1
|
Cho H, Jun I, Adnan KM, Park CG, Lee SA, Yoon J, Ryu CS, Kim YJ. Effects of 5α-reductase inhibition by dutasteride on reproductive gene expression and hormonal responses in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110048. [PMID: 39313015 DOI: 10.1016/j.cbpc.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Steroid 5α-reductase (SRD5A) is a crucial enzyme involved in steroid metabolism, primarily converting testosterone to dihydrotestosterone (DHT). Dutasteride, an inhibitor of SRD5A types 1 and 2, is widely used for treating benign prostatic hyperplasia. An adverse outcome pathway (AOP) has been documented wherein SRD5A inhibition decreases DHT synthesis, leading to reduced levels of 17β-estradiol (E2) and vitellogenin (VTG), subsequently impairing fecundity in fish (AOP 289). However, the molecular and cellular mechanisms underlying these effects remain poorly understood. In this study, we assessed the impact of SRD5A inhibition on zebrafish embryos (Danio rerio). Exposure to dutasteride resulted in decreased DHT, E2, and VTG levels, showing a positive correlation. Dutasteride also downregulated the expression of reproduction-related genes (srd5a2, cyp19a1, esr1, esr2a, esr2b, and vtg), with interrelated reductions observed across these levels. Docking studies suggested that dutasteride's effects may operate independently of androgen receptor (AR) and estrogen receptor (ER) interactions. Furthermore, co-exposure of dutasteride (0.5 or 2 μM) with 0.5 μM DHT revealed gene expression levels comparable to the control group. These findings underscore DHT's pivotal role in modulating estrogenic function and the interplay between estrogenic and androgenic responses in vertebrates. Our proposed AOP model offers insights into mechanistic gaps, thereby enhancing current understanding and bridging knowledge disparities.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-Ro, Jeju 63243, Republic of Korea
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Stradtman SC, Swihart JN, Moore K, Akoro IN, Ahkin Chin Tai JK, Tamagno WA, Freeman JL. Integrated Analysis of Neuroendocrine and Neurotransmission Pathways Following Developmental Atrazine Exposure in Zebrafish. Int J Mol Sci 2024; 25:13066. [PMID: 39684776 DOI: 10.3390/ijms252313066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Atrazine is an endocrine-disrupting herbicide, with exposure impacting adverse outcomes along multiple endocrine pathways. This study investigated the neuroendocrine system as the central target of atrazine toxicity, examining effects of early developmental exposures on neurohormones and genes associated with kisspeptin, hypothalamic, pituitary, and dopamine systems. Zebrafish were exposed to 0, 0.3, 3, or 30 ppb (µg/L) atrazine during two developmental time windows. For neurohormone assessments, exposure was ceased at the end of embryogenesis (72 h post-fertilization, hpf) and analyzed immediately or grown to 0.5, 2, or 2.5 years post-fertilization (ypf). Gene expression was measured immediately after 1-72 hpf or 72-120 hpf exposure. Estradiol decreased in the 0.3 and 30 ppb groups in 0.5 ypf female brains, while dopamine decreased in the same treatment groups at 72 hpf. Increases were also observed in 2.5 ypf female brains (3 ppb) for estradiol and in 2 ypf female and male brains (3 and 30 ppb) for dopamine. Gene expression alterations occurred for the follicle-stimulating hormone (fsh) at 72 hpf and the growth hormone (gh1) at 72 and 120 hpf. Overall, results indicated that developmental atrazine exposure has immediate and long-term sex-specific effects on neurohormonal systems.
Collapse
Affiliation(s)
- Sydney C Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna N Swihart
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kaylin Moore
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Lazcano I, Pech-Pool SM, Maldonado-Lira MF, Olvera A, Darras VM, Orozco A. Ontogeny of Thyroid Hormone Signaling in the Retina of Zebrafish: Effects of Thyroidal Status on Retinal Morphology, Cell Survival, and Color Preference. Int J Mol Sci 2024; 25:12215. [PMID: 39596289 PMCID: PMC11594673 DOI: 10.3390/ijms252212215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival. In the present study, we investigated the expression profile of genes involved in TH signaling and analyzed the impact of thyroidal status on retinal morphology, opsin expression, cell death/proliferation profile, as well as color preference behavior during the early retina development of zebrafish larvae. mRNA expression analysis on dissected whole eyes revealed that TH signaling elements gradually increase during eye development, with dio3b being the component that shows the most dramatic change. Mutations generated by CRISPR/CAS9 in the dio3b gene, but not in the thrb gene, modifies the structure of the retina. Disruption in TH level reduces the cell number of the ganglion cell layer, increases cell death, and modifies color preference, emphasizing the critical importance of precise TH regulation by its signaling elements for optimal retinal development and function.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Santiago M. Pech-Pool
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | | | - Aurora Olvera
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, 3000 Leuven, Belgium
| | - Aurea Orozco
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Queretaro 76230, Mexico
| |
Collapse
|
4
|
Luo C, Zhang Q, Zheng S, Wang D, Huang W, Huang Y, Shi X, Xie H, Wu K. Visual toxicity in zebrafish larvae following exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), triphenyl phosphate (TPhP), and isopropyl phenyl diphenyl phosphate (IPPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175131. [PMID: 39127212 DOI: 10.1016/j.scitotenv.2024.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
5
|
Abreu IO, Teixeira C, Vilarinho R, Rocha ACS, Moreira JA, Oliva-Teles L, Guimarães L, Carvalho AP. Baseline Raman Spectral Fingerprints of Zebrafish Embryos and Larvae. BIOSENSORS 2024; 14:538. [PMID: 39589997 PMCID: PMC11591673 DOI: 10.3390/bios14110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
As a highly sensitive vibrational technique, Raman spectroscopy (RS) can provide valuable chemical and molecular data useful to characterise animal cell types, tissues and organs. As a label-free, rapid detection method, RS has been considered a valuable asset in forensics, biology and medicine. The technique has been applied to zebrafish for various purposes, including physiological, biochemical or bioaccumulation analyses. The available data point out its potential for the early diagnosis of detrimental effects elicited by toxicant exposure. Nevertheless, no baseline spectra are available for zebrafish embryos and larvae that could allow for suitable planning of toxicological assessments, comparison with toxicant-elicited spectra or mechanistic understanding of biochemical and physiological responses to the exposures. With this in mind, this work carried out a baseline characterisation of Raman spectra of zebrafish embryos and larvae throughout early development. Raman spectra were recorded from the iris, forebrain, melanocytes, heart, muscle and swim bladder between 24 and 168 h post-fertilisation. A chemometrics approach, based on partial least-squares discriminant analysis (PLS-DA), was used to obtain a Raman characterisation of each tissue or organ. In total, 117 Raman bands were identified, of which 24 were well represented and, thus, retained in the data analysed. Only three bands were found to be common to all organs and tissues. The PLS-DA provided a tentative Raman spectral fingerprint typical of each tissue or organ, reflecting the ongoing developmental dynamics. The bands showed frequencies previously assigned to collagen, cholesterol, various essential amino acids, carbohydrates and nucleic acids.
Collapse
Affiliation(s)
- Isabel Oliveira Abreu
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Teixeira
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rui Vilarinho
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
| | - A. Cristina S. Rocha
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Joaquim Agostinho Moreira
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
| | - Luís Oliva-Teles
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Laura Guimarães
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
| | - António Paulo Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (I.O.A.); (C.T.); (L.O.-T.)
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Zhao Y, Fent K. Endogenous hormones matters in evaluation of endocrine disruptive effects mediated by nuclear receptors. ECO-ENVIRONMENT & HEALTH 2024; 3:257-259. [PMID: 39220231 PMCID: PMC11364016 DOI: 10.1016/j.eehl.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024]
Abstract
Image 1.
Collapse
Affiliation(s)
- Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland
| |
Collapse
|
7
|
Morash MG, Kirzinger MW, Achenbach JC, Venkatachalam AB, Nixon J, Penny S, Cooper JP, Ratzlaff DE, Woodland CLA, Ellis LD. Comparative toxicological assessment of 2 bisphenols using a systems approach: evaluation of the behavioral and transcriptomic responses of Danio rerio to bisphenol A and tetrabromobisphenol A. Toxicol Sci 2024; 200:394-403. [PMID: 38730555 DOI: 10.1093/toxsci/kfae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
The zebrafish (Danio rerio) is becoming a critical component of new approach methods (NAMs) in chemical risk assessment. As a whole organism in vitro NAM, the zebrafish model offers significant advantages over individual cell-line testing, including toxicokinetic and toxicodynamic competencies. A transcriptomic approach not only allows for insight into mechanism of action for both apical endpoints and unobservable adverse outcomes, but also changes in gene expression induced by lower, environmentally relevant concentrations. In this study, we used a larval zebrafish model to assess the behavioral and transcriptomic alterations caused by subphenotypic concentrations of 2 chemicals with the same structural backbone, the endocrine-disrupting chemicals bisphenol A and tetrabromobisphenol A. Following assessment of behavioral toxicity, we used a transcriptomic approach to identify molecular pathways associated with previously described phenotypes. We also determined the transcriptomic point of departure for each chemical by modeling gene expression changes as continuous systems which allows for the identification of a single concentration at which toxic effects can be predicted. This can then be investigated with confirmatory cell-based testing in an integrated approach to testing and assessment to determine risk to human health and the environment with greater confidence. This paper demonstrates the impact of using a multi-faceted approach for evaluating the physiological and neurotoxic effects of exposure to structurally related chemicals. By comparing phenotypic effects with transcriptomic outcomes, we were able to differentiate, characterize, and rank the toxicities of related bisphenols, which demonstrates methodological advantages unique to the larval zebrafish NAM.
Collapse
Affiliation(s)
- Michael G Morash
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada
| | - John C Achenbach
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Ananda B Venkatachalam
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Jessica Nixon
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Susanne Penny
- Human Health and Therapeutics, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | | | - Deborah E Ratzlaff
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Cindy L A Woodland
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Lee D Ellis
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
8
|
Fagundes T, Pannetier P, Gölz L, Behnstedt L, Morthorst J, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. The generation gap in endocrine disruption: Can the integrated fish endocrine disruptor test (iFEDT) bridge the gap by assessing intergenerational effects of thyroid hormone system disruption? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106969. [PMID: 38824743 DOI: 10.1016/j.aquatox.2024.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Thyroid hormones (THs) act early in ontogenesis, even prior to the differentiation of thyrocytes. Maternal transfer of THs is therefore known to play an essential role in early development. Current OECD test guidelines for the assessment of TH system disruption (THSD) do not address inter- or transgenerational effects. The integrated fish endocrine disruptor test (iFEDT), a test combining parental and developmental exposure of filial fish, may fill this gap. We tested the ability of the iFEDT to detect intergenerational effects in zebrafish (Danio rerio): Parental fish were exposed to propylthiouracil (PTU), an inhibitor of TH synthesis, or not exposed. The offspring was submitted to a crossed experimental design to obtain four exposure scenarios: (1) no exposure at all, (2) parental exposure only, (3) embryonic exposure only, and (4) combined parental and embryonic exposure. Swim bladder inflation, visual motor response (VMR) and gene expression of the progeny were analysed. Parental, but not embryonic PTU exposure reduced the size of the swim bladder of 5 d old embryos, indicating the existence of intergenerational effects. The VMR test produced opposite responses in 4.5 d old embryos exposed to PTU vs. embryos derived from exposed parents. Embryonic exposure, but not parental exposure increased gene expression of thyroperoxidase, the target of PTU, most likely due to a compensatory mechanism. The gene expression of pde-6h (phosphodiesterase) was reduced by embryonic, but not parental exposure, suggesting downregulation of phototransduction pathways. Hence, adverse effects on swim bladder inflation appear more sensitive to parental than embryonic exposure and the iFEDT represents an improvement in the testing strategy for THSD.
Collapse
Affiliation(s)
- Teresa Fagundes
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Eurofins Aquatic Ecotoxicolgy, Eutinger Str. 24, D-75223 Niefern-Öschelbronn, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Technopôle Brest Iroise, CS 10070, F-29280 Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Jane Morthorst
- University of Southern Denmark, Institute of Biology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lucia Vergauwen
- University of Antwerp, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, Universiteitsplein 1, BE-2160 Wilrijk, Belgium
| | - Dries Knapen
- University of Antwerp, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, Universiteitsplein 1, BE-2160 Wilrijk, Belgium
| | - Henrik Holbech
- University of Southern Denmark, Institute of Biology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; Amsterdam Institute for Life and Environment, Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Saputra F, Kishida M, Hu SY. Oxidative stress induced by hydrogen peroxide disrupts zebrafish visual development by altering apoptosis, antioxidant and estrogen related genes. Sci Rep 2024; 14:14454. [PMID: 38914633 PMCID: PMC11196719 DOI: 10.1038/s41598-024-64933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Hydrogen peroxide is considered deleterious molecule that cause cellular damage integrity and function. Its key redox signaling molecule in oxidative stress and exerts toxicity on a wide range of organisms. Thus, to understand whether oxidative stress alters visual development, zebrafish embryos were exposed to H2O2 at concentration of 0.02 to 62.5 mM for 7 days. Eye to body length ratio (EBR) and apoptosis in retina at 48 hpf, and optomotor response (OMR) at 7 dpf were all measured. To investigate whether hydrogen peroxide-induced effects were mediated by oxidative stress, embryos were co-incubated with the antioxidant, glutathione (GSH) at 50 μM. Results revealed that concentrations of H2O2 at or above 0.1 mM induced developmental toxicity, leading to increased mortality and hatching delay. Furthermore, exposure to 0.1 mM H2O2 decreased EBR at 48 hpf and impaired OMR visual behavior at 7 dpf. Additionally, exposure increased the area of apoptotic cells in the retina at 48 hpf. The addition of GSH reversed the effects of H2O2, suggesting the involvement of oxidative stress. H2O2 decreased the expression of eye development-related genes, pax6α and pax6β. The expression of apoptosis-related genes, tp53, casp3 and bax, significantly increased, while bcl2α expression decreased. Antioxidant-related genes sod1, cat and gpx1a showed decreased expression. Expression levels of estrogen receptors (ERs) (esr1, esr2α, and esr2β) and ovarian and brain aromatase genes (cyp19a1a and cyp19a1b, respectively) were also significantly reduced. Interestingly, co-incubation of GSH effectivity reversed the impact of H2O2 on most parameters. Overall, these results demonstrate that H2O2 induces adverse effects on visual development via oxidative stress, which leads to alter apoptosis, diminished antioxidant defenses and reduced estrogen production.
Collapse
Affiliation(s)
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
10
|
Gölz L, Pannetier P, Fagundes T, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst J, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test-Part B: Implementation of thyroid-related endpoints. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:830-845. [PMID: 37578010 DOI: 10.1002/ieam.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Given the vital role of thyroid hormones (THs) in vertebrate development, it is essential to identify chemicals that interfere with the TH system. Whereas, among nonmammalian laboratory animals, fish are the most frequently utilized test species in endocrine disruptor research, for example, in guidelines for the detection of effects on the sex hormone system, there is no test guideline (TG) using fish as models for thyroid-related effects; rather, amphibians are used. Therefore, the objective of the present project was to integrate thyroid-related endpoints for fish into a test protocol combining OECD TGs 229 (Fish Short-Term Reproduction Assay) and 234 (Fish Sexual Development Test). The resulting integrated Fish Endocrine Disruption Test (iFEDT) was designed as a comprehensive approach to covering sexual differentiation, early development, and reproduction and to identifying disruption not only of the sexual and/or reproductive system but also the TH system. Two 85-day exposure tests were performed using different well-studied endocrine disruptors: 6-propyl-2-thiouracil (PTU) and 17α-ethinylestradiol (EE2). Whereas the companion Part A of this study presents the findings on effects by PTU and EE2 on endpoints established in existing TGs, the present Part B discusses effects on novel thyroid-related endpoints such as TH levels, thyroid follicle histopathology, and eye development. 6-Propyl-2-thiouracil induced a massive proliferation of thyroid follicles in any life stage, and histopathological changes in the eyes proved to be highly sensitive for TH system disruption especially in younger life stages. For measurement of THs, further methodological development is required. 17-α-Ethinylestradiol demonstrated not only the well-known disruption of the hypothalamic-pituitary-gonadal axis, but also induced effects on thyroid follicles in adult zebrafish (Danio rerio) exposed to higher EE2 concentrations, suggesting crosstalk between endocrine axes. The novel iFEDT has thus proven capable of simultaneously capturing endocrine disruption of both the steroid and thyroid endocrine systems. Integr Environ Assess Manag 2024;20:830-845. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Teresa Fagundes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Piñon-Teal WL, Ogilvie JM. G protein-coupled estrogen receptor expression in postnatal developing mouse retina. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1331298. [PMID: 38984123 PMCID: PMC11182193 DOI: 10.3389/fopht.2024.1331298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 07/11/2024]
Abstract
Introduction Estrogen has emerged as a multifaceted signaling molecule in the retina, playing an important role in neural development and providing neuroprotection in adults. It interacts with two receptor types: classical estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen receptor (Gper). Gper differs from classical ERs in structure, localization, and signaling. Here we provide the first report of the temporal and spatial properties of Gper transcript and protein expression in the developing and mature mouse retina. Methods We applied qRT-PCR to determine Gper transcript expression in wild type mouse retina from P0-P21. Immunohistochemistry and Western blot were used to determine Gper protein expression and localization at the same time points. Results Gper expression showed a 6-fold increase during postnatal development, peaking at P14. Relative total Gper expression exhibited a significant decrease during retinal development, although variations emerged in the timing of changes among different forms of the protein. Gper immunoreactivity was seen in retinal ganglion cells (RGCs) throughout development and also in somas in the position of horizontal cells at early time points. Immunoreactivity was observed in the cytoplasm and Golgi at all time points, in the nucleus at early time points, and in RGC axons as the retina matured. Discussion In conclusion, our study illuminates the spatial and temporal expression patterns of Gper in the developing mouse retina and provides a vital foundation for further investigations into the role of Gper in retinal development and degeneration.
Collapse
Affiliation(s)
| | - Judith Mosinger Ogilvie
- Department of Biology, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
12
|
Volz SN, Poulsen R, Hansen M, Holbech H. Bisphenol A alters retinal morphology, visually guided behavior, and thyroid hormone levels in zebrafish larvae. CHEMOSPHERE 2024; 348:140776. [PMID: 38000552 DOI: 10.1016/j.chemosphere.2023.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Rikke Poulsen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Martin Hansen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
13
|
Pretorius L, Balshaw AG, Ross KS, Smith C. Modeling Sex-Bias in Anxiety: Pros and Cons of a Larval Zebrafish Model. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2024; 8:24705470241261781. [PMID: 38894975 PMCID: PMC11185028 DOI: 10.1177/24705470241261781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders, exhibiting strong female bias. Clinical studies implicate declining estradiol levels in the exacerbation of anxiety symptoms in the premenstrual phase of the menstrual cycle. This study aimed to simulate estradiol fluctuation-linked anxiety behavior in larval zebrafish, using an estradiol treatment withdrawal model. Contrary to model aims, estradiol treatment withdrawal decreased both basal activity and anxiety-like hyperlocomotion (ANOVA main effect of dose, P < 0.0001 and P < 0.01, respectively) in the light/dark transition test. The accuracy of the estradiol washout model was not improved by longer durations of treatment or withdrawal. Basal activity was slightly altered by supraphysiological concentrations of WAY-200070 in the absence of added estradiol. Estrogen receptor (ER) β expression was not upregulated in larvae exposed to physiologically relevant, low concentrations of estradiol. Longer exposure to low concentrations of estradiol increased antioxidant capacity (P < 0.01). In addition, acute exposure to low concentrations of estradiol increased basal activity. Data suggest that in the current models, estradiol-associated altered activity levels were linked to more favorable redox status, rather than reflecting altered anxiety levels. As such, it is recommended that zebrafish larval behavioral analysis be conducted in parallel with mechanistic studies such as redox indicators, for investigations focused on ER signaling.
Collapse
Affiliation(s)
- Lesha Pretorius
- Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Aidan G. Balshaw
- Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kelly S. Ross
- Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carine Smith
- Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Lu K, Wu J, Tang S, Jia X, Liang XF. Knockout of sws2a and sws2b in Medaka ( Oryzias latipes) Reveals Their Roles in Regulating Vision-Guided Behavior and Eye Development. Int J Mol Sci 2023; 24:ijms24108786. [PMID: 37240129 DOI: 10.3390/ijms24108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The medaka (Oryzias latipes) is an excellent vertebrate model for studying the development of the retina. Its genome database is complete, and the number of opsin genes is relatively small compared to zebrafish. Short wavelength sensitive 2 (sws2), a G-protein-coupled receptor expressed in the retina, has been lost in mammals, but its role in eye development in fish is still poorly understood. In this study, we established a sws2a and sws2b knockout medaka model by CRISPR/Cas9 technology. We discovered that medaka sws2a and sws2b are mainly expressed in the eyes and may be regulated by growth differentiation factor 6a (gdf6a). Compared with the WT, sws2a-/- and sws2b-/- mutant larvae displayed an increase in swimming speed during the changes from light to dark. We also observed that sws2a-/- and sws2b-/- larvae both swam faster than WT in the first 10 s of the 2 min light period. The enhanced vision-guided behavior in sws2a-/- and sws2b-/- medaka larvae may be related to the upregulation of phototransduction-related genes. Additionally, we also found that sws2b affects the expression of eye development genes, while sws2a is unaffected. Together, these findings indicate that sws2a and sws2b knockouts increase vision-guided behavior and phototransduction, but on the other hand, sws2b plays an important role in regulating eye development genes. This study provides data for further understanding of the role of sws2a and sws2b in medaka retina development.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xiaodan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
16
|
Thyroid Hormone Signaling Is Required for Dynamic Variation in Opsins in the Retina during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus). BIOLOGY 2023; 12:biology12030397. [PMID: 36979089 PMCID: PMC10044895 DOI: 10.3390/biology12030397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In the present study, we investigated the function of thyroid hormones (TH) in visual remodeling during Japanese flounder (Paralichthys olivaceus) metamorphosis through cellular molecular biology experiments. Our results showed that the expression of the five opsin genes of the flounder were highest in eye tissue and varied with the metamorphosis process. The expression of rh1, sws2aβ and lws was positively regulated by exogenous TH, but inhibited by thiourea (TU) compared to the control group. In addition, there was a significant increase in sws2aβ and lws in the rescue experiments performed with TU-treated larvae (p < 0.05). Meanwhile, T3 levels in flounder larvae were increased by TH and decreased by TU. Based on the differences in the expression of the three isoforms of the thyroid hormone receptor (TR) (Trαa, Trαb and Trβ), we further hypothesized that T3 may directly or indirectly regulate the expression of sws2aβ through Trαa. This study demonstrates the regulatory role of TH in opsins during flounder metamorphosis and provides a basis for further investigation on the molecular mechanisms underlying the development of the retinal photoreceptor system in flounders.
Collapse
|
17
|
Kraft M, Gölz L, Rinderknecht M, Koegst J, Braunbeck T, Baumann L. Developmental exposure to triclosan and benzophenone-2 causes morphological alterations in zebrafish (Danio rerio) thyroid follicles and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33711-33724. [PMID: 36495432 PMCID: PMC9736712 DOI: 10.1007/s11356-022-24531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Thyroid hormones (THs) regulate a multitude of developmental and metabolic processes, which are responsible for vertebrate development, growth, and maintenance of homeostasis. THs also play a key role in neurogenesis of vertebrates and thus affect eye development, which is vital for foraging efficiency and for effective escape from predation. Currently, there are no validated test guidelines for the assessment of TH system-disrupting chemicals (THSDCs) in fish. Consequently, the present study was designed to demonstrate the suitability of novel thyroid-related endpoints in early life-stages of fish. Embryos of a transgenic zebrafish (Danio rerio) line expressing the reporter gene tg:mCherry in their thyrocytes were used to investigate the effects of the environmental THSDCs triclosan (TCS, antibacterial agent) and benzophenone-2 (BP-2, UV filter) on thyroid follicle and eye development. Both BP-2 and TCS caused thyroid follicle hyperplasia in transgenic zebrafish, thus confirming their role as THSDCs. The effect intensity on follicle size and fluorescence was comparable with a 1.7-fold increase for BP-2 and 1.6-fold for TCS. Alterations of the cellular structures of the retina indicate an impact of both substances on eye development, with a stronger impact of TCS. With respect to guideline development, results provide further evidence for the suitability of morphological changes in thyroid follicles and the eyes as novel endpoints for the sensitive assessment of THSD-related effects in fish.
Collapse
Affiliation(s)
- Maximilian Kraft
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Gölz
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Maximilian Rinderknecht
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Wei S, Qiu L, Ru S, Yang Y, Wang J, Zhang X. Bisphenol S disrupts opsins gene expression and impairs the light-sensing function via antagonizing TH-TRβ signaling pathway in zebrafish larvae. Food Chem Toxicol 2023; 172:113588. [PMID: 36574878 DOI: 10.1016/j.fct.2022.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Bisphenol S (BPS) is extensively used in "bisphenol A-free" products such as baby bottles. Although the visual toxicity of BPS has been reported, the underlying mechanism was largely unknown. In the present study, zebrafish were exposed to 0, 4 and 400 nM BPS from 2 h post-fertilization (hpf) to 120 hpf to further explore the thyroid disruption mechanism underlying the BPS induced impairment of visual function. The results showed that BPS decreased T3 levels in larval eyes, induced retinal expression of thyroid hormone receptor β (TRβ), and thereby down-regulated the expression of TH-mediated opsin genes (opn1lw1, opn1lw2, opn1mw1, opn1mw2, opn1mw3, and opn1sw2) and impaired subsequent phototransduction pathways, leading to decreased visually mediated phototactic response and body color adaptation but stimulated visual motor response (VMR). Combining exposure of exogenous T3 or 1-850 (antagonist for TRβ) with BPS could partly compensate the inhibited expression of opsin genes (opn1mw2, opn1lw1, and opn1lw2) and alleviate the hyperactivity of larval VMR caused by BPS alone, suggesting that BPS disrupted the opsins expression and also light-sensing function via antagonizing TH-TRβ signaling pathway. This study underlined the importance of TH signaling in regulating the proper vision and proposed a novel mechanism for the visual toxicity of BPS.
Collapse
Affiliation(s)
- Shuhui Wei
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Liguo Qiu
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Yang Yang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Jun Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China
| | - Xiaona Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong province, PR China.
| |
Collapse
|
19
|
Gölz L, Baumann L, Pannetier P, Braunbeck T, Knapen D, Vergauwen L. AOP Report: Thyroperoxidase Inhibition Leading to Altered Visual Function in Fish Via Altered Retinal Layer Structure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2632-2648. [PMID: 35942927 DOI: 10.1002/etc.5452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thyroid hormones (THs) are involved in the regulation of many important physiological and developmental processes, including vertebrate eye development. Thyroid hormone system-disrupting chemicals (THSDCs) may have severe consequences, because proper functioning of the visual system is a key factor for survival in wildlife. However, the sequence of events leading from TH system disruption (THSD) to altered eye development in fish has not yet been fully described. The development of this adverse outcome pathway (AOP) was based on an intensive literature review of studies that focused on THSD and impacts on eye development, mainly in fish. In total, approximately 120 studies (up to the end of 2021) were used in the development of this AOP linking inhibition of the key enzyme for TH synthesis, thyroperoxidase (TPO), to effects on retinal layer structure and visual function in fish (AOP-Wiki, AOP 363). In a weight-of-evidence evaluation, the confidence levels were overall moderate, with ample studies showing the link between reduced TH levels and altered retinal layer structure. However, some uncertainties about the underlying mechanism(s) remain. Although the current weight-of-evidence evaluation is based on fish, the AOP is plausibly applicable to other vertebrate classes. Through the re-use of several building blocks, this AOP is connected to the AOPs leading from TPO and deiodinase inhibition to impaired swim bladder inflation in fish (AOPs 155-159), together forming an AOP network describing THSD in fish. This AOP network addresses the lack of thyroid-related endpoints in existing fish test guidelines for the evaluation of THSDCs. Environ Toxicol Chem 2022;41:2632-2648. © 2022 SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|