an effort to identify therapeutics to attenuate the maladaptive outcomes of a broken cardiac circadian clock.
Collapse
Affiliation(s)
| | - Aykhan Yusifov
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming
| | - Sydney M Polson
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming
| | - William D Todd
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| | - Emily E Schmitt
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming.,Wyoming WWAMI Medical Education, University of Wyoming, Laramie, Wyoming
| | - Danielle R Bruns
- Kinesiology & Health, University of Wyoming, Laramie, Wyoming.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming.,Wyoming WWAMI Medical Education, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
6
|
Abstract
The cardiomyocyte circadian clock temporally governs fundamental cellular processes, leading to 24-h rhythms in cardiac properties (such as electrophysiology and contractility). The importance of this cell-autonomous clock is underscored by reports that the disruption of the mechanism leads to adverse cardiac remodeling and heart failure. In healthy non-stressed mice, the cardiomyocyte circadian clock modestly augments both cardiac protein synthesis (~14%) and mass (~11%) at the awake-to-sleep transition (relative to their lowest values in the middle of the awake period). However, the increased capacity for cardiac growth at the awake-to-sleep transition exacerbates the responsiveness of the heart to pro-hypertrophic stimuli/stresses (e.g., adrenergic stimulation, nutrients) at this time. The cardiomyocyte circadian clock orchestrates time-of-day-dependent rhythms in cardiac growth through numerous mechanisms. Both ribosomal RNA (e.g., 28S) and the PI3K/AKT/mTOR/S6 signaling axis are circadian regulated, peaking at the awake-to-sleep transition in the heart. Conversely, the negative regulators of translation (including PER2, AMPK, and the integrated stress response) are elevated in the middle of the awake period in a coordinated fashion. We speculate that persistent circadian governance of cardiac growth during non-dipping/nocturnal hypertension, sleep apnea, and/or shift work may exacerbate left ventricular hypertrophy and cardiac disease development, highlighting a need for the advancement of chronotherapeutic interventions.
Collapse
Affiliation(s)
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|